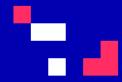
MAI4CAREU

Master programmes in Artificial Intelligence 4 Careers in Europe

University of Cyprus MAI645 - Machine Learning for Graphics and Computer Vision

Andreas Aristidou, PhD



Spring Semester 2023

Co-financed by the European Union Connecting Europe Facility

Image Classification & Object Detection

Notes have been prepared in collaboration with the Deep Camera MRG, CYENS CoE

Co-financed by the European Union Connecting Europe Facility

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

2

Image Classification

Image Classification is a fundamental task in computer vision where a model is trained to assign a specific label or class to an input image.

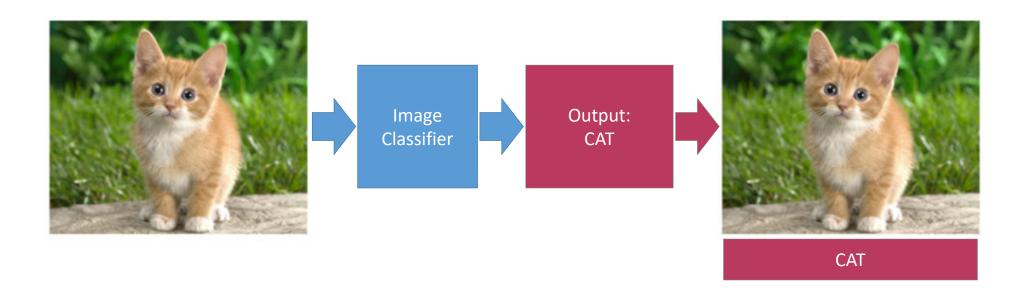
It involves training a model on a large dataset of images, each labeled with a specific class, and then using that model to make predictions on new, unseen images.

The goal is for the model to accurately categorize the images into their respective classes.

Image classification is used in a variety of applications, such as object recognition, scene understanding, and image retrieval. Classification

CAT

Image Classification



4

Image Classification

Image Classification: A core task in Computer Vision

This image by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u>

Co-financed by the European Union Connecting Europe Facility (assume given a set of possible labels) {dog, cat, truck, plane, ...}

cat

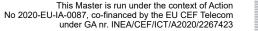


Image Classification

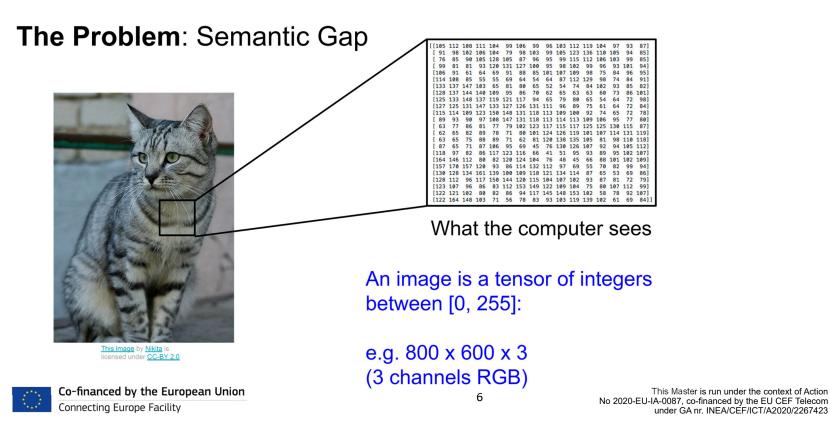
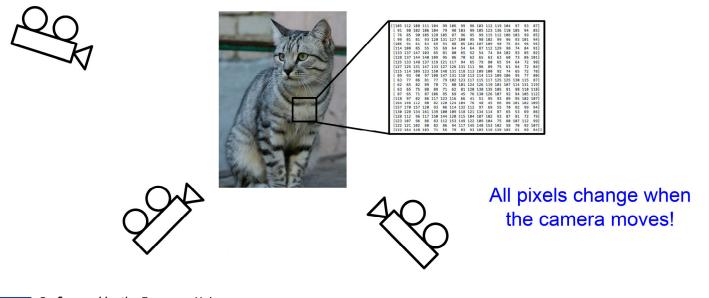


Image Classification

Challenges: Viewpoint variation



7

 $\langle 0 \rangle$

Co-financed by the European Union Connecting Europe Facility

Image Classification

Challenges: Illumination

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Co-financed by the European Union Connecting Europe Facility

Image Classification

Challenges: Background Clutter

This image is CC0 1.0 public domain

Co-financed by the European Union Connecting Europe Facility This image is CC0 1.0 public domain

Image Classification

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under <u>CC-BY 2.0</u>

Co-financed by the European Union Connecting Europe Facility

10

Image Classification

Challenges: Deformation

This image by Umberto Salvagnin is licensed under <u>CC-BY 2.0</u>

This image by Umberto Salvagnin is licensed under <u>CC-BY 2.0</u>

This image by sare bear is licensed under <u>CC-BY 2.0</u>

This image by Tom Thai is licensed under CC-BY 2.0

 $\langle 0 \rangle$

Co-financed by the European Union Connecting Europe Facility

Image Classification

Challenges: Intraclass variation

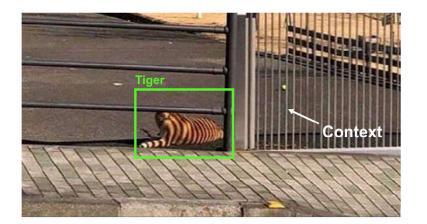
This image is CC0 1.0 public domain

Co-financed by the European Union Connecting Europe Facility

12

Image Classification

Challenges: Context



Co-financed by the European Union Connecting Europe Facility

MAI4CAREU

Master programmes in Artificial Intelligence 4 Careers in Europe

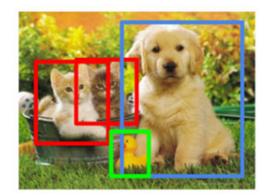
Object detection

Object detection is a fundamental task in computer vision where the goal is to <u>locate</u> and <u>classify</u> objects within an image or video.

It is a more advanced form of image classification, where instead of just identifying the class of an entire image, they identify multiple instances of multiple classes within an image and locate them with a bounding box; in other words, it deals with more realistic cases in which multiple objects may exist in an image

Object detection algorithms can be used in a variety of applications, such as self-driving cars, security systems, and augmented reality.

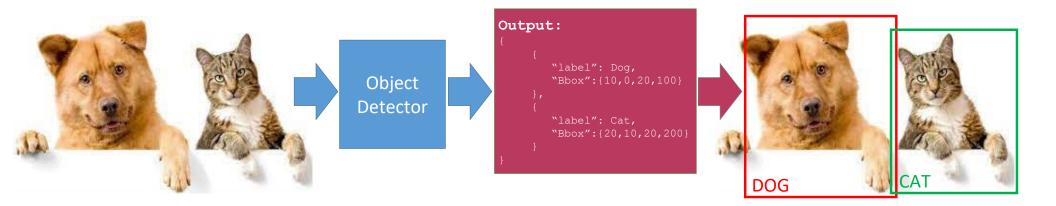
Object Detection



CAT, DOG, DUCK

Co-financed by the European Union Connecting Europe Facility

Object detection



15

Co-financed by the European Union Connecting Europe Facility

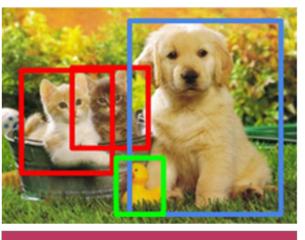
Differences

CAT

Localization

CAT

Object Detection



CAT, DUCK, DOG

Co-financed by the European Union Connecting Europe Facility

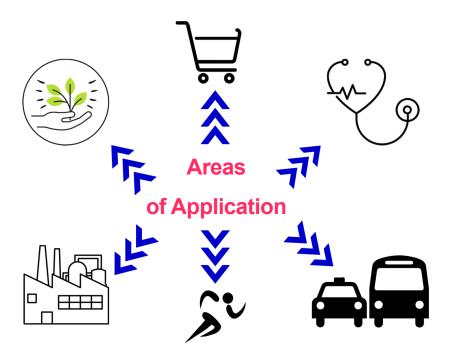
16

Importance

Image classification and object detection are important tasks due to their real-world applications, contributions to the advancement of artificial intelligence, improvements in accuracy and efficiency, and facilitation of human-computer interaction. In particular:

- 1. Real-world applications: Image classification and object detection have numerous real-world applications, including self-driving cars, surveillance systems, and image search engines.
- 2. Advancements in artificial intelligence: These tasks play a significant role in advancing the field of artificial intelligence and computer vision by providing a framework for developing and evaluating new algorithms and models.
- **3. Improved accuracy and efficiency:** Image classification and object detection algorithms have been constantly improving in terms of accuracy and efficiency. This enables more robust and reliable systems for various applications.
- 4. Facilitation of human-computer interaction: By automating tasks such as recognizing and locating objects in images, these algorithms make it possible to interact with computers in a more natural and intuitive way.

Areas of application of image classification and object detection



Co-financed by the European Union Connecting Europe Facility

18

Areas of application of image classification and object detection

Image classification and object detection have a wide range of applications in various fields such as:

- 1. Computer Vision: Image classification and object detection are the fundamental tasks in computer vision and are used in various vision-based applications.
- 2. Surveillance Systems: These technologies are used to detect and classify objects in real-time surveillance systems to improve the accuracy of security and monitoring.
- 3. Autonomous vehicles: Object detection is used in autonomous vehicles for tasks such as lane detection, obstacle detection, and traffic sign recognition.
- 4. Medical Imaging: Image classification and object detection techniques are used in medical imaging for tasks such as lesion detection, tumor segmentation, and diagnosis.
- 5. Agriculture: Object detection is used in agriculture for tasks such as crop counting and monitoring crop growth.
- 6. **Robotics:** Image classification and object detection are used in robotics for tasks such as object recognition and grasping.
- 7. E-commerce: Image classification and object detection are used in e-commerce for product categorization, image-based search, and automatic tagging.

Co-financed by the European Union Connecting Europe Facility

19

Areas of application of image classification and object detection

Image classification and object detection have a wide range of applications in various fields such as:

- 8. Augmented Reality (AR) and Virtual Reality (VR): Image classification and object detection are used in AR and VR for tasks such as 3D object recognition and tracking.
- 9. Sports: Object detection is used in sports for tasks such as player tracking and ball detection.
- **10. Marketing and Advertising:** Image classification and object detection are used in marketing and advertising for tasks such as image-based recommendations, image-based search, and product categorization.
- **11. Wildlife conservation:** Image classification and object detection are used in wildlife conservation for tasks such as animal tracking and species identification.
- **12. Retail:** Image classification and object detection are used in retail for tasks such as product recognition, price comparison, and visual search.
- **13. Face recognition:** Image classification and object detection are used in face recognition systems for tasks such as facial detection, facial landmarks, and facial verification.
- 14. Natural Language Processing (NLP): Image classification and object detection are used in NLP for tasks such as image captioning, visual question answering, and sentiment analysis.

Co-financed by the European Union Connecting Europe Facility

20

Areas of application of image classification and object detection

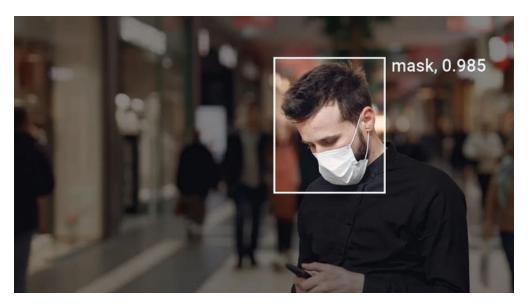
Visual Inspection of Equipment

Co-financed by the European Union Connecting Europe Facility

21

Areas of application of image classification and object detection

Smart health care: pose detection

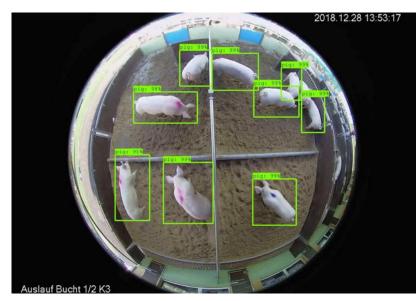


Smart health care: mask detection

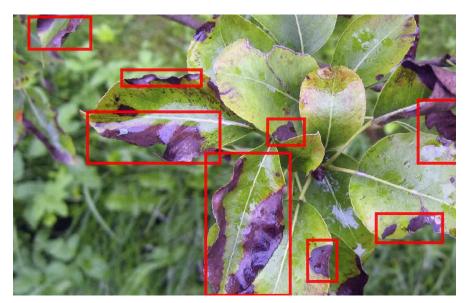
Co-financed by the European Union Connecting Europe Facility

22

Areas of application of image classification and object detection



Smart agriculture: animal monitoring

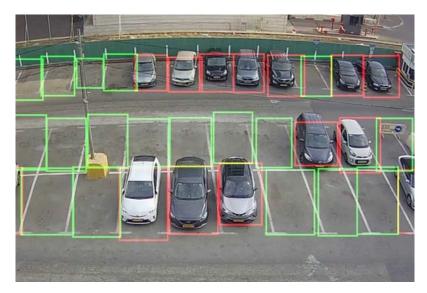


Smart agriculture: Plant Disease Detection

Co-financed by the European Union Connecting Europe Facility

23

Areas of application of image classification and object detection



Parking Occupancy Detection

Vehicle Classification

Co-financed by the European Union Connecting Europe Facility

24

MAI4CAREU

Master programmes in Artificial Intelligence 4 Careers in Europe

Approaches to the problem

Unsupervised

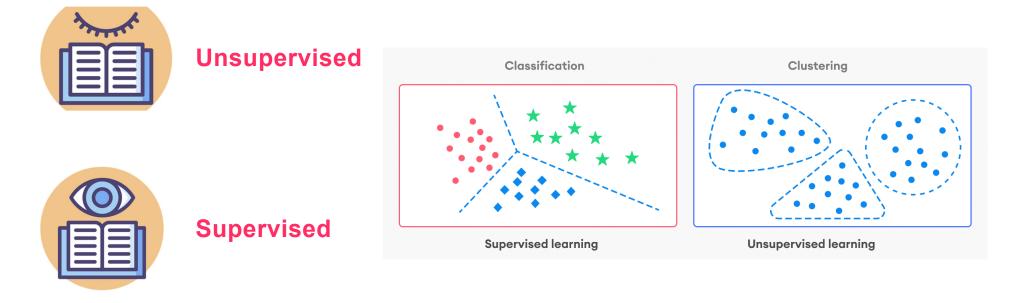
Unsupervised learning is a type of machine learning where the model is trained on an unlabeled dataset, and the algorithm tries to find patterns or relationships within the data without any prior knowledge of the expected outcome. The goal is to group similar data points together or to find lowerdimensional representations of the data. Examples of unsupervised learning algorithms are clustering and dimensionality reduction.

Supervised

Supervised learning, on the other hand, is a type of machine learning where the model is trained on labeled data, where the desired output is already known. The goal is to learn a mapping from inputs to outputs based on the labeled examples. The algorithm uses this mapping to make predictions on new unseen data. Examples of supervised learning algorithms are linear regression, decision trees, and support vector machines.

Co-financed by the European Union Connecting Europe Facility

Approaches to the problem



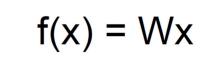
Co-financed by the European Union Connecting Europe Facility

26

Unsupervised Image Classification

Unsupervised Image Classification is where the outcomes (groupings of pixels with common characteristics) are based on the software analysis of an image without the user providing sample classes.

Pixel Space

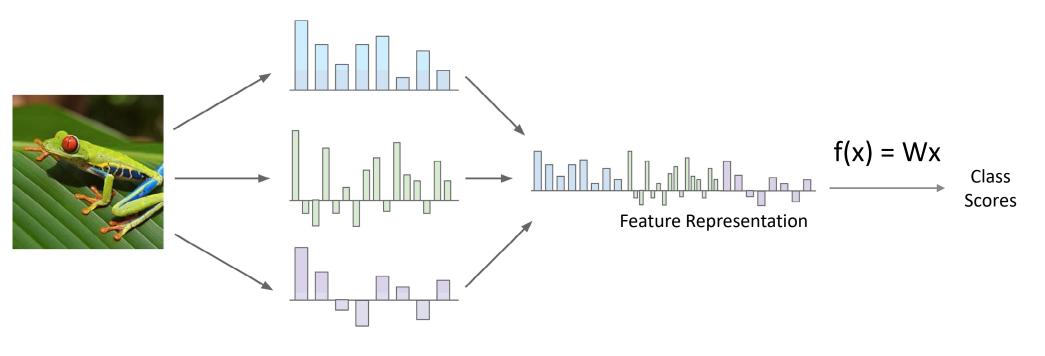


28

Class scores

Co-financed by the European Union Connecting Europe Facility

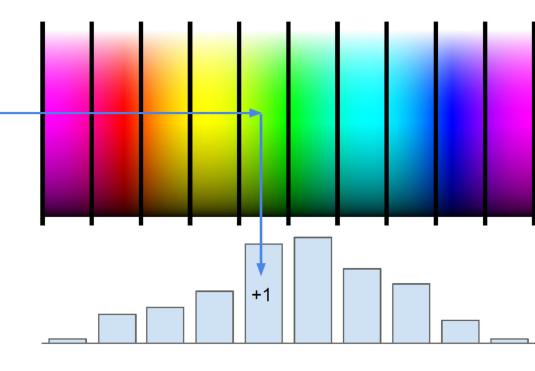
Image Features



29

Co-financed by the European Union Connecting Europe Facility

Example: Color Histogram

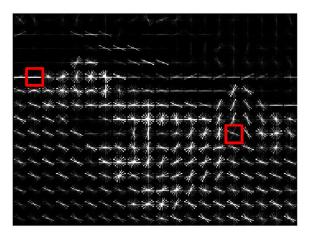


30

Co-financed by the European Union Connecting Europe Facility

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins



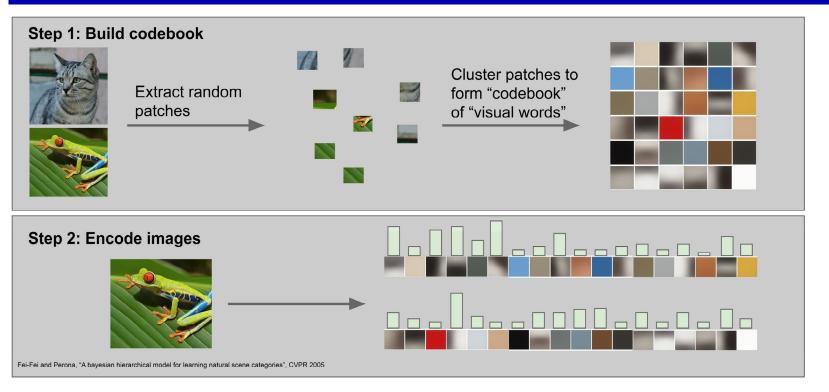
Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

> Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Co-financed by the European Union Connecting Europe Facility

31

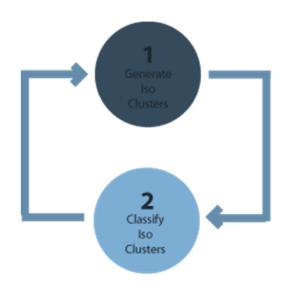
Unsupervised Image Classification



Co-financed by the European Union Connecting Europe Facility

32

Unsupervised Image Classification



In unsupervised classification, it first groups pixels into "clusters" based on their properties.

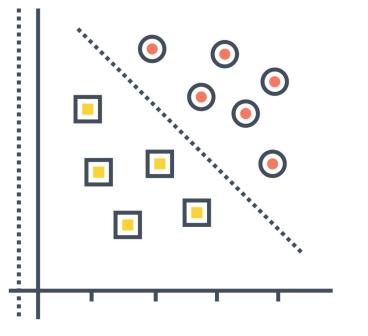
Then, you classify each cluster with a class.

Co-financed by the European Union Connecting Europe Facility

Steps for unsupervised image classification

- **1.** Choose Clustering Algorithm
- 2. Class Identification
- 3. Edit\Evaluate Signatures
- **4**. Class Evaluation

Co-financed by the European Union Connecting Europe Facility



Unsupervised image classification: Clusterization

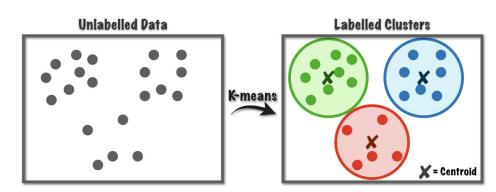
With unsupervised algorithms, **no pre-existing tags** are given to the system, **only raw data**. The system interprets the data, recognizes patterns, and draws unique conclusions from the data without human interference.

Unsupervised classification makes use of a concept called **clusterization**. Clusterization is the unsupervised, natural locating and grouping (or "clustering") of data into groups. However, you will not give get a class automatically. You'll only have the different clusters, which you'd need to decide a class for in another way. There are a plethora of different clusterization algorithms e.g., K-Means, Agglomerative Clustering, BIRCH, ISODATA, DBSCAN etc.

There isn't a single best choice out of these clusterization algorithms. Instead, it is optimal to test various ones until you settle on the one that works best with the specific task at hand.

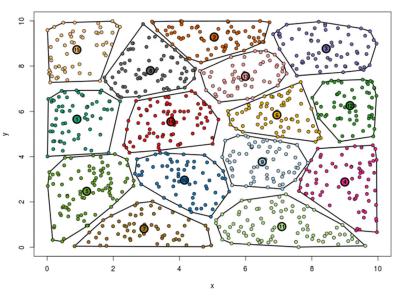
Co-financed by the European Union Connecting Europe Facility

Unsupervised image classification: Clusterization



K-means

Co-financed by the European Union Connecting Europe Facility



ISODATA

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

36

MiniBatch KMeans	Affinity Propagation	MeanShift	Spectral Clustering	Ward	Agglomerative Clustering	DBSCAN	OPTICS	BIRCH	Gaussian Mixture	Kmeans
	() 8.06s		(O) .45s	O	<u>()</u>	(O)01s	(O).895	0.035	015	<u>()</u> .04s
	11.58s	1 075	735			O 1s	1.05s	O .03s	.01s	1 005
.15s	5.675	.15s	.125	595		.025	1.195	.035		
.14s	4.725	.10s	.195	.24		.015	.825	.035		.075
*	*	*	*	*	*	*	*	*	*	
.19s	+ 5.35s	. .06s	. 17s	.08s		. 02s	. 84s	. 03s	. .01s	.04s
.14s	3.26s	.11s	.14s	.065	.05s	.01s	.845	.03s	.01s	.055
.145	3.205		.145	.005	.055	.015	.045	.035	.015	.055

Supervised Image Classification

Supervised classification is based on the idea that a user can select sample pixels in an image that are representative of specific classes and then direct the image processing software to use these training sites as references for the classification of all other pixels in the image.

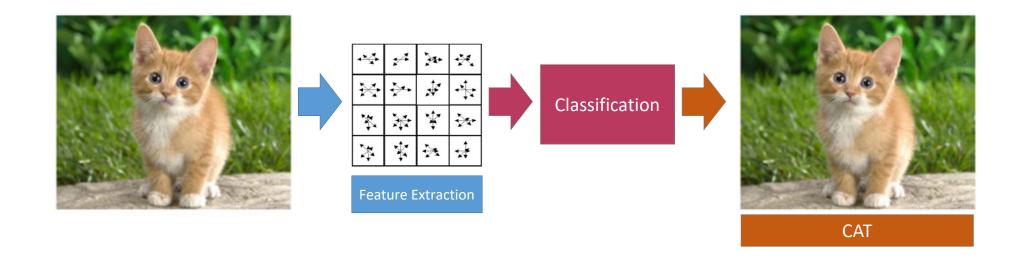
In supervised classification, you select representative samples for each class. The software then uses these "training sites" and applies them to the entire image.

Supervised Image Classification

Supervised classification involves **pre-training** the system with a **set of reference data**, allowing it to use the acquired information to classify new visual materials. The algorithm compares the new input with the previously trained data, using the patterns learned from the training data to classify the new images.

Supervised image classification algorithms can be divided into **single-label classification** and **multi-label classification**. Single-label classification refers to a singular label that is assigned to an image as a result of the classification process. While single-label classification assigns an image to a single category, multi-label classification allows an image to be assigned to an unlimited number of categories. Multi-label classification can be particularly useful in cases where an image contains multiple features or attributes. For instance, in medicine, a medical image may reveal multiple diseases or abnormalities in a patient.

Image Classification Using Traditional Machine learning



40

Co-financed by the European Union Connecting Europe Facility

Again, some feature extraction techniques:

HOG Features

• Histogram of Oriented Gradients (HOG) is a feature descriptor used in computer vision and image processing. It is used to represent the shape and structure of objects in an image. HOG works by dividing an image into small cells and computing the gradient orientation histogram for each cell.

Accelerated segment test (AST)

• The Accelerated Segment Test is a fast and efficient algorithm for detecting changes in the mean of a time-series. It is often used in change point detection problems, where the goal is to identify a point in time when the underlying distribution of the time-series changes.

• Scale Invariant Feature Transform (SIFT)

• Scale Invariant Feature Transform (SIFT) is an algorithm for detecting and describing local features in images. It is used for tasks such as object recognition, image matching, and texture classification. SIFT works by detecting distinctive, invariant features in an image that are robust to changes in scale, orientation, and illumination.

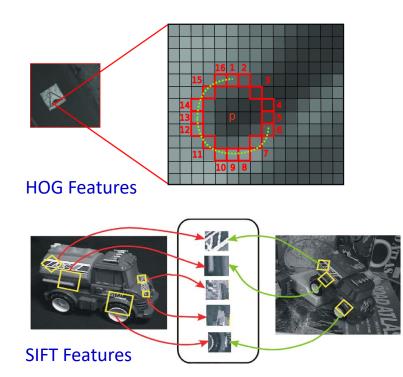
Oriented FAST and Rotated BRIEF (ORB)

Oriented FAST and Rotated BRIEF (ORB) is a feature detection and description algorithm in computer vision. It is a combination of the FAST (Features from Accelerated Segment Test) corner detector and the BRIEF (Binary Robust Independent Elementary Features) descriptor.
 FAST is a fast corner detection algorithm that is used to detect features in an image. BRIEF is a binary feature descriptor that describes the local appearance of a feature using a binary string.

Co-financed by the European Union Connecting Europe Facility

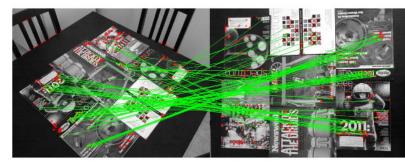
41

Again, some feature extraction techniques:



Co-financed by the European Union Connecting Europe Facility

AST Features



ORB Features

Example of Classifiers

• Decision Tree classifier

• A Decision Tree classifier is a simple and popular machine learning algorithm used for solving classification problems. It is a type of decision tree algorithm, where the tree is used to make predictions by recursively partitioning the data into smaller subsets based on the values of the input features. Each node in the tree represents a feature, and the branches represent the possible values of that feature. The leaves of the tree represent the class labels, and the path from the root to a leaf represents a decision rule for making predictions. To make a prediction for a new input, the algorithm follows the path through the tree that corresponds to the values of the input features.

Random Forest Classifier

• In a Random Forest Classifier, a large number of decision trees are grown, and each tree is trained on a randomly selected subset of the data. When making a prediction for a new input, the Random Forest Classifier aggregates the predictions made by each individual decision tree and outputs the class label that is predicted by the majority of trees.

Naive Bayes classifier

• The Naive Bayes classifier is a probabilistic machine learning algorithm used for classification problems. It is based on Bayes' theorem, which states that the probability of a hypothesis (e.g., a class label) given some observed evidence (e.g., input features) can be estimated based on prior probabilities of the hypothesis and the probability of the evidence given the hypothesis.

Support vector machine

• Support Vector Machine (SVM) is a type of supervised learning algorithm used for classification and regression analysis. It is a boundary-based algorithm that finds the maximum-margin boundary that separates the classes in the data.

Co-financed by the European Union Connecting Europe Facility

43

Data-driven approaches

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

def	train(in	nages,	labels):
#	Machine	learn	ing!
re	e <mark>turn mo</mark> c	lel	

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Example training set

airplane	2	1	-		道来
automobile					
bird		1	** *	12	1
cat	1	A			
deer	1		N.		

First classifier: Nearest Neighbor

```
def train(images, labels):
    # Machine learning!
    return model
```

```
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Memorize all data and labels

Predict the label
 of the most similar training image

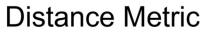
bird

Master programmes in Artificial Intelligence 4 Careers in Europe

First classifier: Nearest Neighbor

Training data with labels

query data



Co-financed by the European Union Connecting Europe Facility

First classifier: Nearest Neighbor

Distance Metric to compare images

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

. . . .

test image						
56	32	10	18			
90	23	128	133			
24	26	178	200			
2	0	255	220			

tr	aining	g imag	je
10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixe	el-wise	absolut	e value	differe	nces
	46	12	<mark>14</mark>	1	
_	82	13	39	33	add
=	12	10	0	30	→ 456
	2	32	22	<mark>10</mark> 8	

Co-financed by the European Union Connecting Europe Facility

A good implementation:

https://github.com/facebookresearch/faiss

mport numpy as np		
lass NearestNeighbor: definit(self): pass		Q: With N examples, how fast are training
<pre>def train(self, X, y): """ X is N x D where each row is an example. Y is 1-dimension of size N """</pre>		and prediction?
<pre># the nearest neighbor classifier simply remembers all the training data self.Xtr = X self.ytr = y</pre>	Memorize training data	Ans : Train O(1), predict O(N)
<pre>def predict(self, X): """ X is N x D where each row is an example we wish to predict label for """</pre>		
<pre>num_test = X.shape[0] # lets make sure that the output type matches the input type Ypred = np.zeros(num_test, dtype = self.ytr.dtype)</pre>		This is bad: we want classifiers that are
<pre># loop over all test rows for i in xrange(num test):</pre>		fast at prediction;
<pre># find the nearest training image to the i'th test image # using the Ll distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min index = np.argmin(distances) # get the index with smallest distance</pre>	For each test image: - Find closest train image	
<pre>Ypred[i] = self.ytr[min_index] # predict the label of the nearest example</pre>	- Predict label of nearest	Image
return Ypred		

Co-f

Co-financed by the European Union Connecting Europe Facility

48

First classifier: Nearest Neighbor

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

train

BAD: K = 1 always works perfectly on training data

First classifier: Nearest Neighbor

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train test

First classifier: Nearest Neighbor

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the **training data**

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

test

train

•

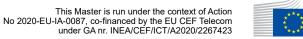
Correct!!!

Idea #3: Split data into train, val; choose

hyperparameters on val and evaluate on test

 train
 validation
 test

 Image: Co-financed by the European Union Connecting Europe Facility
 51
 The No 2020-EUROPUT



First classifier: Nearest Neighbor

Setting Hyperparameters

train

Idea #4: Cross-Validation: Split data into folds,

try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Co-financed by the European Union Connecting Europe Facility

First classifier: Nearest Neighbor

Example Dataset: CIFAR10

10 classes 50,000 training images 10,000 testing images

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Co-financed by the European Union Connecting Europe Facility

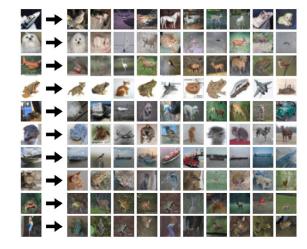
First classifier: Nearest Neighbor

Example Dataset: CIFAR10

10 classes 50,000 training images 10,000 testing images

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Co-financed by the European Union Connecting Europe Facility Test images and nearest neighbors



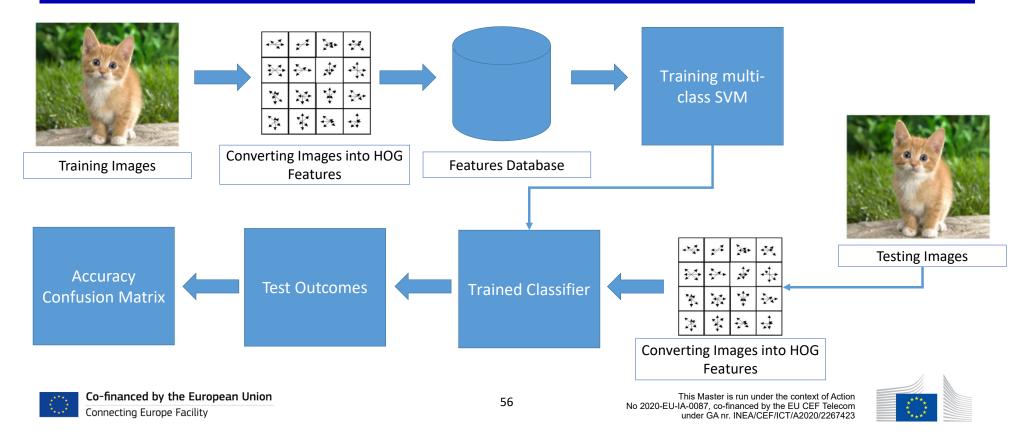
K-Nearest Neighbors: Summary

In **image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

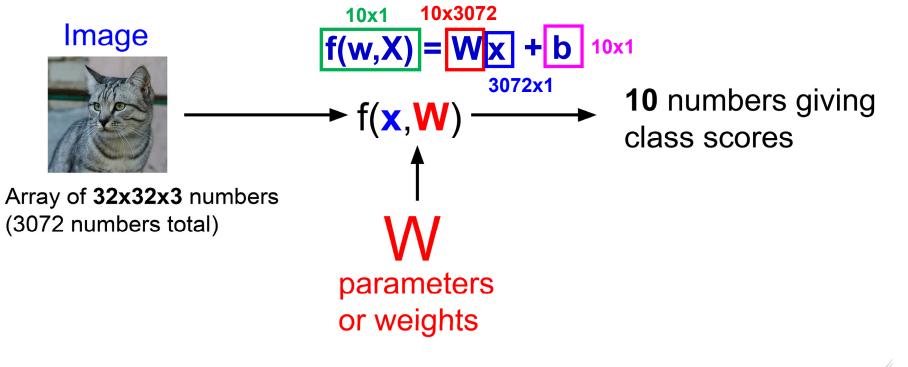
The K-Nearest Neighbors classifier predicts labels based on the K nearest training examples

- Distance metric and K are hyperparameters
- Choose hyperparameters using the validation set;
- Only run on the test set once at the very end!

Traditional Image Classification: *Example of using HOG and SVM*

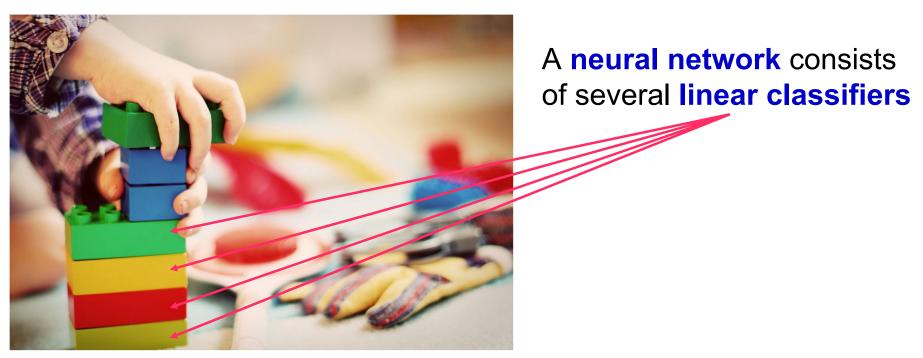


Linear Classifier: Parametric Approach



Co-financed by the European Union Connecting Europe Facility

Linear Classifier: Parametric Approach

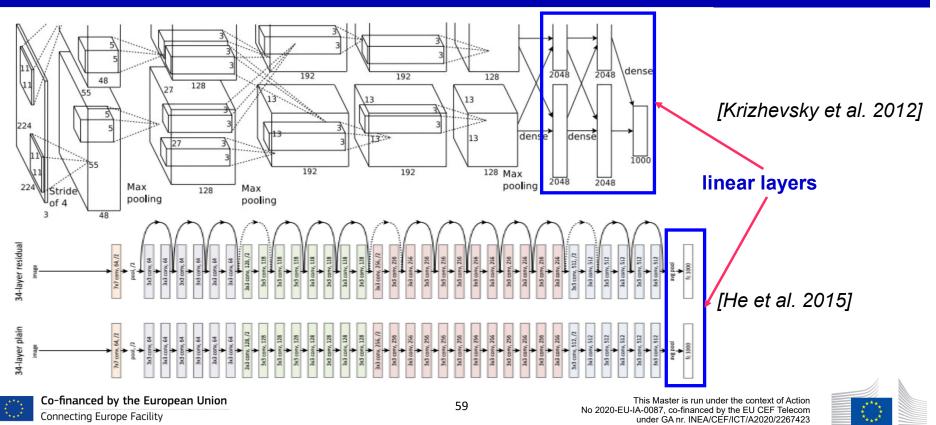


This image is CC0 1.0 public domain

Co-financed by the European Union Connecting Europe Facility

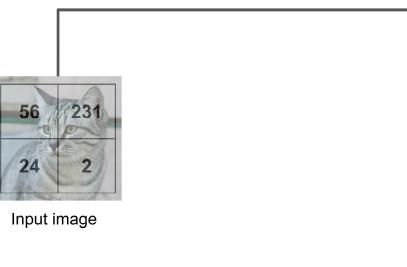
58

Linear Classifier: Parametric Approach



Linear Classifier: Parametric Approach

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



Flatten tensors into a vector

Co-financed by the European Union Connecting Europe Facility 60

56

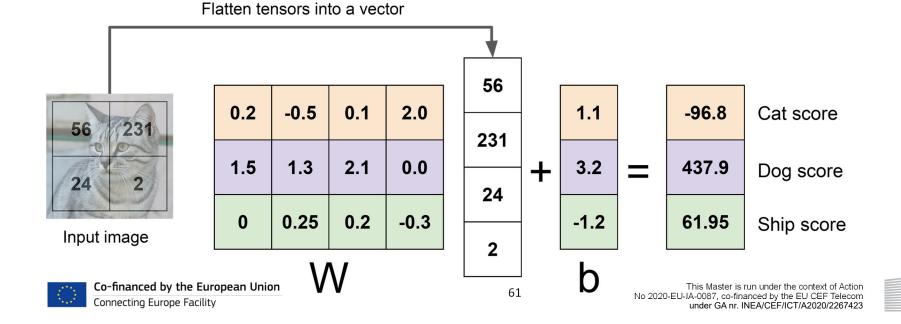
231

24

2

Linear Classifier: Parametric Approach

Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Algebraic Viewpoint



automobile

bird

cat deer

dog

frog

horse ship

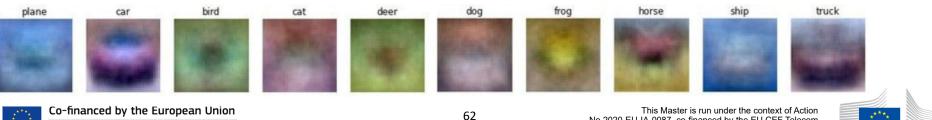
truck

Master programmes in Artificial Intelligence 4 Careers in Europe

Linear Classifier: Parametric Approach

Interpreting a Linear Classifier **Visual Viewpoint** airplane

Input image 56 231 24 2 0.2 -0.5 1.5 0 .25 1.3 W 0.1 2.0 2.1 0.0 0.2 -0.3 b 1.1 3.2 -1.2 437.9 Score -96.8 61.95

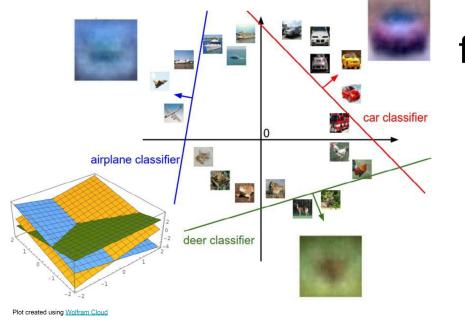


Connecting Europe Facility

No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

Linear Classifier: Parametric Approach

Interpreting a Linear Classifier: Geometric Viewpoint



f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0

 $\langle \bigcirc \rangle$

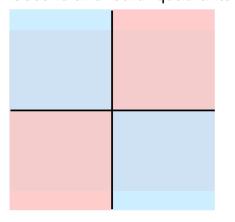
Co-financed by the European Union Connecting Europe Facility

Linear Classifier

Hard cases for a linear classifier

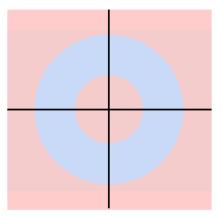
Class 1: First and third quadrants

Class 2: Second and fourth quadrants



Class 1: 1 <= L2 norm <= 2

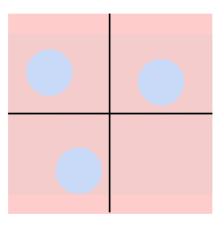
Class 2: Everything else



 $\langle 0 \rangle$

Co-financed by the European Union Connecting Europe Facility Class 1: Three modes

Class 2: Everything else



Linear Classifier: SVM

Linear Classifier – Choose a good W

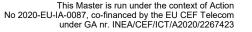
-3.45	-0.51	3.42
-8.87	6.04	4.64
0.09	5.31	2.65
2.9	-4.22	5.1
4.48	-4.19	2.64
8.02	3.58	5.55
3.78	4.49	-4.34
1.06	-4.37	-1.5
-0.36	-2.09	-4.79
-0.72	-2.93	6.14
	-8.87 0.09 2.9 4.48 8.02 3.78 1.06 -0.36	$\begin{array}{cccc} -3.45 & -0.51 \\ -8.87 & \textbf{6.04} \\ 0.09 & 5.31 \\ \textbf{2.9} & -4.22 \\ 4.48 & -4.19 \\ 8.02 & 3.58 \\ 3.78 & 4.49 \\ 1.06 & -4.37 \\ -0.36 & -2.09 \end{array}$

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Co-financed by the European Union Connecting Europe Facility TODO:

 Define a loss function that quantifies our unhappiness with the scores across the training data.
 Come up with a way of efficiently finding the parameters that minimize the loss function.

(optimization)



Master programmes in Artificial Intelligence 4 Careers in Europe

Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

 $\langle 0 \rangle$

Co-financed by the European Union Connecting Europe Facility A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x_i}$ is image and $oldsymbol{y_i}$ is (integer) label

Loss over the dataset is a average of loss over examples:

 $L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$

Master programmes in Artificial Intelligence 4 Careers in Europe

Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Co-financed by the European Union Connecting Europe Facility

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

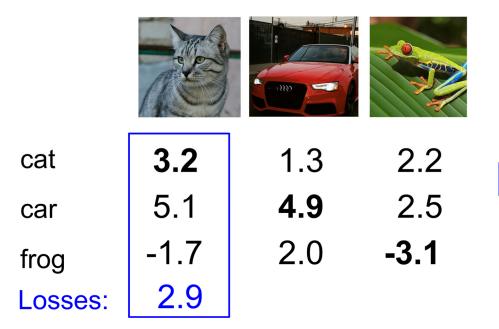
the SVM loss has the form:

$$L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1\\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

Master programmes in Artificial Intelligence 4 Careers in Europe

Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:



Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{split} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 5.1 - 3.2 + 1) \\ &+ \max(0, -1.7 - 3.2 + 1) \\ &= \max(0, 2.9) + \max(0, -3.9) \\ &= 2.9 + 0 \\ &= 2.9 \end{split}$$

Master programmes in Artificial Intelligence 4 Careers in Europe

Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

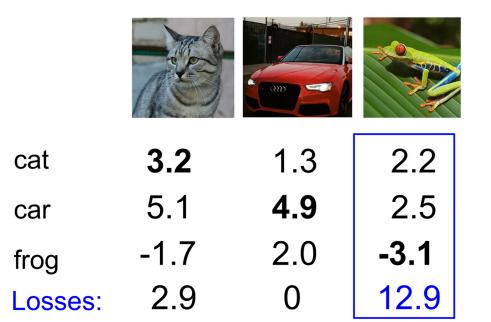
the SVM loss has the form:

$L_i = \sum_{j eq y_i} \max(0, s_j - s_{y_i} + 1)$
= max(0, 1.3 - 4.9 + 1)
+max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

Master programmes in Artificial Intelligence 4 Careers in Europe

Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:



Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$L_i = \sum_{j eq y_i} \max(0, s_j - s_{y_i} + 1)$
= max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5 - (-3.1) + 1)
= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.9

Master programmes in Artificial Intelligence 4 Careers in Europe

Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

L = (2.9 + 0 + 12.9)/3
= 5.27

Master programmes in Artificial Intelligence 4 Careers in Europe

Linear Classifier: SVM

Multiclass SVM loss:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat	1.3
car	4.9
frog	2.0
Losses:	0

Q1: What happens to loss if car scores decrease by 0.5 for this training example? Q2: What is the min/max possible SVM loss Li? Q3: At initialization W is small so all s \approx 0. What is the loss Li, assuming N examples and C classes? Q4: What if the sum was over all classes? (including j = y_i) Q5: What if we used the mean instead of sum? Q6: What if we used $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)^2$

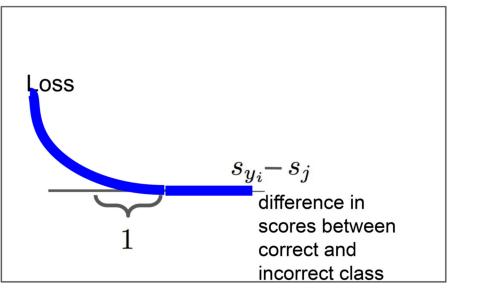
Linear Classifier: SVM

Multiclass SVM loss:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat	1.3
car	4.9
frog	2.0
Losses:	0

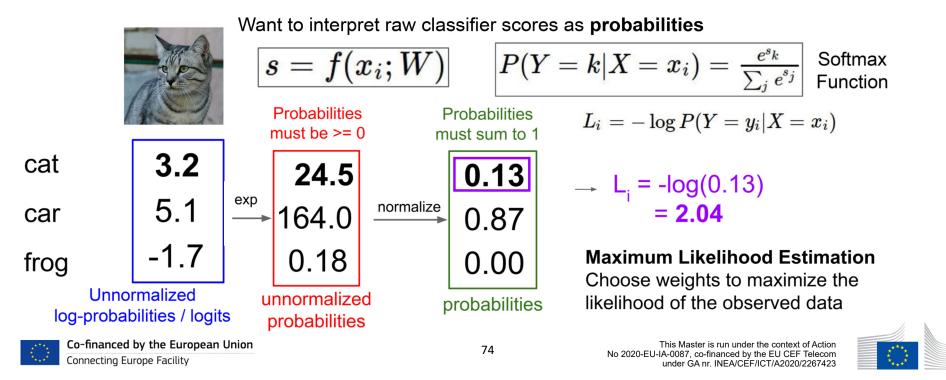
Multiclass SVM loss:



Q6: What if we used $\ L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$

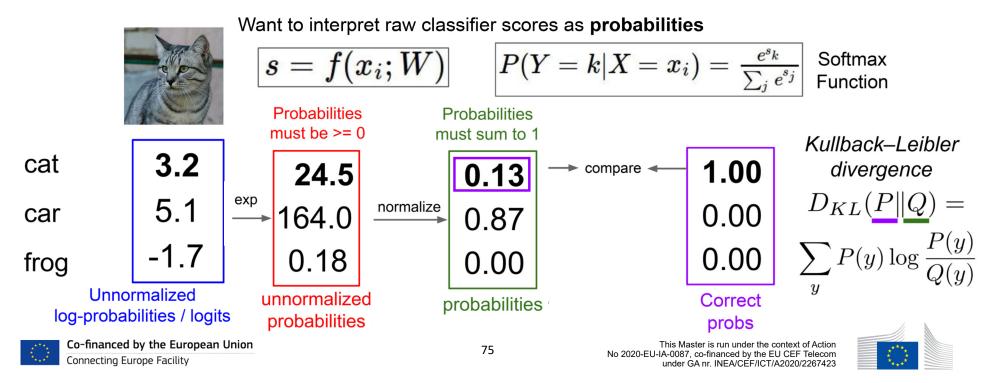
Linear Classifier: Softmax

Softmax Classifier (Multinomial Logistic Regression)



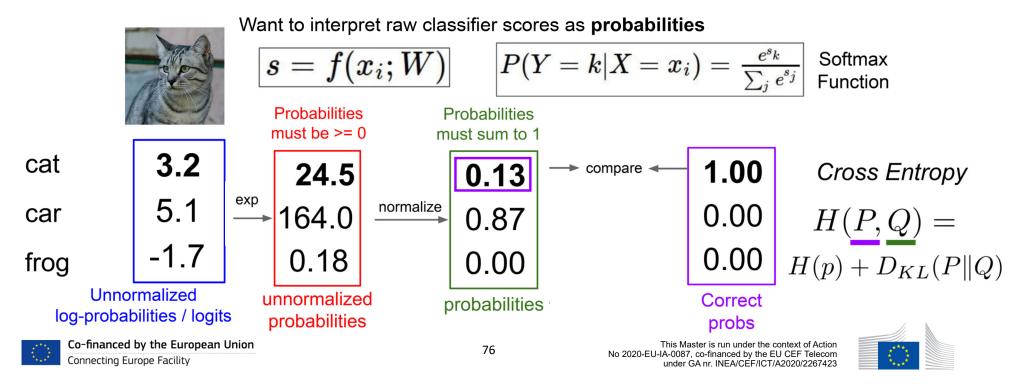
Linear Classifier: Softmax

Softmax Classifier (Multinomial Logistic Regression)



Linear Classifier: Softmax

Softmax Classifier (Multinomial Logistic Regression)



Linear Classifier: Softmax

Softmax Classifier (Multinomial Logistic Regression)

3.2

5.1

-1.7

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$
 $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat

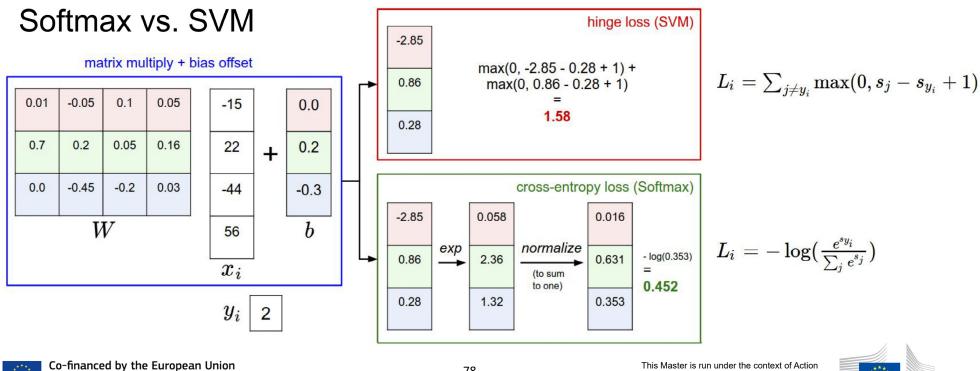
car

frog

Co-financed by the European Union Connecting Europe Facility

Master programmes in Artificial Intelligence 4 Careers in Europe

Linear Classifier: Softmax



Connecting Europe Facility

78

Next Courses

- Brief discussion on regularization & optimization techniques
- Image Classification with CNNs
 - Training, Visualizing and Understanding
- Object Detection and Image Classification
 - Recurrent Neural Networks
 - Attention and Transformers

Research in Deep Camera

Camera

Alessandro Artusi Team Leader DeepCamera Group

email: a.artusi@cyens.org.cy

Research Interests:

Machine Learning, Deep Learning and its applications in Computer Vision, High Dynamic Range Imaging, Image Processing applied on Computer Graphics and Color Science

https://www.cyens.org.cy/en-gb/research/pillarsgroups/visual-sciences/deepcamera/people/alessandro-artusi/

https://deepcamera.cyens.org.cy/about-us/

deepcamera.ai@gmail.com

+357 227 475 81

Dimarchias Square 23 STOA, Nicosia Nicosia, Nicosia 1016, Cyprus

Co-financed by the European Union Connecting Europe Facility

CENTRE OF EXCELLENCE

Thank you!

See you next week

Co-financed by the European Union Connecting Europe Facility

