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Image Classification: Regularization, Optimization, Backpropagation

These notes are based on the work of Fei-Fel Li, Jiajun Wu, Ruohan Gao,

CS231 - Deep Learning for Computer Vision
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Microsoft, its subsidiary GitHub, and OpenAl for their GitHub Copilot system received a class-action suit for
mass copyright infringement. The plaintiffs argue that by producing code that doesn’t give attribution to the
original authors whose code is used to generate Copilot’s results, the system violates open-source licenses,
as well as the Digital Millennium Copyright Act. Similar suits are filed against Dalle-2, Midjourney, and

ChatGPT products to protect human content creators.



https://www.wsj.com/news/author/christopher-mims
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Recall from last time

Image Classification: A core task in Computer Vision

(assume given a set of possible labels)
{dog, cat, truck, plane, ...}

> cat

This image by Nikita is
licensed under CC-BY 2.0
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Recall from last time: Challenges of recognition

Viewpoint lllumination Deformation Occlusion
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This image is CCO 1.0 public domain This image by jonsson is licensed

under CC-BY 2.0

This image is CC0O 1.0 public domain This image is CC0 1.0 public domain
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Recall from last time: Data-driven approaches, kNN
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5-NN classifier

Cross-validation on k
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Recall from last time: Data-driven approaches, kNN

- f(x W ». 10 numbers giving
(x,W)
AL class scores
£ o 8 T
Array of 32x32x3 numbers
(3072 numbers total) W
parameters
or weights

Algebraic Viewpoint Visual Viewpoint

Geometric Viewpoint
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Class 1:
1<=L2norm <=2

Class 2:
Everything else

f(x,W) = Wx + b

Class 1:
Three modes

Class 2:
Everything else
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Recall from last time: Data-driven approaches, kNN

Master programmes in Atrtificial
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Interpreting a Llnear Classifier: Visual Viewpoint
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Recall from last time: Data-driven approaches, kNN

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

S _ Input image
Algebraic Viewpoint
17234
g{: 4&*
24 3 2,
f(x,W) = Wx -
\ A/
Stretch pixels into column 0.2 -0.5 1.5 1.3 0 25
Y W
56
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i (7230 231
24 J “; 15 | 1.3 | 21 | 0.0 - 4| 32 | = | 437.9 | Dog score + * +
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Input image 2 b 1.1 3.2 -1.2
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Recall from last time: Data-driven approaches, kNN

Interpreting a Linear Classifier: Geometric Viewpoint

airplane classifier &

Array of 32x32x3 numbers
(3072 numbers total)

Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0
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Recall from last time: Data-driven approaches, kNN

Suppose: 3 training examples, 3 classes.

_ A loss function tells how good
With some W the scores f(xz,W) = Wa are:

our current classifier is
Given a dataset of examples
N
{(%, yi) i

Where 2; Is image and

cat 13 2 9 y; is (integer) label
car 49 2 5 Loss over the dataset is a

average of loss over examples:
frog 2.0 -3.1

1
L=~ ZLi(f(a:z-, W), yi)
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Recall from last time: Softmax vs SVM

Softmax vs. SVM hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—»| | 0.86 max(0, 0.8?- 0.28 + 1) lg = Z]'#yz‘ maX(O, Sj — Sy, T 1)
0.01 | -0.05 | 0.1 | 0.05 15 0.0 =
o 1.58
07 | 02 | 005 | 0.16 292 + 0.2
00 | -045| -0.2 | 0.03 44 a1 | cross-entropy loss (Softmax)
-2.85 0.058 0.016
%% 56 b
ex normalize | i
Lol | 086 | | 236 s |o631 | -os0ssy | Li = — log( - )
z’t (to sum = J
to one) 0.452
0.28 132 0.353
Yi; | 2
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Recall from last time: Softmax vs SVM

Support Vector Machine (SVM) is a linear classifier used for binary classification problems. It finds the
best hyperplane that separates the data into two classes and classifies new data points based on which
side of the hyperplane they fall on. SVM can also be extended to handle multiclass classification
problems through one-vs-one or one-vs-all approaches.

The softmax function 1s a popular activation function used in machine learning, especially in multiclass
classification problems. It maps a set of real-valued numbers to a probability distribution over multiple
classes, such that all the probabillities sum to 1. In this way, the output of the softmax function can be
Interpreted as the estimated class probabilities.

In summary, Softmax is used for multiclass classification problems and SVM Is used for binary
classification problems.

Co-financed by the European Union 13 This Master is run under the context of Action
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Recall from last time: Softmax vs SVM

flx, W) =Wz

L= 1Yl Y, max(0, f(z:; W); — f(zi; W)y, + 1)

Question:
Suppose that we found a W such that L = 0. Is this W unigue?

No! 2W also has L = 0!
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Recall from last time: Softmax vs SVM

Suppose: 3 training examples, 3 classes. L; = Z#y. max(0, s; — sy. + 1)
With some W the scores f(z,W) = Wz are: z

Before:
= max(0, 1.3-4.9+1)
+max(0, 2.0-4.9 + 1)

=max(0, -2.6) + max(0, -1.9) Lo\ do we choose

=0+0
- 0 between W and 2W?
cat With W twice as large:
= max(0, 2.6 - 9.8 + 1)
car . - +max(0, 4.0 -9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
frOg -1.7 2-0 -3l1 =O+O
Losses: 2.9 0 -0
Co-financed by the European Union 15 This Master is run under the context of Action

e —-—_Mc L i i 6L No 2020-EU-1A-0087, co-financed by the EU CEF Telecom
Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423




MAIACAREU Master programmes in Artificial
Intelligence 4 Careers in Europe

Regularization

Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data
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Regularization

Regularization Is used in machine learning to prevent overfitting, which is a common problem in complex
models with many parameters. Overfitting occurs when a model fits the training data too well and
memorizes the noise and random fluctuations in the data, leading to poor performance on unseen data.

Regularization helps to address overfitting by adding a penalty term to the cost function that discourages
overly complex models with large coefficients. It can be applied by adding a penalty term, such as L1 or L2
regularization, to the cost function. This term discourages overly complex models by penalizing large
coefficients, leading to sparse models that are less likely to overfit the data. The goal of regularization Is to
find a balance between fitting the training data well and maintaining a simple model that can generalize well

to unseen data.

In summary, regularization is used in machine learning to prevent overfitting, improve the generalization
performance of models, and make the models more robust and reliable.

Co-financed by the European Union 17 This Master is run under the context of Action
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Regularization intuition: foy example training data
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Regularization intuition: Prefer Simpler Models

pe
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Regularization intuition: Prefer Simpler Models

y

-

Regularization pushes against fitting the data
too well so we don't fit noise In the data
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Regularization

Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Occam’s Razar: Among multiple competing

hypotheses, the simplest is the best,
William of Ockham 1285-1347

Co-financed by the European Union 71 This Master is run under the context of Action
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Regularization

1 ¥ )\_= regularization strength
L(W) — Z Li(f(:zti, W), yz) us )\R(W) (hyperparameter)

Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples Wh .
S ; y regularize?
L2 regularization: R(W) = ), >, W, - Express preferences over weights

L1 regularization: R(W) = >, >, Wk, - Make the model simple so it works on test data
Elastic net (L1 + L2): RW) =Y, >, BW?, + |[Wyy| - Improve optimization by adding curvature

Co-financed by the European Union
Connecting Europe Facility
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Regularization: Recap

How do we find the best W?

- We have some dataset of (x,y) a0,
- We have a score function: s = f(z; W) = Wz
- We have a loss function:

~ Softmax

L; = —log(=-
i = —log(=—-)
97 g SVM regularization loss

Lz‘ — Zj#yz- maX(O, Sj — Sy, + 1) w

score functl()lm 2 data loss |
- f(xia W) g L
1 N o]
L==) 1L+ R(W) Fullloss | T
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Regularization: Interactive Web Demo

f x[0] | | x[1] s[01 | | sr11 || s[21 L
W[O,0] W[O,1] b[O]
A A A 0.50 | | 0.40 0.72 | | -0.28| [-0.31]}| 0.00
O 1.03 0.99 | |[-0.19 0.80 0.30 0.93 -0.72]11-0.09 0.00
@ 0.04 | |-0.02|| 0.00 _ ,
® 0.30 || 0.80 0.91 || 0.25||=-1.03/}| 0.35
\ 4 \ 4 A 4 ,
W[1,0] W(1,1] bB[1] ~0.40| | 0.30 ~0.31| | 0.72 | |-0.28/}| 0.00
A A A ~0.30| | 0.70 0.19 | | 0.90 | |-0.95[}| 0.29
s 7'\/ -1.20(| 0.74 || 0.02 ~0.70| | 0.20 —0.72| | 1.01 | |[-0.16/}| 0.00
-/ —0.02|| 0.06|] 0.22
@ N 0.70 | | -0.40 0.13 | |-1.11] | 1.11 0.03
9 \ 4 \ 4 \ 4
o) W[2,0] W[2,1] b[2] 0.50 | | -0.60 ~0.27| | -1.02| | 1.42 0.00
A A A ~0.40| | -0.50 —1.10/] 0.13 || 1.10 0.03
@ 0.16 | |-1.72| | 0.30 Ceon
® ~0.02||-0.04||-0.22 ]
Total data loss: 0.08 0.08
v v v Regularization loss: 1.11
Total loss: 1.19
Step size: 0.10000 L2 Regularization strength: 0.15849
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
Co-financed by the European Union 74 This Master is run under the context of Action
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Optimization

Optimization Is a crucial step in machine learning as It determines the parameters of the
model that lead to the best performance on a given task. It plays a crucial role in determining
the performance of machine learning models and is an active area of research.

Co-financed by the European Union )5 This Master is run under the context of Action
o e No 2020-EU-1A-0087, co-financed by the EU CEF Telecom
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Strategy #1: A first very bad idea solution: Random search

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

Co-financed by the European Union 6 This Master is run under the context of Action
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Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols)

Yte predict = np.argmax(scores, axis = 0)
np.mean(Yte predict == Yte)
15.5% accuracy! not bad!
(SOTA IS ~99.7%)
Co-financed by the European Union 97 This Master is run under the context of Action
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

df(z) _ . flz+h)- f(z)

dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

Co-financed by the European Union )8 This Master is run under the context of Action
o e No 2020-EU-1A-0087, co-financed by the EU CEF Telecom

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423
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Strategy #2: Follow the slope

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Co-financed by the European Union
Connecting Europe Facility

Master programmes in Atrtificial
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W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

29

gradient dW:

[-2.5,

?

o

(1.25322 - 1.25347)/0.0001
=-2.5
df(z) _ . fe+h) - f(@)
dx h —0 h
?,
2]

This Master is run under the context of Action
No 2020-EU-1A-0087, co-financed by the EU CEF Telecom
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Strategy #2: Follow the slope

current W:

10.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Co-financed by the European Union
@ Connecting Europe Facility

W + h (second dim):

10.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

30

gradient dW:

-2.5,

0.6,
o
;

(1.25353 - 1.25347)/0.0001
=0.6
df(z) _ . flzth) - f(=)
dx h —0
?2,..]

This Master is run under the context of Action
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Strategy #2: Follow the slope

current W:

10.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

M Co-financed by the European Union
@ Connecting Europe Facility

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.9,

0.33,...]

loss 1.25347

31

gradient dW:

-2.5,
0.6,
0,

o

(1.25347 - 1.25347)/0.0001
=0

df() _ . fla+h)- f()
dx h —0 h
7]

This Master is run under the context of Action
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Strategy #2: Follow the slope

current W:

10.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Co-financed by the European Union
Connecting Europe Facility

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

32

gradient dW:

-2.5,
0.6,
0,

0

Numeric Gradient is

* Slow. Needs to loop ovber
all dimensions

* Approximates

-,----I

This Master is run under the context of Action
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Strategy #2: Follow the slope

This is silly. The loss Is just a function of W:
L = %Zz’JLLi +Eka2

Lz' — E]’#yi max(O, Sj — Sy. + 1)

s = f(z; W) =Wz

want Vn/'L

Use calculus to compute an
analytic gradient

This image is in the public domain This image is in the public domain

Co-financed by the European Union 33 This Master is run under the context of Action
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Optimization: In summary

Numerical gradient: approximate, slow, easy to write

Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient but check the implementation with numerical

gradient. This Is called a gradient check.

Co-financed by the European Union 34 This Master is run under the context of Action
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Gradient Descent

Gradient Descent Is an optimization algorithm used to minimize a loss function by iteratively
adjusting the parameters of a model in the direction of steepest decrease of the loss function.

The algorithm works by first initializing the model parameters with random values, then
iteratively computing the gradient of the loss function with respect to the parameters and
updating the parameters in the direction that reduces the loss. This process continues until the
gradient becomes very small or the maximum number of iterations Is reached. The final set of
parameters that minimize the loss is the result of the gradient descent optimization.

Gradient Descent Is widely used in machine learning to train neural networks and other
models. It can be implemented using different variations, such as batch gradient descent,
stochastic gradient descent, and mini-batch gradient descent, depending on the size of the
data set and computational resources.
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Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an optimization algorithm used to minimize a loss
function in machine learning. It Is an iterative method that updates the model parameters by
computing the gradient of the loss with respect to the parameters and moving in the direction of
negative gradient to reach the minimum. Unlike batch gradient descent, which computes the
gradients based on the average of the entire training dataset, SGD updates the parameters
using a single randomly selected sample at each iteration, making it computationally more
efficient and suitable for training large-scale models
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Stochastic Gradient Descent

W 2 t L(W)

2=

<
3
b,
=
||

VwLi(zi,ys, W) + AVw R(W)

2=

iM= 11>

o original W
negative gradient direction
Co—ﬁnance_d by _the Eurqpe_qq Unlon 33 This Master is run under the context of Action

S e i No 2020-EU-1A-0087, co-financed by the EU CEF Telecom
Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423




MAIACAREU Master programmes in Artificial
Intelligence 4 Careers in Europe

Stochastic Gradient Descent

Full sum expensive when N is large!

N
1
LW) = + > Li(zi,yi, W) + AR(W)
i=1
Approximate sum using a minibatch
of examples 32 /64 / 128 common

N
1
=

while
data batch = sample training data(data, 256)

weights grad = evaluate gradient(loss fun, data batch, weights)

weights += - step size * weights grad

This Master is run under the context of Action
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Stochastic Gradient Descent

Mini-batch gradient descent Is a variation of the gradient descent optimization algorithm for
training machine learning models. Instead of updating the model parameters after evaluating
the cost function on the entire training dataset, mini-batch gradient descent updates the
parameters after evaluating the cost function on a smaller randomly selected subset of the
training data, known as a mini-batch. This can result in faster convergence and a better
optimization of the model parameters compared to batch gradient descent.
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Stochastic Gradient Descent

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

L W2

e o>

. . . ” . 1
Aside: Loss function has high condition number: ratio of largest to v
smallest singular value of the Hessian matrix is large
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Stochastic Gradient Descent

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large
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Stochastic Gradient Descent

What if the loss
function has a
local minima or
saddle point?

oSS

Zero gradient,
gradient descent
gets stuck

Saddle points much
more common In
high dimension

Dauphin et al, “ldentifying and attacking the saddle point W
problem in high-dimensional non-convex optimization”,

NIPS 2014 e
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Stochastic Gradient Descent

Our gradients come from
minibatches so they can be noisy!

N

1
LW) =~ D Li(wi,y:, W)
1=1

N
1
VWL(W) — N E :VWLi(xiayz’aW)
i=1
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SGD + Momentum

continue moving in the general direction as the previous iterations
SGD SGD+Momentum

— +V
Tir1 = Tt — aV f(xy) Ut+1 = PU¢ f(z)

Lt41 = Lt — QAUt41
while True: vx = 0
dx = compute_gradient(x) while True:
X —= learning_rate * dx dx = compute_gradient(x)
vX = rho x vx + dx
X —= learning_rate *x vX

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum: Alternative

SGD+Momentum SGD+Momentum

Vi4+1 — POt — O{Vf(aft) Vi1 = Puy T Vf(.CUt)
Tt41 = Tt + Vit1 Tt41l = Tt — QU1
vX = 0 vx = 0
while True: while True:
dx = compute_gradient(x) dx = compute_gradient(x)
vX = rho *x vx — learning_rate * dx vX = rho *x vx + dx
X += VX X —= learning_rate *x vX

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of X

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Nesterov Momentum

Momentum update: Nesterov Momentum

Gradient

V@IOCity Velocity

actual step actual step
Gradient
Combine gradient at current point with “Look ahead” to the point where updating using
velocity to get step used to update weights velocity would take us; compute gradient there and

mix it with velocity to get actual update direction

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k”*2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Nesterov Momentum

Nesterov Momentum Is a variation of the classic momentum optimization algorithm in deep
learning. It Is an acceleration technique that adds a correction term to the update rule to
address the issue of overshooting In traditional momentum optimization.

Nesterov Momentum uses the gradient of the future expected position in the weight space to
compute the correction term, resulting in a more stable optimization trajectory and faster
convergence to the optimal solution. It Is a popular optimization technique that is widely used In
training deep neural networks and has shown to perform well on various tasks.
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Nesterov Momentum

Batch Gradient Descent Mini-Batch Gradient Descent — Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent
_ ' BGD: Slowest, with perfect gradient
Stochastic Gradient Descent Nesterov Momentum

SGD: Fastest, rough estimate of the gradient
Mini-batch GD: Compromise

https://medium.datadriveninvestor.com/batch-vs-mini-batch-vs-
stochastic-gradient-descent-with-code-examples-cd8232174e14
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AdaGrad

grad_squared = 0

while True: “Per-parqmeter Ie_arning rates”
dx = compute_gradient(x) or "adaptive learning rates”
grad_squared += dx * dX
X -= learning_rate * dx / (np.sqrt(grad_squared) + le-7)

AdaGrad Is an optimization algorithm used in machine learning for training neural networks and other models. It stands
for Adaptive Gradient Algorithm. It is designed to dynamically adjust the learning rate for each parameter during
training, by scaling it inversely proportional to the historical gradient magnitude for that parameter. This means that the
learning rate iIs reduced for parameters that have received a large gradient update in the past, while being increased for
parameters that have received only small updates. This results in a more efficient optimization process compared to a
fixed learning rate, as it can prevent overshooting or slow convergence for specific parameters.

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Co-financed by the European Union 50 This Master is run under the context of Action
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AdaGrad

grad_squared = 0

“Per-parameter learning rates’

while True: - | _ )
or “adaptive learning rates

dx = compute_gradient(x)
grad_squared += dx * dX
X -= learning_rate * dx / (np.sqrt(grad_squared) + le-7)

Notice that the variable cache has size equal to the size of the gradient, and keeps track of per-parameter sum of
squared gradients. This is then used to normalize the parameter update step, element-wise. Notice that the weights
that receive high gradients will have their effective learning rate reduced, while weights that receive small or infrequent
updates will have their effective learning rate increased. Amusingly, the square root operation turns out to be very
important and without it the algorithm performs much worse. The smoothing term eps (usually set somewhere Iin range
from 1e-4 to 1e-8) avoids division by zero. A downside of Adagrad Is that in case of Deep Learning, the monotonic

learning rate usually proves too aggressive and stops learning too early.
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RMSProp

grad_squared = @ The RMSProp update adjusts the

while True: : :
AdaGrad dx = compute_gradient(x) Adagrad method In a very sn_nple

["grad_squared += dx * dx | way In an attempt to reduce its

X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7) aggreSSive’ monotonically
¢ decreasing learning rate.

grad_squared = 0

while True:

RMSPrOp dx = compute_gradient(x)

|grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Co-financed by the European Union 57 This Master is run under the context of Action
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first_moment = ©
second_moment = 0

while True:
compute_gradient(x)

Q.
X
I

Momentum

X -= l;arning_rate . first_mom;nt / (np.sqrt(second_moment) + 1le-7)) AdaGrad / RMSPrOp

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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first_moment = 0

second_moment = 0

for t in range(l1, num_iterations):
dx = compute gradient(x Momentum
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t)
second_unbias = second_moment /

X -= learning_rate * first_unbias / (np.sqgrt(second_unbias) + 1e-7)) AdaGrad / RMSP
ara rop

Bias correction

Bias correction for the fact that first and second moment Adam with betal = 0.9,
estimates start at zero beta2 = 0.999, and learning_rate = 1e-3 or 5e-4

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015 iS a great Starting pOint for maﬂy mOdeIS!
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Visualize various gradient descent algorithms

e
\% — SGD - — SGD
- Momentum [ —  Momentum
—— NAG e — NAG
— Adagrad | Yl — Adagrad
Adadelta Adadelta
= Rmsprop 4 1 == Rmsprop

1.0

Contours of a loss surface and time evolution of different optimization algorithms. Notice the "overshooting" behavior of momentum-based methods, which make the optimization look like a ball
rolling down the hill. Right: A visualization of a saddle point in the optimization landscape, where the curvature along different dimension has different signs (one dimension curves up and another
down). Notice that SGD has a very hard time breaking symmetry and gets stuck on the top. Conversely, algorithms such as RMSprop will see very low gradients in the saddle direction. Due to the
denominator term in the RMSprop update, this will increase the effective learning rate along this direction, helping RMSProp proceed. Images credit: Alec Radford.
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Visualize various gradient descent algorithms

momentum

wl

adagrad adadelta rmsprop

w2

wl wl

adamax

Co-financed by the European Union
Connecting Europe Facility

nesterov

adam

https://github.com/zyxue/sutton-barto-rl-

exercises/tree/master/supervised/gradient descent
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Hyperparameter optimization

Learning rate decay over time refers to a method In training machine learning models, where the
learning rate Is gradually reduced during the optimization process. This is typically done by dividing the
learning rate by a factor at certain intervals or epochs. The purpose of learning rate decay Is to slow down
the optimization process as it approaches a minimum In the loss function, so that the model parameters
converge more precisely to the optimal values.

Learning rate decay helps to overcome the problem of oscillation or overshooting that can occur when the
learning rate Is too high, especially in the later stages of training. It allows the optimization process to
converge more smoothly to the optimal values and avoid the risk of getting stuck in suboptimal local
minima.

Co-financed by the European Union v This Master is run under the context of Action
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Training Loss

Reduce learning rate

!

0 20 40 60 80 100
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Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1

after epochs 30, 60, and 90.
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Learning rate decay

Learning rate

10 - Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

0.6 1 ]_
Cosine: «; = 5 Q0 (1 + cos(tm/T))

0.8 -

0.4 -
0.2 -
0.0 1
0 20 40 60 80 100
Epoch
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Learning rate decay

Learning rate

10 - Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1

o after epochs 30, 60, and 90.

0.6 - 1
Cosine: o; = 5 QX0 (1 + cos(tw/T))

0.4 -

0.2 -

0.0 -

0 20 20 60 80 100

Epoch

X( : Initial learning rate
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 th : Lea mlng rate at eF)OCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 T - TOtal nu mber Of epOChS
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Learning rate decay

Training Loss

- Step: Reduce learning rate at a few fixed
. points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.
" 0.6 - 1
& Cosine: a; = §a0 (1 + cos(tm/T))
04 -
0.2 1
0.0 T T T T T -
0 50 100 150 200 250 300
Epoch

X() : Initial learning rate
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 at : Lea mlng rate at eF)OCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 T - TOtal nu mber Of epOChS
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Learning rate decay

Learning rate

10 - Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
o after epochs 30, 60, and 90.
0.6 1 1
04 - Cosine: a; = 5 QX0 (1 + cos(tmw/T))
02 ; Linear: oy = ag(1 —t/T)
0 20 40Ep0Ch60 80 100

X() : Initial learning rate
(¢4 - Learning rate at epoch t

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for T ) TOtal number Of epOChS
Language Understanding”, 2018
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Learning rate decay

Learning rate

o Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
08 - after epochs 30, 60, and 90.
0.6 - ] 1
Cosine: oy = 5 Q0 (1 + cos(tmw/T))
04 -
Linear: «; = ag(1 —t/T)
0.2 1
. - - - - — Inverse sqrt: vy = ao/ﬁ
Epoch By |
X( : Initial learning rate
(v+ : Learning rate at epoch t
Vaswani et al, “Attention is all you need”, NIPS 2017 T : TOtaI number Of epOChS
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Learning rate decay: Linear Warmup

Learning rate

0.6 High initial learning rates can make loss

o | explode; linearly increasing learning rate

. from O over the first ~5,000 iterations can
prevent this.

0.3 -

02 - Empirical rule of thumb: If you increase the

. batch size by N, also scale the initial
learning rate by N

0.0 1

0 20 40 60 80 100
Epoch

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017
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Limited-memory BFGS

In machine learning, L-BFGS Is used to optimize the loss function of the model by updating the model
parameters to minimize the loss. It is an iterative optimization method that uses gradient information to
iteratively improve the model parameters. Unlike other optimization methods like gradient descent, L-
BFGS requires less memory to store intermediate results, as it only needs to store a limited number of
gradient updates.

L-BFGS Is often preferred over gradient descent because it can converge faster and more accurately to
the optimal solution. It Is especially effective for large-scale optimization problems where the computation
of the Hessian matrix is impractical, as It provides a good approximation of the second-order information.
However, it can be computationally expensive compared to other optimization methods, as it requires
more calculations for each iteration.

Co-financed by the European Union 6 This Master is run under the context of Action
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In practice

 Adam Is a good default choice In many cases; it often works ok even with constant
learning rate

« SGD+Momentum can outperform Adam but may require more tuning of LR and
schedule

* |If you can afford to do full batch updates then try out L-BFGS (and don't forget to
disable all sources of noise)
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Neural Networks
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Neural networks: the original linear classifier

(Before) Linear score function: f = W

reRP W eRC*P

Co-financed by the European Union 63 This Master is run under the context of Action
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Neural networks: 2 layers

(Before) Linear score function: f = Wz

The function max(0,—) is a non-
(NOW) 2_Iayer Neural Network f — W2 maX(O, W1:E) linearity that is applied elementwise.

z € R”, W; € RE*P W, € RC*H

(In practice we will usually add a learnable bias at each layer as well)
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Why do we want non-linearity?

o y
® ()
®
® ...
0 O
X .. ¢
) o @
® ®
0 ()

Cannot separate red
and blue points with
linear classifier

Co-financed by the European Union
Connecting Europe Facility

f(x, y) = (r(x, y), 8(x, y))

-

/70

g ©
®
()
()

After applying feature
transform, points can
be separated by linear
classifier
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Neural networks: also called fully connected network

The non-linearity is where we get

the wiggle. The parameters W2,W1 are
learned with stochastic gradient descent,

(Before) Linear score function: f — [/[/ T and their gradients are derived with chain

rule (and computed with backpropagation).

(Now) 2-layer Neural Network  f = Wa max(0, Wix)

z € R”, W; € RE*P W, € RC*H

“Neural Network” is a very broad term; these are more accurately called
“fully-connected networks” or sometimes "multi-layer perceptrons” (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Co-financed by the European Union
Connecting Europe Facility
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Neural networks: 3 layers

_ _ A three-layer neural network could

(Before) Linear score function: f — Wx analogously look like
s=W3max(0,W2max(0,W1x)),

(Now) 2-layer Neural Network  f = Wy max(0, Wix) - herealofWs w2 Wi are parameters

to be learned. The sizes of the

or 3-layer Neural Network intermediate hidden vectors are

hyperparameters of the network and

f — W3 max(o, W2 max(o’ Wl aj)) we'll see how we can set them later. Lets

now look into how we can interpret these
computations from the neuron/network

. ‘ perspective.
r € R, W, e RIv*P W, e R¥2XH1 W, ¢ ROXH2

(In practice we will usually add a learnable bias at each layer as well)

Co-financed by the European Union 77 This Master is run under the context of Action
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Neural networks: hierarchical computation

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network  f = Wa max(0, Wiz)

X| W1 |h| W2 |g

3072 100 10

r & R? W; € RP*E WL € RU*H
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Neural networks: learning 100s of templates

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network  f = W3 max(0, Wix)

X| W1 |h| W2 |g

3072 100 10
car bird cat er dog frog horse ship _ truck
d \ ‘E
Learn 100 templates instead of 10. Share templates between classes
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Neural networks: learning 100s of templates

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network  f = Wamax(0, Wiz)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

f=WeoWix Wi = WoW; € REXH | f = Wi

A: We end up with a linear classifier again!
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Activation functions

Sigmoid

o(z) =

l+e— <

tanh
tanh(z)

Co-financed by the European Union
Connecting Europe Facility

RelLU is a good default
choice for most problems

Leaky RelL U
max(0.1x, )

10

Maxout
max(wi T + by, wa x + by)

10

ELU

10

10
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Every activation function (or non-
linearity) takes a single number
and performs a certain fixed
mathematical operation on It.
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Activation function

Sigmoid. The sigmoid non-linearity takes a real-valued number and “squashes” it into range between 0 and 1. In particular, large negative numbers
become 0 and large positive numbers become 1. The sigmoid function has seen frequent use historically since it has a nice interpretation as the
firing rate of a neuron: from not firing at all (O) to fully-saturated firing at an assumed maximum frequency (1). In practice, the sigmoid non-linearity
has recently fallen out of favor and it is rarely ever used. It has two major drawbacks:

« Sigmoids saturate and kill gradients. A very undesirable property of the sigmoid neuron is that when the neuron’s activation saturates at either tail
of O or 1, the gradient at these regions is almost zero. Recall that during backpropagation, this (local) gradient will be multiplied to the gradient of
this gate’s output for the whole objective. Therefore, if the local gradient is very small, it will effectively “kill” the gradient and almost no signal will
flow through the neuron to its weights and recursively to its data. Additionally, one must pay extra caution when initializing the weights of sigmoid
neurons to prevent saturation. For example, if the initial weights are too large then most neurons would become saturated and the network will
barely learn.

« Sigmoid outputs are not zero-centered. This is undesirable since neurons in later layers of processing in a Neural Network (more on this soon)
would be receiving data that is not zero-centered. This has implications on the dynamics during gradient descent, because if the data coming into
a neuron is always positive, then the gradient on the weights w will during backpropagation become either all be positive, or all negative
(depending on the gradient of the whole expression f). This could introduce undesirable zig-zagging dynamics in the gradient updates for the
weights. However, notice that once these gradients are added up across a batch of data the final update for the weights can have variable signs,
somewhat mitigating this issue. Therefore, this is an inconvenience but it has less severe consequences compared to the saturated activation
problem above.

Tanh. The tanh non-linearity is shown on the image above on the right. It squashes a real-valued number to the range [-1, 1]. Like the sigmoid
neuron, its activations saturate, but unlike the sigmoid neuron its output is zero-centered. Therefore, in practice the tanh non-linearity is always
preferred to the sigmoid nonlinearity. Also note that the tanh neuron is simply a scaled sigmoid neuron.

Co-financed by the European Union 27 This Master is run under the context of Action
Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423
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Activation function

RelLU. The Rectified Linear Unit has become very popular in the last few years. In other words, the activation is simply thresholded at

zero (see image above on the left). There are several pros and cons to using the RelLUs:

 (+) It was found to greatly accelerate (e.g. a factor of 6 in Krizhevsky et al.) the convergence of stochastic gradient descent compared
to the sigmoid/tanh functions. It is argued that this is due to its linear, non-saturating form.

 (+) Compared to tanh/sigmoid neurons that involve expensive operations (exponentials, etc.), the RelLU can be implemented by simply
thresholding a matrix of activations at zero.

* (-) Unfortunately, ReLU units can be fragile during training and can “die”. For example, a large gradient flowing through a ReLU neuron
could cause the weights to update in such a way that the neuron will never activate on any datapoint again. If this happens, then the
gradient flowing through the unit will forever be zero from that point on. That is, the ReLU units can irreversibly die during training since
they can get knocked off the data manifold. For example, you may find that as much as 40% of your network can be “dead” (i.e.
neurons that never activate across the entire training dataset) if the learning rate is set too high. With a proper setting of the learning
rate this is less frequently an issue.

Co-financed by the European Union 78 This Master is run under the context of Action
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Activation function

Leaky RelLU. Leaky RelLUs are one attempt to fix the “dying ReLU” problem. Instead of the function being zero when x < 0, a leaky
ReLU will instead have a small positive slope (of 0.01, or so). Some people report success with this form of activation function, but the
results are not always consistent. The slope In the negative region can also be made into a parameter of each neuron, as seen in PRelLU
neurons, introduced In Delving Deep into Rectifiers, by Kaiming He et al., 2015. However, the consistency of the benefit across tasks is

presently unclear.

Maxout. Other types of units have been proposed that do not have the functional form f(wTx+b) where a non-linearity is applied on the
dot product between the weights and the data. One relatively popular choice is the Maxout neuron (introduced recently by Goodfellow et
al.) that generalizes the ReLU and its leaky version. The Maxout neuron computes the function max(wT1x+b1l,wT2x+b2). Notice that
both ReLU and Leaky RelLU are a special case of this form (for example, for ReLU we have wl,b1=0). The Maxout neuron therefore
enjoys all the benefits of a ReLU unit (linear regime of operation, no saturation) and does not have its drawbacks (dying ReLU).
However, unlike the ReLU neurons it doubles the number of parameters for every single neuron, leading to a high total number of

parameters.

TLDR: "What neuron type should | use?” Use the ReLU non-linearity, be careful with your learning rates and possibly monitor the fraction
of “dead” units in a network. If this concerns you, give Leaky RelLU or Maxout a try. Never use sigmoid. Try tanh, but expect it to work

worse than ReLU/Maxout.
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Neural Networks: Architectures

Neural Networks as neurons in graphs.

Neural Networks are modeled as collections of neurons that are connected in an acyclic graph. In other
words, the outputs of some neurons can become inputs to other neurons. Cycles are not allowed since
that would imply an infinite loop in the forward pass of a network. Instead of an amorphous blobs of
connected neurons, Neural Network models are often organized into distinct layers of neurons. For
regular neural networks, the most common layer type is the fully-connected layer in which neurons

between two adjacent layers are fully pairwise connected, but neurons within a single layer share no
connections.

Co-financed by the European Union 30 This Master is run under the context of Action
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Neural Networks: Architectures

output layer
input layer iInput layer
hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or

“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” “Fully-connected” layers

Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output layer with 2 neurons), and three
iInputs. Right: A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer.
Notice that In both cases there are connections (synapses) between neurons across layers, but not within a layer.

Co-financed by the European Union 31 This Master is run under the context of Action
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Neural Networks: Architectures

Naming conventions. Notice that when we say N-layer neural network, we do not count the input layer.
Therefore, a single-layer neural network describes a network with no hidden layers (input directly mapped
to output). In that sense, you can sometimes hear people say that logistic regression or SVMs are simply
a special case of single-layer Neural Networks. You may also hear these networks interchangeably
referred to as “Artificial Neural Networks” (ANN) or “Multi-Layer Perceptrons” (MLP).

Output layer. Unlike all layers in a Neural Network, the output layer neurons most commonly do not have
an activation function (or you can think of them as having a linear identity activation function). This Is
because the last output layer Is usually taken to represent the class scores (e.g. In classification), which
are arbitrary real-valued numbers, or some kind of real-valued target (e.g. in regression)

Co-financed by the European Union 37 This Master is run under the context of Action
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Neural Networks: Example feed-forward computation

iInput layer

hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x))
X = np.random.randn(3, 1) # rando
hl = f(np.dot(Wl, x) + bl)

h2 = f(np.dot(W2, hl) + b2)

out = np.dot(W3, h2) + b3 :

Co-financed by the European Union 83
Connecting Europe Facility
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One of the primary reasons that Neural Networks are
organized into layers is that this structure makes it very
simple and efficient to evaluate Neural Networks using
matrix vector operations. Working with the example
three-layer neural network in the diagram on the left, the
iInput would be a [3x1] vector. All connection strengths
for a layer can be stored In a single matrix. For
example, the first hidden layer’'s weights W1 would be of
size [4x3], and the biases for all units would be in the
vector bl, of size [4x1]. Here, every single neuron has
its weights in a row of W1, so the matrix vector
multiplication np.dot(W1,x) evaluates the activations of
all neurons in that layer. Similarly, W2 would be a [4x4]
maitrix that stores the connections of the second hidden
layer, and W3 a [1x4] matrix for the last (output) layer.

W1,W2W3,b1,b2,b3 are the learnable parameters of
the network.

This Master is run under the context of Action

under GA nr. INEA/CEF/ICT/A2020/2267423
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Neural Networks: Full implementation of training a 2-layer Neural Network needs ~20 lines

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out) Define the network

wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl))) Forward pass
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y pred = 2.0 x (y_pred - y)

Bree B = DT BN AR Calculate the analytical gradients
grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h x h x (1 - h)}

wl -= le-4 * grad_wl Gradient descent
w2 —= le-4 x grad_w2

Co-financed by the European Union 34 This Master is run under the context of Action
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Neural Networks: Setting number of layers and their sizes

How do we decide on what architecture to use when faced with a practical problem?
Should we use no hidden layers? One hidden layer? Two hidden layers?
How large should each layer be?

First, note that as we increase the size and number of layers in a Neural Network,
the capacity of the network increases.

Co-financed by the European Union This Master is run under the context of Action
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Neural Networks: Setting number of layers and their sizes

Setting the number of layers and their sizes

3 hidden neurons 6 hidden neurons 20 hidden neurons
@ e l ® |
. . | ~
ey ® o ® J ® ® i
@ [ ] S (5] ﬁ
L5 @ D
o © % e © o © -
(<] D ()]
® ) # @ © P o 1) P
¥ e c ® ®
[} S @
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more neurons = more capacity

We can see that Neural Networks with more
neurons can express more complicated functions.
However, this is both a blessing (since we can learn
to classify more complicated data) and a curse
(since it is easier to overfit the training data).
Overfitting occurs when a model with high capacity
fits the noise in the data instead of the (assumed)
underlying relationship. For example, the model
with 20 hidden neurons fits all the training data but
at the cost of segmenting the space into many
disjoint red and green decision regions. The model
with 3 hidden neurons only has the representational
power to classify the data in broad strokes. It
models the data as two blobs and interprets the
few red points inside the green cluster

as outliers (noise). In practice, this could lead to
better generalization on the test set.

This Master is run under the context of Action
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Neural Networks: Setting number of layers and their sizes

Setting the number of layers and their sizes

3 hidden neurons 6 hidden neurons 20 hidden neurons i i i
| ] Based on our discussion above, it seems that
o, s | * *NEN . smaller neural networks can be preferred if the data
0 B 5 ; ' . N . Is not complex enough to prevent overfitting.
T o | i o . However, this is incorrect - there are many other
R B | T R N | S8 by [ = preferred ways to prevent overfitting in Neural
S . " R Networks. In practice, it is always better to use
g e (™ & * ole W ° these methods to control overfitting instead of the
’ e number of neurons.

T

more neurons = more capacity
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Neural Networks: Setting number of layers and their sizes

Do not use size of neural network as a regularizer. Use stronger regularization instead:

_)\=0.001 - A =0.01 A=0.1
N
1
LW) = = > Li(f(zi, W), y:) + AR(W)
1=1

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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The subtle reason behind this is that smaller
networks are harder to train with local methods such
as Gradient Descent: It's clear that their loss
functions have relatively few local minima, but it turns
out that many of these minima are easier to converge
to, and that they are bad (i.e. with high loss).
Conversely, bigger neural networks contain
significantly more local minima, but these minima turn
out to be much better in terms of their actual loss.

The effects of regularization strength: Each neural
network above has 20 hidden neurons, but changing
the regularization strength makes its final decision
regions smoother with a higher regularization.

This Master is run under the context of Action
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Backpropagation

Problem: How to compute gradients?

s = f(x; W1, Ws) = Womax(0, Wiz) Nonlinear score function

L; = Z max(0,s; — sy, +1) SVM Loss on predictions
JFYi

R(W) = Z W7 Regularization
k

N
j - % Z Li + AR(Wy) + AR(W,) Total loss: data loss + regularization

1—=1
oL 0L
If we can compute , then we can learn W, and W,
oW1 oWs
Co-financed by _the European Unlon This Master is run under the context of Action
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Backpropagation

(Bad) Idea: Derive Yy, [, on paper

s= flz; W) = Wz Problem: Very tedious: Lots of

matrix calculus, need lots of paper
g, = Z max(0,8; — s, + 1) ) pPap

J7yi Problem: What if we want to
=) max(0,W;.-z+ W, -z+1) change loss? E.g. use softmax
e Instead of SVM? Need to
L re-derive from scratch =
N = Problem: Not feasible for very

| complex models!
N TIH&XO Wi. a:+W,,.i,;-:z:+1)+AZW3

VwL =Vw > > max (0, W; . :1:+W,,,i,;-:1:+1)+/\ZW,?.

=1 j#y;
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Backpropagation

Better Idea: Computational graphs + Backpropagation

f = W.’E Lz — Zj;éyz- maX(O, Sj — Sy, + 1)
X
\ @ S (scores) @
® 0
W /
®
R(W)
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Backpropagation

Backpropagation = recursive application of the chain rule along a computational graph to
compute the gradients of all inputs/parameters/intermediates

* |Implementations maintain a graph structure, where the nodes implement the forward() /
backward() API

 Forward: compute result of an operation and save any intermediates needed for gradient
computation in memory

 Backward: apply the chain rule to compute the gradient of the loss function with respect to
the inputs

Co-financed by the European Union This Master is run under the context of Action
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Backpropagation

“Downstream

gradients”

Yy
"Upstream

% gradient”

oL
0z
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Backpropagation is an
algorithm used In artificial
neural networks to calculate
the gradient of the error
function with respect to the
weights. It Is used during the
training process to adjust the
weights and reduce the error
between the predicted output
and the actual output.
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Backpropagation

Backpropagation: a simple example

f(z,y,2) = (z +y)=z

eg.x=-2,y=5,z=-4

Bq_
= 16y 1

q=z+y

of Bf
f=gqz dq “ B — Y

Want - .
dinl. S s"&a.% &

oz’ By’ Oz
Co-financed by the European Union
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g X
Upstream Local
gradient gradient
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Next Lecture

Convolutional Neural Networks

Image Maps

Input

” \ Fully Connected

Convolutions

Subsampling

[llustration of LeCun et al. 1998 from CS231n 2017 Lecture 1
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Thank you!
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