
This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

University of Cyprus

Spring Semester 2023

MAI645 - Machine Learning for 
Graphics and Computer Vision

Andreas Aristidou, PhD



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Image Classification: Regularization, Optimization, Backpropagation

2

These notes are based on the work of Fei-Fei Li, Jiajun Wu, Ruohan Gao, 

CS231 - Deep Learning for Computer Vision



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

By Christopher Mims JARRED BRIGGS

3

Microsoft, its subsidiary GitHub, and OpenAI for their GitHub Copilot system received a class-action suit for 

mass copyright infringement. The plaintiffs argue that by producing code that doesn’t give attribution to the 

original authors whose code is used to generate Copilot’s results, the system violates open-source licenses, 

as well as the Digital Millennium Copyright Act. Similar suits are filed against Dalle-2, Midjourney, and 

ChatGPT products to protect human content creators.

https://www.wsj.com/news/author/christopher-mims


This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time

4



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time: Challenges of recognition

5



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time: Data-driven approaches, kNN

6



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time: Data-driven approaches, kNN

7



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time: Data-driven approaches, kNN

8



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time: Data-driven approaches, kNN

9



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time: Data-driven approaches, kNN

10



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time: Data-driven approaches, kNN

11



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time: Softmax vs SVM

12



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time: Softmax vs SVM

13

Support Vector Machine (SVM) is a linear classifier used for binary classification problems. It finds the 

best hyperplane that separates the data into two classes and classifies new data points based on which 

side of the hyperplane they fall on. SVM can also be extended to handle multiclass classification 

problems through one-vs-one or one-vs-all approaches.

The softmax function is a popular activation function used in machine learning, especially in multiclass 

classification problems. It maps a set of real-valued numbers to a probability distribution over multiple 

classes, such that all the probabilities sum to 1. In this way, the output of the softmax function can be 

interpreted as the estimated class probabilities.

In summary, Softmax is used for multiclass classification problems and SVM is used for binary 

classification problems. 



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time: Softmax vs SVM

14

Question: 

Suppose that we found a W such that L = 0. Is this W unique?

No! 2W also has L = 0!



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Recall from last time: Softmax vs SVM

15

How do we choose 

between W and 2W?



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Regularization

16



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Regularization

17

Regularization is used in machine learning to prevent overfitting, which is a common problem in complex 

models with many parameters. Overfitting occurs when a model fits the training data too well and 

memorizes the noise and random fluctuations in the data, leading to poor performance on unseen data.

Regularization helps to address overfitting by adding a penalty term to the cost function that discourages 

overly complex models with large coefficients. It can be applied by adding a penalty term, such as L1 or L2 

regularization, to the cost function. This term discourages overly complex models by penalizing large 

coefficients, leading to sparse models that are less likely to overfit the data. The goal of regularization is to 

find a balance between fitting the training data well and maintaining a simple model that can generalize well 

to unseen data.

In summary, regularization is used in machine learning to prevent overfitting, improve the generalization 

performance of models, and make the models more robust and reliable.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Regularization intuition: toy example training data

18



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Regularization intuition: Prefer Simpler Models

19



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Regularization intuition: Prefer Simpler Models

20



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Regularization

21



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Regularization

22

Why regularize?

- Express preferences over weights

- Make the model simple so it works on test data

- Improve optimization by adding curvature



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Regularization: Recap

23



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Regularization: Interactive Web Demo

24

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/


This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Optimization

25

Optimization is a crucial step in machine learning as it determines the parameters of the 

model that lead to the best performance on a given task. It plays a crucial role in determining 

the performance of machine learning models and is an active area of research.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

26

Strategy #1: A first very bad idea solution: Random search



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

27

Lets see how well this works on the test set...

15.5% accuracy! not bad!

(SOTA is ~99.7%)



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Strategy #2: Follow the slope

28



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Strategy #2: Follow the slope

29



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Strategy #2: Follow the slope

30



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

31

Strategy #2: Follow the slope



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

32

Strategy #2: Follow the slope

Numeric Gradient is

• Slow. Needs to loop ovber
all dimensions

• Approximates



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

33

Strategy #2: Follow the slope



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

34

Optimization: In summary

Numerical gradient: approximate, slow, easy to write

Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient but check the implementation with numerical 

gradient. This is called a gradient check.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

35

Gradient Descent 

Gradient Descent is an optimization algorithm used to minimize a loss function by iteratively 

adjusting the parameters of a model in the direction of steepest decrease of the loss function.

The algorithm works by first initializing the model parameters with random values, then 

iteratively computing the gradient of the loss function with respect to the parameters and 

updating the parameters in the direction that reduces the loss. This process continues until the 

gradient becomes very small or the maximum number of iterations is reached. The final set of 

parameters that minimize the loss is the result of the gradient descent optimization.

Gradient Descent is widely used in machine learning to train neural networks and other 

models. It can be implemented using different variations, such as batch gradient descent, 

stochastic gradient descent, and mini-batch gradient descent, depending on the size of the 

data set and computational resources.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

36

Gradient Descent 



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

37

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an optimization algorithm used to minimize a loss 

function in machine learning. It is an iterative method that updates the model parameters by 

computing the gradient of the loss with respect to the parameters and moving in the direction of 

negative gradient to reach the minimum. Unlike batch gradient descent, which computes the 

gradients based on the average of the entire training dataset, SGD updates the parameters 

using a single randomly selected sample at each iteration, making it computationally more 

efficient and suitable for training large-scale models



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

38

Stochastic Gradient Descent



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

39

Stochastic Gradient Descent

Full sum expensive when N is large!

Approximate sum using a minibatch 

of examples 32 / 64 / 128 common



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

40

Stochastic Gradient Descent

Mini-batch gradient descent is a variation of the gradient descent optimization algorithm for 

training machine learning models. Instead of updating the model parameters after evaluating 

the cost function on the entire training dataset, mini-batch gradient descent updates the 

parameters after evaluating the cost function on a smaller randomly selected subset of the 

training data, known as a mini-batch. This can result in faster convergence and a better 

optimization of the model parameters compared to batch gradient descent.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

41

Stochastic Gradient Descent



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

42

Stochastic Gradient Descent



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

43

Stochastic Gradient Descent

Zero gradient,

gradient descent

gets stuck

Dauphin et al, “Identifying and attacking the saddle point 

problem in high-dimensional non-convex optimization”, 
NIPS 2014

Saddle points much

more common in

high dimension



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

44

Stochastic Gradient Descent



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

45

SGD + Momentum

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

46

SGD + Momentum: Alternative

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

47

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

48

Nesterov Momentum

Nesterov Momentum is a variation of the classic momentum optimization algorithm in deep 

learning. It is an acceleration technique that adds a correction term to the update rule to 

address the issue of overshooting in traditional momentum optimization. 

Nesterov Momentum uses the gradient of the future expected position in the weight space to 

compute the correction term, resulting in a more stable optimization trajectory and faster 

convergence to the optimal solution. It is a popular optimization technique that is widely used in 

training deep neural networks and has shown to perform well on various tasks.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

49

Nesterov Momentum

https://medium.datadriveninvestor.com/batch-vs-mini-batch-vs-
stochastic-gradient-descent-with-code-examples-cd8232174e14

+

Nesterov Momentum
BGD: Slowest, with perfect gradient

SGD: Fastest, rough estimate of the gradient

Mini-batch GD: Compromise

https://medium.datadriveninvestor.com/batch-vs-mini-batch-vs-stochastic-gradient-descent-with-code-examples-cd8232174e14
https://medium.datadriveninvestor.com/batch-vs-mini-batch-vs-stochastic-gradient-descent-with-code-examples-cd8232174e14


This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

50

AdaGrad

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

“Per-parameter learning rates” 

or “adaptive learning rates”

AdaGrad is an optimization algorithm used in machine learning for training neural networks and other models. It stands 

for Adaptive Gradient Algorithm. It is designed to dynamically adjust the learning rate for each parameter during 

training, by scaling it inversely proportional to the historical gradient magnitude for that parameter. This means that the 

learning rate is reduced for parameters that have received a large gradient update in the past, while being increased for 

parameters that have received only small updates. This results in a more efficient optimization process compared to a 

fixed learning rate, as it can prevent overshooting or slow convergence for specific parameters.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

51

AdaGrad

Notice that the variable cache has size equal to the size of the gradient, and keeps track of per-parameter sum of 

squared gradients. This is then used to normalize the parameter update step, element-wise. Notice that the weights 

that receive high gradients will have their effective learning rate reduced, while weights that receive small or infrequent 

updates will have their effective learning rate increased. Amusingly, the square root operation turns out to be very 

important and without it the algorithm performs much worse. The smoothing term eps (usually set somewhere in range 

from 1e-4 to 1e-8) avoids division by zero. A downside of Adagrad is that in case of Deep Learning, the monotonic 

learning rate usually proves too aggressive and stops learning too early. 

“Per-parameter learning rates” 

or “adaptive learning rates”



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

52

RMSProp

The RMSProp update adjusts the 

Adagrad method in a very simple 

way in an attempt to reduce its 

aggressive, monotonically 

decreasing learning rate.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

53

Adam

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

54

Adam

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Bias correction for the fact that first and second moment 

estimates start at zero

Adam with beta1 = 0.9,

beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models!



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

55

Visualize various gradient descent algorithms

Contours of a loss surface and time evolution of different optimization algorithms. Notice the "overshooting" behavior of momentum-based methods, which make the optimization look like a ball 

rolling down the hill. Right: A visualization of a saddle point in the optimization landscape, where the curvature along different dimension has different signs (one dimension curves up and another 

down). Notice that SGD has a very hard time breaking symmetry and gets stuck on the top. Conversely, algorithms such as RMSprop will see very low gradients in the saddle direction. Due to the 

denominator term in the RMSprop update, this will increase the effective learning rate along this direction, helping RMSProp proceed. Images credit: Alec Radford.

https://twitter.com/alecrad


This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

56

Visualize various gradient descent algorithms

https://github.com/zyxue/sutton-barto-rl-

exercises/tree/master/supervised/gradient_descent

https://github.com/zyxue/sutton-barto-rl-exercises/tree/master/supervised/gradient_descent
https://github.com/zyxue/sutton-barto-rl-exercises/tree/master/supervised/gradient_descent


This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

57

Hyperparameter optimization

Learning rate decay over time refers to a method in training machine learning models, where the

learning rate is gradually reduced during the optimization process. This is typically done by dividing the

learning rate by a factor at certain intervals or epochs. The purpose of learning rate decay is to slow down

the optimization process as it approaches a minimum in the loss function, so that the model parameters

converge more precisely to the optimal values.

Learning rate decay helps to overcome the problem of oscillation or overshooting that can occur when the

learning rate is too high, especially in the later stages of training. It allows the optimization process to

converge more smoothly to the optimal values and avoid the risk of getting stuck in suboptimal local

minima.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

58

Learning rate decay 



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

59

Learning rate decay 



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

60

Learning rate decay 



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

61

Learning rate decay 



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

62

Learning rate decay 



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

63

Learning rate decay 



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

64

Learning rate decay: Linear Warmup



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

65

Limited-memory BFGS

In machine learning, L-BFGS is used to optimize the loss function of the model by updating the model 

parameters to minimize the loss. It is an iterative optimization method that uses gradient information to 

iteratively improve the model parameters. Unlike other optimization methods like gradient descent, L-

BFGS requires less memory to store intermediate results, as it only needs to store a limited number of 

gradient updates.

L-BFGS is often preferred over gradient descent because it can converge faster and more accurately to 

the optimal solution. It is especially effective for large-scale optimization problems where the computation 

of the Hessian matrix is impractical, as it provides a good approximation of the second-order information. 

However, it can be computationally expensive compared to other optimization methods, as it requires 

more calculations for each iteration.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

66

In practice

• Adam is a good default choice in many cases; it often works ok even with constant 

learning rate

• SGD+Momentum can outperform Adam but may require more tuning of LR and 

schedule

• If you can afford to do full batch updates then try out L-BFGS (and don’t forget to 

disable all sources of noise)



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Neural Networks

67



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

68

Neural networks: the original linear classifier



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

69

Neural networks: 2 layers

The function max(0,−) is a non-

linearity that is applied elementwise. 



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

70

Why do we want non-linearity?



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

71

Neural networks: also called fully connected network

The non-linearity is where we get 

the wiggle. The parameters W2,W1 are 

learned with stochastic gradient descent, 

and their gradients are derived with chain 

rule (and computed with backpropagation). 



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

72

Neural networks: 3 layers

A three-layer neural network could 

analogously look like

s=W3max(0,W2max(0,W1x)), 

where all of W3,W2,W1 are parameters 

to be learned. The sizes of the 

intermediate hidden vectors are 

hyperparameters of the network and 

we’ll see how we can set them later. Lets 

now look into how we can interpret these 

computations from the neuron/network 

perspective. 



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

73

Neural networks: hierarchical computation



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

74

Neural networks: learning 100s of templates



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

75

Neural networks: learning 100s of templates



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

76

Activation function

Every activation function (or non-

linearity) takes a single number 

and performs a certain fixed 

mathematical operation on it.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

77

Activation function

Sigmoid. The sigmoid non-linearity takes a real-valued number and “squashes” it into range between 0 and 1. In particular, large negative numbers 

become 0 and large positive numbers become 1. The sigmoid function has seen frequent use historically since it has a nice interpretation as the 

firing rate of a neuron: from not firing at all (0) to fully-saturated firing at an assumed maximum frequency (1). In practice, the sigmoid non-linearity 

has recently fallen out of favor and it is rarely ever used. It has two major drawbacks:

• Sigmoids saturate and kill gradients. A very undesirable property of the sigmoid neuron is that when the neuron’s activation saturates at either tail 

of 0 or 1, the gradient at these regions is almost zero. Recall that during backpropagation, this (local) gradient will be multiplied to the gradient of 

this gate’s output for the whole objective. Therefore, if the local gradient is very small, it will effectively “kill” the gradient and almost no signal will 

flow through the neuron to its weights and recursively to its data. Additionally, one must pay extra caution when initializing the weights of sigmoid 

neurons to prevent saturation. For example, if the initial weights are too large then most neurons would become saturated and the network will 

barely learn.

• Sigmoid outputs are not zero-centered. This is undesirable since neurons in later layers of processing in a Neural Network (more on this soon) 

would be receiving data that is not zero-centered. This has implications on the dynamics during gradient descent, because if the data coming into 

a neuron is always positive, then the gradient on the weights w will during backpropagation become either all be positive, or all negative 

(depending on the gradient of the whole expression f). This could introduce undesirable zig-zagging dynamics in the gradient updates for the 

weights. However, notice that once these gradients are added up across a batch of data the final update for the weights can have variable signs, 

somewhat mitigating this issue. Therefore, this is an inconvenience but it has less severe consequences compared to the saturated activation 

problem above.

Tanh. The tanh non-linearity is shown on the image above on the right. It squashes a real-valued number to the range [-1, 1]. Like the sigmoid 

neuron, its activations saturate, but unlike the sigmoid neuron its output is zero-centered. Therefore, in practice the tanh non-linearity is always 

preferred to the sigmoid nonlinearity. Also note that the tanh neuron is simply a scaled sigmoid neuron.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

78

Activation function

ReLU. The Rectified Linear Unit has become very popular in the last few years. In other words, the activation is simply thresholded at 

zero (see image above on the left). There are several pros and cons to using the ReLUs:

• (+) It was found to greatly accelerate (e.g. a factor of 6 in Krizhevsky et al.) the convergence of stochastic gradient descent compared 

to the sigmoid/tanh functions. It is argued that this is due to its linear, non-saturating form.

• (+) Compared to tanh/sigmoid neurons that involve expensive operations (exponentials, etc.), the ReLU can be implemented by simply 

thresholding a matrix of activations at zero.

• (-) Unfortunately, ReLU units can be fragile during training and can “die”. For example, a large gradient flowing through a ReLU neuron 

could cause the weights to update in such a way that the neuron will never activate on any datapoint again. If this happens, then the 

gradient flowing through the unit will forever be zero from that point on. That is, the ReLU units can irreversibly die during training since 

they can get knocked off the data manifold. For example, you may find that as much as 40% of your network can be “dead” (i.e.

neurons that never activate across the entire training dataset) if the learning rate is set too high. With a proper setting of the learning 

rate this is less frequently an issue.

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

79

Activation function

Leaky ReLU. Leaky ReLUs are one attempt to fix the “dying ReLU” problem. Instead of the function being zero when x < 0, a leaky 

ReLU will instead have a small positive slope (of 0.01, or so). Some people report success with this form of activation function, but the 

results are not always consistent. The slope in the negative region can also be made into a parameter of each neuron, as seen in PReLU

neurons, introduced in Delving Deep into Rectifiers, by Kaiming He et al., 2015. However, the consistency of the benefit across tasks is 

presently unclear.

Maxout. Other types of units have been proposed that do not have the functional form f(wTx+b) where a non-linearity is applied on the 

dot product between the weights and the data. One relatively popular choice is the Maxout neuron (introduced recently by Goodfellow et 

al.) that generalizes the ReLU and its leaky version. The Maxout neuron computes the function max(wT1x+b1,wT2x+b2). Notice that 

both ReLU and Leaky ReLU are a special case of this form (for example, for ReLU we have w1,b1=0). The Maxout neuron therefore 

enjoys all the benefits of a ReLU unit (linear regime of operation, no saturation) and does not have its drawbacks (dying ReLU). 

However, unlike the ReLU neurons it doubles the number of parameters for every single neuron, leading to a high total number of 

parameters.

TLDR: “What neuron type should I use?” Use the ReLU non-linearity, be careful with your learning rates and possibly monitor the fraction 

of “dead” units in a network. If this concerns you, give Leaky ReLU or Maxout a try. Never use sigmoid. Try tanh, but expect it to work 

worse than ReLU/Maxout.

http://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1302.4389
https://arxiv.org/abs/1302.4389


This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

80

Neural Networks: Architectures

Neural Networks as neurons in graphs. 

Neural Networks are modeled as collections of neurons that are connected in an acyclic graph. In other 

words, the outputs of some neurons can become inputs to other neurons. Cycles are not allowed since 

that would imply an infinite loop in the forward pass of a network. Instead of an amorphous blobs of 

connected neurons, Neural Network models are often organized into distinct layers of neurons. For 

regular neural networks, the most common layer type is the fully-connected layer in which neurons 

between two adjacent layers are fully pairwise connected, but neurons within a single layer share no 

connections.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

81

Neural Networks: Architectures

Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output layer with 2 neurons), and three 

inputs. Right: A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer. 

Notice that in both cases there are connections (synapses) between neurons across layers, but not within a layer.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

82

Neural Networks: Architectures

Naming conventions. Notice that when we say N-layer neural network, we do not count the input layer.

Therefore, a single-layer neural network describes a network with no hidden layers (input directly mapped

to output). In that sense, you can sometimes hear people say that logistic regression or SVMs are simply

a special case of single-layer Neural Networks. You may also hear these networks interchangeably

referred to as “Artificial Neural Networks” (ANN) or “Multi-Layer Perceptrons” (MLP).

Output layer. Unlike all layers in a Neural Network, the output layer neurons most commonly do not have

an activation function (or you can think of them as having a linear identity activation function). This is

because the last output layer is usually taken to represent the class scores (e.g. in classification), which

are arbitrary real-valued numbers, or some kind of real-valued target (e.g. in regression)



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

83

Neural Networks: Example feed-forward computation

One of the primary reasons that Neural Networks are

organized into layers is that this structure makes it very

simple and efficient to evaluate Neural Networks using

matrix vector operations. Working with the example

three-layer neural network in the diagram on the left, the

input would be a [3x1] vector. All connection strengths

for a layer can be stored in a single matrix. For

example, the first hidden layer’s weights W1 would be of

size [4x3], and the biases for all units would be in the

vector b1, of size [4x1]. Here, every single neuron has

its weights in a row of W1, so the matrix vector

multiplication np.dot(W1,x) evaluates the activations of

all neurons in that layer. Similarly, W2 would be a [4x4]

matrix that stores the connections of the second hidden

layer, and W3 a [1x4] matrix for the last (output) layer.

W1,W2,W3,b1,b2,b3 are the learnable parameters of

the network.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

84

Neural Networks: Full implementation of training a 2-layer Neural Network needs ~20 lines

Define the network

Forward pass

Calculate the analytical gradients

Gradient descent



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Neural Networks: Setting number of layers and their sizes

How do we decide on what architecture to use when faced with a practical problem?

Should we use no hidden layers? One hidden layer? Two hidden layers? 

How large should each layer be? 

First, note that as we increase the size and number of layers in a Neural Network, 

the capacity of the network increases.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Neural Networks: Setting number of layers and their sizes

We can see that Neural Networks with more 
neurons can express more complicated functions. 
However, this is both a blessing (since we can learn 
to classify more complicated data) and a curse 
(since it is easier to overfit the training data).
Overfitting occurs when a model with high capacity 
fits the noise in the data instead of the (assumed) 
underlying relationship. For example, the model 
with 20 hidden neurons fits all the training data but 
at the cost of segmenting the space into many 
disjoint red and green decision regions. The model 
with 3 hidden neurons only has the representational 
power to classify the data in broad strokes. It 
models the data as two blobs and interprets the 
few red points inside the green cluster 
as outliers (noise). In practice, this could lead to 
better generalization on the test set.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Neural Networks: Setting number of layers and their sizes

Based on our discussion above, it seems that 
smaller neural networks can be preferred if the data 
is not complex enough to prevent overfitting. 
However, this is incorrect - there are many other 
preferred ways to prevent overfitting in Neural 
Networks. In practice, it is always better to use 
these methods to control overfitting instead of the 
number of neurons.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Neural Networks: Setting number of layers and their sizes

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

The subtle reason behind this is that smaller 

networks are harder to train with local methods such 

as Gradient Descent: It’s clear that their loss 

functions have relatively few local minima, but it turns 

out that many of these minima are easier to converge 

to, and that they are bad (i.e. with high loss). 

Conversely, bigger neural networks contain 

significantly more local minima, but these minima turn 

out to be much better in terms of their actual loss.

The effects of regularization strength: Each neural 

network above has 20 hidden neurons, but changing 

the regularization strength makes its final decision 

regions smoother with a higher regularization.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Backpropagation



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Backpropagation



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Backpropagation



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Backpropagation

Backpropagation = recursive application of the chain rule along a computational graph to 

compute the gradients of all inputs/parameters/intermediates

• Implementations maintain a graph structure, where the nodes implement the forward() / 

backward() API

• Forward: compute result of an operation and save any intermediates needed for gradient 

computation in memory

• Backward: apply the chain rule to compute the gradient of the loss function with respect to 

the inputs



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Backpropagation

“local gradient”

Backpropagation is an 

algorithm used in artificial 

neural networks to calculate 

the gradient of the error 

function with respect to the 

weights. It is used during the 

training process to adjust the 

weights and reduce the error 

between the predicted output 

and the actual output.



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Backpropagation

e.g. x = -2, y = 5, z = -4

-2

5

-4

3

12

1

3

-4

-4

-4



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Next Lecture

Convolutional Neural Networks



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Thank you!

96

See you next week


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

