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These notes are based on the work of Fei-Fei Li, Jiajun Wu, Ruohan Gao, 

CS231 - Deep Learning for Computer Vision
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A video is a sequence of images

4D tensor: T x 3 x H x W

(or 3 x T x H x W)
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Problem: Videos are big!

Videos are ~30 frames per second (fps)

Size of uncompressed video

(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute

HD (1920 x 1080): ~10 GB per minute

Solution: Train on short clips:

low fps and low spatial resolution e.g. T = 16, H=W=112 (3.2 

seconds at 5 fps, 588 KB)
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Simple idea: train normal 2D CNN to classify video frames independently!

(Average predicted probs at test-time)

Often a very strong baseline for video classification
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Video Classification: Late Fusion (with FC layers)
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Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Intuition: Get high-level appearance of 

each frame, and combine them

Run 2D CNN on each frame, 

concatenate features and feed to MLP
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Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Intuition: Get high-level appearance of 

each frame, and combine them

Run 2D CNN on each frame, pool 

features and feed to Linear
Problem: Hard to compare low level

motion between frames
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Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Intuition: Compare frames with very first 

conv layer, after that normal 2D CNN

First 2D convolution

collapses all temporal

information:

Input: 3T x H x W

Output: D x H x W

Rest of the network is 

standard 2D CNN

Problem: One layer of temporal processing 

may not be enough!
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Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Intuition: Use 3D versions of convolution 

and pooling to slowly fuse temporal 

information over the course of the network

Each layer in the network is a 4D 

tensor: D x T x H x W

Use 3D conv and 3D pooling 

operations
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(Small example architectures, in
practice much bigger)

What is the
difference?
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3D CNN that uses all 3x3x3 conv and 2x2x2 pooling (except Pool1 which is 1x2x2)

Released model pretrained on Sports-1M: Many people used this as a video feature extractor

3D CNN that uses all 3x3x3 conv and 2x2x2 pooling (except Pool1 which is 1x2x2)

Problem: 3x3x3 conv is very expensive!

AlexNet: 0.7 GFLOP

VGG-16: 13.6 GFLOP

C3D: 39.5 GFLOP (2.9x VGG!)

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015
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Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Measuring Motion: Optical Flow

15

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Optical Flow highlights
local motion
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• Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

• Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011

• Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

• Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016

• Wang et al, “Non-local neural networks”, CVPR 2018

Modeling long-term temporal structure: So far all our temporal CNNs only model local motion between 

frames in very short clips of ~2-5 seconds. What about long-term structure?

Process local features using recurrent network (e.g. LSTM) - Many to one or Many to many

Sometimes don’t backprop to CNN to save memory; pretrain and use it as a feature extractor

Problem: RNNs are slow for long sequences (can’t be parallelized)

Spatio-Temporal Self-Attention
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Chao et al, ” Rethinking the Faster R-CNN Architecture for Temporal Action Localization”, CVPR 2018

Given a long untrimmed video sequence, identify frames corresponding to different actions

Can use architecture similar to Faster R-CNN: first generate temporal proposals then classify
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Gu et al, “AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions”, CVPR 2018

Given a long untrimmed video, detect all the people in both space and time and classify the activities they 

are performing.
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Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object 

detection, semantic segmentation, image 
captioning, etc.

Semantic Segmentation

Classification

Object Detection

Image captioning
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Unsupervised Learning

Data: x

Just data, no labels

Goal: Learn some underlying hidden 

structure of the data

Examples: Clustering, dimensionality 

reduction, feature learning, density 
estimation, etc.

2-d density estimation

K-means clustering Principal Component Analysis
(Dimensionality reduction)
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Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object 

detection, semantic segmentation, image 
captioning, etc.

Unsupervised Learning

Data: x

Just data, no labels

Goal: Learn some underlying hidden 

structure of the data

Examples: Clustering, dimensionality 

reduction, feature learning, density 
estimation, etc.
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Generative models: Given training data, generate new samples from same 

distribution.

Objectives:

1. Learn pmodel(x) that approximates pdata(x)
2. Sampling new x from pmodel(x)

Formulate as density estimation problems:

- Explicit density estimation: explicitly define and solve for pmodel(x)

- Implicit density estimation: learn model that can sample from pmodel(x) 
without explicitly defining it.
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Generative models are a class of machine learning models that are designed to generate new data samples that are 

similar to a given set of training data. The objective of these models is to learn the underlying probability distribution of 

the training data, so that they can generate new samples that are statistically similar to the training data. This is useful 

for a wide range of applications, including image and text generation, data augmentation, and anomaly detection.

Generative models work by modeling the probability distribution of the training data. They learn to generate new 

samples by sampling from this probability distribution. There are several types of generative models, including:

• Autoregressive models: These models generate data by modeling the conditional probability of each data point given the previous 

data points.

• Variational Autoencoders (VAEs): These models learn to encode data into a lower-dimensional latent space, and then generate 

new data by sampling from the latent space and decoding it back into the original space.

• Generative Adversarial Networks (GANs): These models consist of two neural networks: a generator network and a discriminator 

network. The generator network generates new data samples, while the discriminator network tries to distinguish between the 

generated samples and the real samples. The two networks are trained together in a game-like setting, where the generator tries to 

generate samples that fool the discriminator, and the discriminator tries to correctly classify the samples.

• Boltzmann Machines: These models are a type of probabilistic graphical model that learns the joint probability distribution of the 

training data. They can be used to generate new samples by sampling from the learned distribution.
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Generative models

Explicit density Implicit density

Tractable density Approximate density Markov Chain Direct

Variational Markov Chain

Fully Visible Belief Nets

- NADE

- MADE

- PixelRNN/CNN

- NICE / RealNVP

- Glow
- Ffjord Variational Autoencoder Boltzmann Machine

GSN GAN
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Generative models

Explicit density Implicit density

Tractable density Approximate density Markov Chain Direct

Variational Markov Chain

Fully Visible Belief Nets

- NADE

- MADE

- PixelRNN/CNN

- NICE / RealNVP

- Glow
- Ffjord Variational Autoencoder Boltzmann Machine

GSN GAN

Today we will discuss the 3 most 
popular types of generative models
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Explicit density models: An explicit density model, also known as a parametric model, specifies a 

mathematical formula or a set of parameters that directly define the probability density function (PDF) of 

the data. This means that given a set of parameters, the model can generate new data points with a high 

degree of accuracy. Examples of explicit density models include Gaussian mixture models and linear 

regression models. 

Implicit density models: An implicit density model, also known as a non-parametric model, does not 

explicitly specify the PDF. Instead, it defines a generative process that can sample data points from the 

underlying distribution. This means that implicit density models can capture complex, multi-modal 

distributions that may be difficult to represent with explicit density models. Examples of implicit density 

models include generative adversarial networks (GANs) and variational autoencoders (VAEs).
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PixelRNN (Pixel Recurrent Neural Network) is a type of autoregressive model that generates images by modeling 

the conditional probability of each pixel given the previous pixels. The model is typically trained on a dataset of images, 

and during training, it learns to predict the value of each pixel given the values of the previous pixels in the same row 

and column. The model is trained using maximum likelihood estimation, and the learned parameters are used to 

generate new images by sampling from the learned distribution.

PixelCNN (Pixel Convolutional Neural Network) is another type of autoregressive model that generates images by 

modeling the conditional probability of each pixel given the previous pixels. However, unlike PixelRNN, which uses 

recurrent neural networks to model the conditional probabilities, PixelCNN uses convolutional neural networks. 

Specifically, it uses masked convolutions to ensure that each pixel only depends on the previous pixels in the same row 

and column. Like PixelRNN, PixelCNN is trained using maximum likelihood estimation, and the learned parameters are 

used to generate new images by sampling from the learned distribution.

Both PixelRNN and PixelCNN have been shown to be effective at generating high-quality images, and they have been 

used in a variety of applications, including image synthesis, data compression, and image inpainting. However, they 

can be computationally expensive to train, especially on large datasets, and they may not scale well to high-resolution 

images.
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PixelRNN and PixelCNN
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Fully visible belief network (FVBN)

Explicit density model:
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PixelRNN and PixelCNN
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Fully visible belief network (FVBN)

Explicit density model:

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

Then maximize likelihood of training data Complex distribution over pixel values 
=> Express using a neural network!
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Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu 2016, Pixel Recurrent Neural Networks
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Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu 2016, Pixel Recurrent Neural Networks

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)
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Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu 2016, Pixel Recurrent Neural Networks

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

PixelRNN

34

Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu 2016, Pixel Recurrent Neural Networks

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)
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Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu 2016, Pixel Recurrent Neural Networks

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

Drawback: sequential generation is slow
in both training and inference!
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PixelCNN

36

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, Koray Kavukcuoglu. 2016. Conditional Image Generation with PixelCNN Decoders 

Still generate image pixels starting from corner

Dependency on previous pixels now modeled 

using a CNN over context region (masked 
convolution)

Training is faster than PixelRNN (can parallelize 

convolutions since context region values known 

from training images)

Generation is still slow: For a 32x32 image, we 

need to do forward passes of the network 1024 
times for a single image
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Pros:

- Can explicitly compute likelihood p(x)

- Easy to optimize

- Good samples

Con:

- Sequential generation => slow

Improving PixelCNN performance

- Gated convolutional layers

- Short-cut connections

- Discretized logistic loss

- Multi-scale

- Training tricks

- Etc…

See

- Van der Oord et al. NIPS 2016

- Salimans et al. 2017

(PixelCNN++)
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VAEs (Variational Autoencoders) are generative models that can learn to generate new data similar to 

the training data. They combine the ideas of an autoencoder and a probabilistic latent variable model.

A VAE consists of two main components: an encoder and a decoder. The encoder takes an input data 

point and maps it to a latent space representation, which is a lower-dimensional representation of the 

input data. The decoder then takes this latent representation and generates a new data point that is 

similar to the input data.

The key idea behind VAEs is to learn a probabilistic model that can generate data points from the latent 

space representation. This is achieved by introducing a probabilistic distribution over the latent space, 

typically a multivariate Gaussian distribution, and training the model to minimize the difference between 

the generated data points and the training data.
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Variational Autoencoders (VAE)
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VAEs (Variational Autoencoders) are generative models that can learn to generate new data similar to 

the training data. They combine the ideas of an autoencoder and a probabilistic latent variable model.

During training, VAEs use a technique called the "reparameterization trick" to sample from the latent 

space distribution and to ensure that the model can be efficiently trained using backpropagation. This 

allows VAEs to learn the parameters of the latent space distribution that best capture the underlying 

structure of the data.

Once trained, VAEs can be used to generate new data points by sampling from the learned latent space 

distribution and passing the sample through the decoder network. VAEs have been successfully applied 

in a wide range of applications, including image and speech synthesis, anomaly detection, and data 

compression.
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Variational Autoencoders (VAE)
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PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

Variational Autoencoders (VAEs) define intractable density function with latent z:

Cannot optimize directly, derive and optimize 
lower bound on likelihood instead

No dependencies among pixels, can generate 
all pixels at the same time!

Why latent z?
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Autoencoders
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Some background first on autoencoders: 

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled 
training data

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality
reduction?

A: Want features to 

capture meaningful factors 
of variation in data

How to learn this feature representation?

Train such that features can be used to 

reconstruct original data “Autoencoding” 
- encoding input itself
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Autoencoders
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Train such that features can be 
used to reconstruct original data

Doesn’t use labels!

L2 Loss function:

After training, throw away decoder
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Transfer from large, unlabeled
dataset to small, labeled dataset.

Encoder can be 

used to initialize a 
supervised model
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Autoencoders
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Reconstructed
input data

Autoencoders can reconstruct data, 

and can learn features to initialize a 

supervised model Features capture 

factors of variation in training data.

But we can’t generate new images 

from an autoencoder because we 

don’t know the space of z.

How do we make autoencoder a 
generative model?
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Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data                is generated from the distribution of unobserved (latent)  representation z

Intuition (remember from autoencoders!):

x is an image, z is latent factors used to

generate x: attributes, orientation, etc.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders
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We want to estimate the true parameters θ*

of this generative model given training data x.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

How should we represent this model?

Choose prior p(z) to be simple, e.g.

Gaussian. Reasonable for latent attributes,

e.g. pose, how much smile.

Decoder
network

Conditional p(x|z) is complex (generates
image) => represent with neural network
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Variational Autoencoders
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We want to estimate the true parameters θ*

of this generative model given training data x.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

How to train the model?

Learn model parameters to maximize likelihood of training 

data
Decoder
network

Q: What is the problem with this?
Intractable!
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Data likelihood:

Simple Gaussian prior
Decoder neural network

✓ ✓

Intractable to compute p(x|z) for every z!

Monte Carlo estimation is too high variance

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Data likelihood:
✓ ✓

Posterior density:

Intractable data likelihood

Solution: In addition to modeling pθ(x|z), learn qɸ(z|x) that approximates the true posterior pθ(z|x).

Will see that the approximate posterior allows us to derive a lower bound on the data likelihood that is 

tractable, which we can optimize.

Variational inference is to approximate the unknown posterior distribution from only the observed data x

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Decoder network gives pθ(x|z), can

compute estimate of this term through

sampling (need some trick to
differentiate through sampling).

This KL term (between

Gaussians for encoder and z

prior) has nice closed-form
solution!

pθ(z|x) intractable (saw

earlier), can’t compute this KL

term :( But we know KL
divergence always >= 0.

We want to

maximize the

data
likelihood
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We want to

maximize the

data
likelihood

Tractable lower bound which we can take

gradient of and optimize! (pθ(x|z) differentiable,
KL term differentiable)

Decoder:

reconstruct
the input data

Encoder:

make approximate

posterior distribution
close to prior
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Putting it all together: maximizing the likelihood lower bound

Let’s look at computing the KL

divergence between the estimated
posterior and the prior given some data

xInput Data

Encoder network 𝜇𝑧|𝑥 Σ𝑧|𝑥

Make approximate

posterior distribution
close to prior
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Putting it all together: maximizing the likelihood lower bound

xInput Data

Encoder network 𝜇𝑧|𝑥 Σ𝑧|𝑥

Make approximate

posterior distribution
close to prior

Not part of the computation graph!

𝑧
Sample z from
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Putting it all together: maximizing the likelihood lower bound

xInput Data

Encoder network 𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑧
Sample z from

Reparameterization trick to make
sampling differentiable:

Part of computation graph

Input to
the graph
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Putting it all together: maximizing the likelihood lower bound

xInput Data

Encoder network 𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑧
Sample z from

𝜇𝑥|𝑧 Σ𝑥|𝑧

ො𝑥

Decoder network

Maximize likelihood of original
input being reconstructed



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Variational Autoencoders

57

Putting it all together: maximizing the likelihood lower bound

xInput Data

Encoder network 𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑧
Sample z from

𝜇𝑥|𝑧 Σ𝑥|𝑧

ො𝑥

Decoder network

For every minibatch of input data: compute this 
forward pass, and then backprop!
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𝑧

Sample z from

𝜇𝑥|𝑧 Σ𝑥|𝑧

ො𝑥

Decoder network
𝑧

x

Decoder
network

Our assumption about data generation
process

Sample from
true conditional

Sample from
true prior

Sample x|z from

Now given a trained VAE:
use decoder network & sample z from prior!



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Variational Autoencoders: Generating Data!

59

𝑧

Sample z from

𝜇𝑥|𝑧 Σ𝑥|𝑧

ො𝑥

Decoder network

Sample x|z from

Use decoder network. Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2
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Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z

=> independent latent variables

Different dimensions of z

encode interpretable factors
of variation

Also good feature representation that
can be computed using qɸ(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Advantages of VAEs:

1.Generative model: VAEs are generative models, which means they can learn to generate new samples of data. This 

makes them useful in applications such as image and speech processing, where it is often difficult to collect and label 

large amounts of data.

2.Continuous latent space: VAEs learn a continuous latent space, which allows for interpolation between samples. This 

means that VAEs can generate new samples that are similar to existing ones, but with some variations.

3.Regularization: VAEs have built-in regularization that encourages the learned representations to be smooth and well-

behaved. This can help prevent overfitting and improve generalization to new data.
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Disadvantages of VAEs:

1.Blurry images: VAEs tend to generate blurry images, especially when compared to other generative models like 

Generative Adversarial Networks (GANs). This is because VAEs use a reconstruction loss to ensure that the generated 

samples are similar to the original data, but this loss function does not capture high-frequency details.

2.Difficulty with high-dimensional data: VAEs can have difficulty with high-dimensional data, as the latent space may 

become too complex to learn. This can lead to poor performance and slow training times.

3.Lack of diversity: VAEs can sometimes generate samples that lack diversity, as they tend to learn the average 

characteristics of the training data. This can be addressed by using techniques such as data augmentation or modifying 

the loss function.

Overall, VAEs are a powerful and versatile type of generative model that have both advantages and disadvantages. 

Their ability to learn a continuous latent space and their built-in regularization make them useful in many applications, 

but they may struggle with high-dimensional data and generate blurry or less diverse samples compared to other 

generative models.
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Probabilistic spin to traditional autoencoders => allows generating data

Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models

- Interpretable latent space.

- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:

- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN

- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:

- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian, e.g., 

Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.
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Generative Adversarial Networks (GANs) is a class of deep learning models that is used for generative tasks. GANs 

consist of two neural networks: a generator and a discriminator.

The generator network takes in random noise as input and produces a sample that mimics the training data. The 

discriminator network takes in both the generated samples and the real training data and tries to distinguish between 

them. The generator network tries to produce samples that are more and more similar to the real data, while the 

discriminator network tries to correctly classify the samples as either real or fake.

During training, the two networks are trained in an adversarial manner, with the generator trying to fool the 

discriminator into thinking its generated samples are real, and the discriminator trying to correctly classify the samples. 

As the two networks compete against each other, the generator learns to generate more realistic samples and the 

discriminator becomes better at distinguishing between real and fake samples.

GANs have been used for a wide range of tasks, such as image and video synthesis, style transfer, super-resolution, 

and data augmentation. GANs have the ability to produce high-quality and diverse samples that resemble the real 

data, making them a powerful tool for generative tasks. However, GANs can be challenging to train, and can suffer 

from issues such as mode collapse (where the generator produces a limited set of similar samples) and instability 

during training.
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PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

Variational Autoencoders (VAEs) define intractable density function with latent z:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

93
What if we give up on explicitly modeling density, and just want ability to sample?
GANs: not modeling any explicit density function!
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Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn 
transformation to training distribution.

𝑧

Generator

Network

Output: Sample from
training distribution

Input: Random noise

But we don’t know which sample z 

maps to which training image -> 

can’t learn by reconstructing training 
images

Objective: generated
images should look “real”
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Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn 
transformation to training distribution.

𝑧

Generator

Network

Output: Sample from
training distribution

Input: Random noise

But we don’t know which sample z 

maps to which training image -> 

can’t learn by reconstructing training 
images

Discriminator

Network
Real?
Fake?

gradient

Solution: Use a discriminator

network to tell whether the

generate image is within data
distribution (“real”) or not
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𝑧

Generator

Network

Discriminator

Network

Real or Fake

Discriminator network: try to distinguish between real 

and fake images

Generator network: try to fool the discriminator by 
generating real-looking images

Fake Images
(from generator)

Real Images
(from training set)

Random noise

Generator learning signal

Discriminator learning signal



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Training GANs: Two-player game

70

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Minimax objective function:

Generator
objective

Discriminator
objective

Discriminator outputs likelihood in (0,1) of real image

Discriminator output
for real data x

Discriminator output for
generated fake data G(z)

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled into thinking 
generated G(z) is real)
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Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Gradient descent on generator

When sample is likely

fake, want to learn from
it to improve generatorIn practice, optimizing this generator objective

does not work well!

But gradient in this
region is relatively flat!

Gradient signal dominated by region
where sample is already good
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Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Instead: Gradient ascent on generator, different objective

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.

High gradient signal Low gradient signal
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Putting it together: GAN training algorithm

Arjovsky et al. "Wasserstein gan." arXiv preprint arXiv:1701.07875 (2017)

Berthelot, et al. "Began: Boundary equilibrium generative adversarial networks." arXiv preprint arXiv:1703.10717 (2017)
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𝑧

Generator

Network

Discriminator

Network

Real or Fake

Fake Images
(from generator)

Real Images
(from training set)

Random noise

After training, use generator network to
generate new images
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See also: https://github.com/soumith/ganhacks for tips and tricks for trainings GANs

https://github.com/hindupuravinash/the-gan-zoo

https://github.com/soumith/ganhacks
https://github.com/hindupuravinash/the-gan-zoo
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LSGAN, Zhu 2017. Wasserstein GAN, Arjovsky 2017. Improved Wasserstein GAN, Gulrajani 2017
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Generative style transfer

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/
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Sketch-Guided Text-to-Image
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CycleGAN. Zhu et al. 2017.
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CycleGAN. Zhu et al. 2017. Adult2Child. Dong et al. 2019.
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Brock et al., 2019
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Advantages of GANs:

1. High-quality samples: GANs are known for their ability to produce high-quality, diverse and realistic samples 
that resemble the real data. This is especially true for image and video synthesis, where GANs can produce 
photo-realistic images and videos.

2. Unsupervised learning: GANs can learn to generate new samples of data without requiring labeled training 
data. This makes them useful in applications where obtaining large amounts of labeled data is difficult or 
impossible.

3. Data augmentation: GANs can be used to generate additional training data, which can be useful in improving 
the performance of other machine learning models.
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Disadvantages of GANs:

1. Difficult to train: GANs can be challenging to train, especially for large and complex datasets. The training 
process requires careful tuning of hyperparameters and can be unstable.

2. Mode collapse: GANs can suffer from mode collapse, where the generator produces a limited set of similar 
samples, rather than diverse and realistic samples.

3. Evaluation: It can be difficult to evaluate the quality of the generated samples, as there is no objective measure 
for how similar they should be to the real data.

4. Limited to the training data: GANs can only generate samples that are similar to the training data. This means 
that they may not be able to generate novel or creative samples that are different from the training data.

Overall, GANs are a powerful and versatile type of generative model that have both advantages and disadvantages. 
Their ability to generate high-quality and diverse samples without requiring labeled data makes them useful in 
many applications, but they can be challenging to train and evaluate, and may suffer from mode collapse
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Don’t work with an explicit density function

Take game-theoretic approach: learn to generate from training distribution through 2-player game

Pros:

- Beautiful, state-of-the-art samples!

Cons:

- Trickier / more unstable to train

- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications
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Self-supervised learning is a type of machine learning that involves training a model on a pretext task 

without the need for explicit supervision. In self-supervised learning, the model is trained to predict certain 

properties or relationships within the input data, such as predicting the next word in a sentence, filling in a 

missing part of an image, or predicting the rotation of an image.

The key idea behind self-supervised learning is to use the inherent structure or redundancy in the input 

data to provide the supervision signal for training. By using these pretext tasks, the model learns useful 

representations of the input data that can be used for downstream tasks.
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One advantage of self-supervised learning is that it does not require large amounts of labeled data, 

which can be expensive and time-consuming to obtain. Instead, self-supervised learning can leverage 

large amounts of readily available unlabeled data to learn useful representations. Additionally, self-

supervised learning can help to address the problem of domain shift, where the distribution of the test 

data differs from that of the training data, by learning representations that are more robust to changes in 

the input data distribution.

However, one limitation of self-supervised learning is that the quality of the learned representations is 

highly dependent on the quality of the pretext task. If the pretext task is not well-designed, the learned 

representations may not be useful for downstream tasks. Additionally, self-supervised learning can be 

computationally expensive, especially for large datasets or complex models.
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• Both aim to learn from data without manual label annotation.

• Generative learning aims to model data distribution pdata(x), e.g., generating realistic images.

• Self-supervised learning methods solve “pretext” tasks that produce good features for downstream 

tasks.

o Learn with supervised learning objectives, e.g., classification, regression.

o Labels of these pretext tasks are generated automatically
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Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a dollar bill present. 

Learning to generate pixel-level details is often unnecessary; learn high-level semantic 

features with pretext tasks instead
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Pretext task: predict missing pixels (inpainting)

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)
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Master programmes in Artificial

Intelligence 4 Careers in Europe

Self-supervised Learning

92

Pretext task: image coloring



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423
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Intelligence 4 Careers in Europe

Self-supervised Learning
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Pretext task: image coloring



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423
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Self-supervised Learning
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Pretext task: image coloring



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Self-supervised Learning
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Pretext task: image coloring



This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Thank you!
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See you next week
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