University of Cyprus

MAI649: PRINCIPLES OF ONTOLOGICAL DATABASES

Conjunctive Queries

Andreas Pieris
Spring 2022-2023

Learning Outcomes

- Syntax and semantics of conjunctive queries (a core fragment of relational calculus)
- Analyze the complexity of evaluating conjunctive queries
- Analyze the complexity of static analysis of conjunctive queries
- Minimization of conjunctive queries

So far

- The main languages for querying relational databases are:
- Relational Algebra (RA)
- Domain Relational Calcuclus (DRC)

$$
R A=D R C=T R C
$$

- Tuple Relational Calculus (TRC)
- Evaluation is decidable, and highly tractable in data complexity
- Foundations of the database industry
- The core of SQL is equally expressive to RA/DRC/TRC
- Satisfiability, equivalence and containment are undecidable
- Perfect query optimization is impossible

A Crucial Question

Are there interesting sublanguages of RA/DRC/TRC for which perfect query optimization is possible?

Conjunctive Queries

$=\{\sigma, \pi, \bowtie\}$-fragment of relational algebra
$=$ relational calculus without \neg, \forall, \vee
= simple SELECT-FROM-WHERE SQL queries (only AND and equality in the WHERE clause)

Syntax of Conjunctive Queries (CQ)

$$
Q(x):=\exists y\left(R_{1}\left(v_{1}\right) \wedge \cdots \wedge R_{m}\left(v_{m}\right)\right)
$$

- $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{m}}$ are relations
- $\mathbf{x}, \mathbf{y}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{m}}$ are tuples of variables
- each variable mentioned in $\mathbf{v}_{\mathbf{i}}$ appears either in \mathbf{x} or \mathbf{y}
- the variables in \mathbf{x} are free called distinguished or output variables

It is very convenient to see conjunctive queries as rule-based queries of the form

$$
\mathrm{Q}(\mathbf{x}):-\underbrace{\mathrm{R}_{1}\left(\mathbf{v}_{1}\right), \ldots, \mathrm{R}_{\mathrm{m}}\left(\mathbf{v}_{\mathrm{m}}\right)}
$$

this is called the body of Q that can be seen as a set of atoms

Conjunctive Queries: Example 1

List all the airlines

Flight	origin	destination	airline			
	VIE	LHR	BA			
	LHR	EDI	BA			
	LGW				GLA	U2
	LCA				VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

$\pi_{\text {airline }}$ Flight
Q(z) :- Flight(x,y,z)
$\{z \mid \exists x \exists y$ Flight $(x, y, z)\}$

Conjunctive Queries: Example 2

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

$$
\pi_{\text {code }}\left(\sigma_{\text {city }}=\text { 'London' }{ }^{\prime} \text { Airport }\right)
$$

$\{x \mid \exists y \operatorname{Airport}(x, y) \wedge y=$ London $\}$

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

$\mathrm{Q}(\mathrm{x})$:- $\operatorname{Airport}(\mathrm{x}, \mathrm{y}), \mathrm{y}=$ London

Conjunctive Queries: Example 2

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

$$
\pi_{\text {code }}\left(\sigma_{\text {city }}=\text { 'London' }{ }^{\prime} \text { Airport }\right)
$$

$\{x \mid \exists y \operatorname{Airport}(x, y) \wedge y=$ London $\}$
$\begin{array}{c|c|c|}\hline \text { Airport } & \text { code } & \text { city } \\ & \text { VIE } & \text { Vienna } \\$\cline { 2 - 3 } \& LHR \& London
 \hline \& LGW \& London
 \hline \& LCA \& Larnaca
 \hline \& GLA \& Glasgow
 \hline \& EDI \& Edinburgh
 \hline\end{array}$\}$
$\mathrm{Q}(\mathrm{x})$:- Airport(x,London)

Conjunctive Queries: Example 3

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS
			\square

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
GLA	Glasgow	
	EDI	Edinburgh

[^0]
Conjunctive Queries: Example 3

List the airlines that fly directly from London to Glasgow

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
GLA	Glasgow	
	EDI	Edinburgh

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Airport(VIE,Vienna), Airport(LHR,London), Airport(LGW,London), Airport(LCA,Larnaca), Airport(GLA,Glasgow), Airport(EDI,Edinburgh)

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

$$
\left\{\begin{aligned}
& \text { Flight(VIE,LHR,BA), } \\
& \text { Flight(LHR,EDI,BA), } \\
& \text { Flight(LGW,GLA,U2), } \\
& \text { Flight(LCA,VIE,OS), } \\
&
\end{aligned}\right.
$$

Airport(VIE,Vienna),

Airport(LHR,London), Airport(LGW,London), Airport(LCA,Larnaca), Airport(GLA,Glasgow), Airport(EDI,Edinburgh)

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Homomorphism

- Pattern matching - properly formalized via the key notion of homomorphism
- A substitution from a set of terms \mathbf{S} to a set of terms \mathbf{T} is a function $\mathrm{h}: \mathbf{S} \rightarrow \mathbf{T}$, i.e., h is a set of mappings of the form $s \mapsto t$, where $s \in \mathbf{S}$ and $\mathrm{t} \in \mathbf{T}$
- A homomorphism from a set of atoms \mathbf{A} to a set of atoms \mathbf{B} is a substitution h : terms $(\mathbf{A}) \rightarrow \operatorname{terms}(\mathbf{B})$ such that:

1. t is a constant value $\Rightarrow \mathrm{h}(\mathrm{t})=\mathrm{t}$
2. $R\left(t_{1}, \ldots, t_{k}\right) \in A \Rightarrow h\left(R\left(t_{1}, \ldots, t_{k}\right)\right)=R\left(h\left(t_{1}\right), \ldots, h\left(t_{k}\right)\right) \in B$

Homomorphism

$h: \operatorname{terms}(\mathbf{A}) \rightarrow \operatorname{terms}(\mathbf{B})$ that is the identity on constants

Homomorphism

Homomorphism

Homomorphism

Find the Homomorphisms

$$
\mathbf{S}_{1}=\left\{P\left(x_{1}, y_{1}\right), P\left(y_{1}, z_{1}\right), P\left(z_{1}, w_{1}\right)\right\}
$$

$$
\mathbf{S}_{\mathbf{2}}=\left\{P\left(x_{2}, y_{2}\right), P\left(y_{2}, z_{2}\right), P\left(z_{2}, x_{2}\right)\right\}
$$

$$
\mathbf{S}_{\mathbf{3}}=\left\{P\left(x_{3}, y_{3}\right), P\left(y_{3}, x_{3}\right)\right\}
$$

$$
S_{4}=\left\{P\left(x_{4}, y_{4}\right), P\left(y_{4}, x_{4}\right), P\left(y_{4}, y_{4}\right)\right\}
$$

$$
\mathbf{S}_{\mathbf{5}}=\left\{\mathrm{P}\left(\mathrm{x}_{5}, \mathrm{x}_{5}\right)\right\}
$$

Find the Homomorphisms

$$
\begin{gathered}
\mathbf{S}_{1}=\left\{P\left(x_{1}, y_{1}\right), P\left(y_{1}, z_{1}\right), P\left(z_{1}, w_{1}\right)\right\} \\
\left\{x_{1} \mapsto x_{2}, y_{1} \mapsto y_{2}, z_{1} \mapsto z_{2}, w_{1} \mapsto x_{2}\right\} \\
\mathbf{S}_{\mathbf{2}}=\left\{P\left(x_{2}, y_{2}\right), P\left(y_{2}, z_{2}\right), P\left(z_{2}, x_{2}\right)\right\} \quad \mathbf{S}_{3}=\left\{P\left(x_{3}, y_{3}\right), P\left(y_{3}, x_{3}\right)\right\} \\
\mathbf{S}_{4}=\left\{P\left(x_{4}, y_{4}\right), P\left(y_{4}, x_{4}\right), P\left(y_{4}, y_{4}\right)\right\} \\
\left.\mathbf{S}_{5}=y_{1} \mapsto y_{3}, z_{1} \mapsto x_{3}, w_{1} \mapsto y_{3}\right\}
\end{gathered}
$$

Find the Homomorphisms

$$
\begin{gathered}
\mathbf{S}_{\mathbf{1}}=\left\{P\left(x_{1}, y_{1}\right), P\left(y_{1}, z_{1}\right), P\left(z_{1}, w_{1}\right)\right\} \\
\left.\mathbf{S}_{1} \mapsto x_{2}, y_{1} \mapsto y_{2}, z_{1} \mapsto z_{2}, w_{1} \mapsto x_{2}\right\} \\
\mathbf{S}_{\mathbf{2}}=\left\{P\left(x_{2}, y_{2}\right), P\left(y_{2}, z_{2}\right), P\left(z_{2}, x_{2}\right)\right\} \\
\left\{x_{2} \mapsto y_{4}, y_{2} \mapsto x_{4}, z_{2} \mapsto y_{4}\right\}
\end{gathered}
$$

$$
\mathbf{S}_{5}=\left\{P\left(x_{5}, x_{5}\right)\right\}
$$

Find the Homomorphisms

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{1}}=\left\{\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{P}\left(\mathrm{y}_{1}, \mathrm{z}_{1}\right), \mathrm{P}\left(\mathrm{z}_{1}, \mathrm{w}_{1}\right)\right\} \\
& \left\{\mathrm{x}_{1} \mapsto \mathrm{x}_{2}, \mathrm{y}_{1} \mapsto \mathrm{y}_{2}, \mathrm{z}_{1} \mapsto \mathrm{z}_{2}, \mathrm{w}_{1} \mapsto \mathrm{x}_{2}\right\} \\
& \left\{\mathrm{x}_{1} \mapsto \mathrm{x}_{3}, \mathrm{y}_{1} \mapsto \mathrm{y}_{3}, \mathrm{z}_{1} \mapsto \mathrm{x}_{3}, \mathrm{w}_{1} \mapsto \mathrm{y}_{3}\right\} \\
& \mathbf{S}_{\mathbf{2}}=\left\{\mathrm{P}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{P}\left(\mathrm{y}_{2}, \mathrm{z}_{2}\right), \mathrm{P}\left(\mathrm{z}_{2}, \mathrm{x}_{2}\right)\right\} \\
& \mathbf{S}_{\mathbf{3}}=\left\{P\left(x_{3}, y_{3}\right), P\left(y_{3}, x_{3}\right)\right\} \\
& \left\{\mathrm{x}_{2} \mapsto \mathrm{y}_{4}, \mathrm{y}_{2} \mapsto \mathrm{x}_{4}, \mathrm{z}_{2} \mapsto \mathrm{y}_{4}\right\} \\
& \left\{x_{3} \mapsto x_{4}, y_{3} \mapsto y_{4}\right\} \\
& \mathbf{S}_{4}=\left\{P\left(x_{4}, y_{4}\right), P\left(y_{4}, x_{4}\right), P\left(y_{4}, y_{4}\right)\right\} \\
& \left\{x_{4} \mapsto x_{5}, y_{4} \mapsto x_{5}\right\} \\
& \mathbf{S}_{5}=\left\{P\left(x_{5}, x_{5}\right)\right\}
\end{aligned}
$$

Find the Homomorphisms

$$
\begin{gathered}
\mathbf{S}_{1}=\left\{P\left(x_{1}, y_{1}\right), P\left(y_{1}, z_{1}\right), P\left(z_{1}, w_{1}\right)\right\} \\
\mathbf{S}_{\mathbf{2}}=\left\{x_{1} \mapsto x_{2}, y_{1} \mapsto y_{2}, z_{1} \mapsto z_{2}, w_{1} \mapsto x_{2}\right\} \\
\left.\left\{x_{2}, y_{2}\right), P\left(y_{2}, z_{2}\right), P\left(z_{2}, x_{2}\right)\right\} \\
\left\{x_{2} \mapsto y_{4}, y_{2} \mapsto x_{4}, z_{2} \mapsto y_{4}\right\} \\
=\left\{P\left(x_{4}, y_{4}\right), P\left(y_{4}, x_{4}\right), P\left(y_{4}, y_{4}\right)\right\} \\
\left.\mathbf{S}_{5}, y_{4} \mapsto x_{5}\right\} \\
\mathbf{S}_{5}=\left\{P\left(x_{3}, y_{3}\right), P\left(y_{3}, x_{3}\right)\right\}
\end{gathered}
$$

Homomorphisms Compose

Homomorphisms Compose

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{1}}=\left\{P\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{P}\left(\mathrm{y}_{1}, \mathrm{z}_{1}\right), \mathrm{P}\left(\mathrm{z}_{1}, \mathrm{w}_{1}\right)\right\} \\
&\left\{\mathrm{x}_{1} \mapsto \mathrm{x}_{4}, \mathrm{y}_{1} \mapsto \mathrm{y}_{4}, \mathrm{z}_{1} \mapsto \mathrm{x}_{4}, \mathrm{w}_{1} \mapsto \mathrm{y}_{4}\right\}
\end{aligned}
$$

Semantics of Conjunctive Queries

- A match of a conjunctive query $\mathrm{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$:- body in a database D is a homomorphism h from the set of atoms body to the set of atoms D
- The answer to $Q\left(x_{1}, \ldots, x_{k}\right)$:- body over D is the set of k-tuples

$$
Q(D):=\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{k}\right)\right) \mid h \text { is a match of } Q \text { in } D\right\}
$$

- The answer consists of the witnesses for the distinguished variables of Q

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow
$\left\{\begin{array}{ll} & \text { Airport(VIE,Vienna), } \\ \text { Flight(VIE,LHR,BA), } & \text { Airport(LHR,London), } \\ \text { Flight(LHR,EDI,BA), } & \text { Airport(LGW,London), } \\ \text { Flight(LCA,VIE,OS), } & \text { Airport(LCA,Larnaca), } \\ & \text { Airport(GLA,Glasgow), }\end{array}\right\}$
$Q(z)$:- Airport(x, London), Airport(y, Glasgow), Flight(x, y, z)

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

$Q(z):-$ Airport(x,London), Airport(y,Glasgow), Flight(x, y, z)

Complexity of CQ

Theorem: It holds that:

- BQE(CQ) is NP-complete (combined complexity)
- $\operatorname{BQE}[Q](C Q)$ is in LOGSPACE, for a fixed query $Q \in C Q$ (data complexity)

Proof:
(NP-membership) Consider a database D, and a Boolean CQ Q :- body
Guess a substitution $\mathrm{h}:$ terms(body) \rightarrow terms(D)
Verify that h is a match of Q in D , i.e., $\mathrm{h}($ body $) \subseteq \mathrm{D}$
(NP-hardness) Reduction from 3-colorability

NP-hardness

(NP-hardness) Reduction from 3-colorability

$$
\begin{aligned}
& 3 C O L \\
& \text { Input: an undirected graph } G=(V, E) \\
& \text { Question: is there a function } c: V \rightarrow\{R, G, B\} \text { such that }(v, u) \in E \Rightarrow c(v) \neq c(u) \text { ? }
\end{aligned}
$$

Lemma: \mathbf{G} is 3 -colorable iff \mathbf{G} can be mapped to K_{3}, i.e., $\mathbf{G} \xrightarrow{\text { hom }}$
therefore, \mathbf{G} is 3-colorable iff there is a match of Q_{G} in $\mathrm{D}=\{\mathrm{E}(\mathrm{a}, \mathrm{b}), \mathrm{E}(\mathrm{b}, \mathrm{c}), \mathrm{E}(\mathrm{c}, \mathrm{d})\}$

Complexity of CQ

Theorem: It holds that:

- BQE(CQ) is NP-complete (combined complexity)
- $\operatorname{BQE}[Q](C Q)$ is in LOGSPACE, for a fixed query $Q \in C Q$ (data complexity)

Proof:
(NP-membership) Consider a database D, and a Boolean CQ Q :- body
Guess a substitution $\mathrm{h}:$ terms(body) \rightarrow terms(D)
Verify that h is a match of Q in D , i.e., $\mathrm{h}($ body $) \subseteq \mathrm{D}$
(NP-hardness) Reduction from 3-colorability
(LOGSPACE-membership) Inherited from BQE[Q](DRC)

What About Optimization of CQs?

```
SAT(CQ)
Input: a query Q E CQ
Question: is there a (finite) database D such that Q(D) is non-empty?
```

```
EQUIV(CQ)
Input: two queries }\mp@subsup{Q}{1}{}\inCQ\mathrm{ and }\mp@subsup{Q}{2}{}\inC
Question: }\mp@subsup{Q}{1}{}\equiv\mp@subsup{Q}{2}{}\mathrm{ ? or }\mp@subsup{Q}{1}{}(D)=\mp@subsup{Q}{2}{(D) for every (finite) database D}\mathrm{ ?
```


CONT(CQ)

Input: two queries $\mathrm{Q}_{1} \in \mathbf{C Q}$ and $\mathrm{Q}_{2} \in \mathbf{C Q}$
Question: $Q_{1} \subseteq Q_{2}$? or $Q_{1}(D) \subseteq Q_{2}(D)$ for every (finite) database D ?

Canonical Database

- Convert a conjunctive query Q into a database $D[Q]$ - the canonical database of Q
- Given a conjunctive query of the form $\mathrm{Q}(\mathrm{x})$:- body, $\mathrm{D}[\mathrm{Q}]$ is obtained from body by replacing each variable x with a new constant $c(x)=\underline{x}$
- E.g., given $Q(x, y):-R(x, y), P(y, z, w), R(z, x)$, then $D[Q]=\{R(\underline{x}, \underline{y}), P(y, \underline{z}, \underline{w}), R(\underline{z}, \underline{x})\}$
- Note: The mapping c : \{variables in body\} \rightarrow \{new constants $\}$ is a bijection, where $c($ body $)=D[Q]$ and $c^{-1}(D[Q])=$ body

Satisfiability of CQs

SAT(CQ)

Input: a query $Q \in \mathbf{C Q}$
Question: is there a (finite) database D such that $Q(D)$ is non-empty?

Theorem: A query $Q \in C Q$ is always satisfiable - $\operatorname{SAT}(C Q) \in O(1)$-time

Proof: Due to its canonical database - $\mathrm{Q}(\mathrm{D}[\mathrm{Q}])$ is trivially non-empty

Equivalence and Containment of CQs

```
EQUIV(CQ)
Input: two queries }\mp@subsup{Q}{1}{}\inCQ\mathrm{ and }\mp@subsup{Q}{2}{}\inC
Question: }\mp@subsup{Q}{1}{}\equiv\mp@subsup{Q}{2}{}\mathrm{ ? or }\mp@subsup{Q}{1}{}(D)=\mp@subsup{Q}{2}{}(D)\mathrm{ for every (finite) database D
```


CONT(CQ)

Input: two queries $\mathrm{Q}_{1} \in \mathrm{CQ}$ and $\mathrm{Q}_{2} \in \mathrm{CQ}$
Question: $Q_{1} \subseteq Q_{2}$? or $Q_{1}(D) \subseteq Q_{2}(D)$ for every (finite) database D ?

$$
\begin{aligned}
& Q_{1} \equiv Q_{2} \text { iff } Q_{1} \subseteq Q_{2} \text { and } Q_{2} \subseteq Q_{1} \\
& Q_{1} \subseteq Q_{2} \text { iff } Q_{1} \equiv\left(Q_{1} \wedge Q_{2}\right)
\end{aligned}
$$

Homomorphism Theorem

A query homomorphism from $\mathrm{Q}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$:- body y_{1} to $\mathrm{Q}_{2}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$:- body y_{2}
is a substitution $\mathrm{h}:$ terms $\left(\right.$ body $\left._{1}\right) \rightarrow$ terms $\left(\right.$ bod $\left._{2}\right)$ such that:

1. h is a homomorphism from body $_{1}$ to body $_{2}$
2. $\left(h\left(x_{1}\right), \ldots, h\left(x_{k}\right)\right)=\left(y_{1}, \ldots, y_{k}\right)$

Homomorphism Theorem: Let Q_{1} and Q_{2} be conjunctive queries. It holds that:
$\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$ iff there exists a query homomorphism from Q_{2} to Q_{1}

Homomorphism Theorem: Example

$$
\begin{aligned}
& \mathrm{Q}_{1}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{S}(\mathrm{z}, \mathrm{z}), \mathrm{R}(\mathrm{z}, \mathrm{y}) \\
& \\
& \mathrm{Q}_{2}(\mathrm{u}, \mathrm{v}):-\mathrm{R}(\mathrm{u}, \mathrm{w}), \mathrm{S}(\mathrm{w}, \mathrm{t}), \mathrm{R}(\mathrm{t}, \mathrm{v})
\end{aligned}
$$

- h is a query homomorphism from Q_{2} to $\mathrm{Q}_{1} \Rightarrow \mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$
- But, there is no homomorphism from Q_{1} to $\mathrm{Q}_{2} \Rightarrow \mathrm{Q}_{1} \subset \mathrm{Q}_{2}$

Homomorphism Theorem: Proof

Assume that $\mathrm{Q}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$:- bod_{1} and $\mathrm{Q}_{2}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$:- body y_{2}
$(\Rightarrow) Q_{1} \subseteq Q_{2} \Rightarrow$ there exists a query homomorphism from Q_{2} to Q_{1}

- Clearly, $\left(c\left(x_{1}\right), \ldots, c\left(x_{k}\right)\right) \in Q_{1}\left(D\left[Q_{1}\right]\right)$ - recall that $D\left[Q_{1}\right]=c\left(\right.$ body $\left._{1}\right)$
- Since $Q_{1} \subseteq Q_{2}$, we conclude that $\left(c\left(x_{1}\right), \ldots, c\left(x_{k}\right)\right) \in Q_{2}\left(D\left[Q_{1}\right]\right)$
- Therefore, there exists a homomorphism h such that $h\left(\right.$ body $\left._{2}\right) \subseteq D\left[Q_{1}\right]=c\left(\operatorname{body}_{1}\right)$ and $h\left(\left(y_{1}, \ldots, y_{k}\right)\right)=\left(c\left(x_{1}\right), \ldots, c\left(x_{k}\right)\right)$
- By construction, $\mathrm{c}^{-1}\left(\mathrm{c}\left(\right.\right.$ body $\left.\left._{1}\right)\right)=$ body $_{1}$ and $c^{-1}\left(\left(c\left(x_{1}\right), \ldots, c\left(x_{k}\right)\right)\right)=\left(x_{1}, \ldots, x_{k}\right)$
- Therefore, $\mathrm{c}^{-1} \circ \mathrm{~h}$ is a query homomorphism from Q_{2} to Q_{1}

Homomorphism Theorem: Proof

Assume that $\mathrm{Q}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$:- body $_{1}$ and $\mathrm{Q}_{2}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$:- bod $_{2}$
$(\Leftarrow) \mathrm{Q}_{1} \subseteq \mathrm{Q}_{2} \Leftarrow$ there exists a query homomorphism from Q_{2} to Q_{1}

- Consider a database D, and a tuple \mathbf{t} such that $\mathbf{t} \in Q_{1}(D)$
- We need to show that $\mathbf{t} \in \mathrm{Q}_{2}$ (D)
- Clearly, there exists a homomorphism g such that $g\left(\operatorname{body}_{1}\right) \subseteq \mathrm{D}$ and $\mathrm{g}\left(\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right)=\mathbf{t}$
- By hypothesis, there exists a query homomorphism h from Q_{2} to Q_{1}
- Therefore, $\mathrm{g}\left(\mathrm{h}\left(\right.\right.$ body $\left.\left._{2}\right)\right) \subseteq \mathrm{D}$ and $g\left(h\left(\left(y_{1}, \ldots, y_{k}\right)\right)\right)=t$, which implies that $t \in Q_{2}(D)$

Existence of a Query Homomorphism

Theorem: Let Q_{1} and Q_{2} be conjunctive queries. The problem of deciding whether there exists a query homomorphism from Q_{2} to Q_{1} is NP-complete

Proof:

(NP-membership) Guess a substitution, and verify that is a query homomorphism (NP-hardness) Straightforward reduction from BQE(CQ)

By applying the homomorphism theorem we get that:

Corollary: EQUIV(CQ) and CONT(CQ) are NP-complete

Recap

$L \in\{R A, D R C, T R C\}$

Minimizing Conjunctive Queries

- Goal: minimize the number of joins in a query
- A conjunctive query Q_{1} is minimal if there is no conjunctive query Q_{2} such that:

1. $\mathrm{Q}_{1} \equiv \mathrm{Q}_{2}$
2. Q_{2} has fewer atoms than Q_{1}

- The task of $C Q$ minimization is, given a conjunctive query Q, to compute a minimal one that is equivalent to Q

Minimization by Deletion

By exploiting the homomorphism theorem we can show the following:

Theorem: Consider a conjunctive query $\mathrm{Q}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$:- bod $_{1}$.
If Q_{1} is equivalent to a conjunctive query $\mathrm{Q}_{2}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$:- body $_{2}$ where $\left|\operatorname{bod}_{2}\right|<\mid$ body $_{1} \mid$, then Q_{1} is equivalent to a query $Q_{3}\left(x_{1}, \ldots, x_{k}\right)$:- bod y_{3} such that bod $y_{3} \subseteq$ bod $_{1}$

The above theorem says that to minimize a conjunctive query $\mathrm{Q}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$:- body we simply need to remove some atoms from body

Minimization Procedure

```
Minimization(Q(x},\ldots,\mp@subsup{x}{k}{}) :- body
While there is an atom \alpha body such that the variables }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{k}{}\mathrm{ appear in body \{人}, and
there is a query homomorphism from }Q(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{k}{}):- body to Q(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{k}{}):- body \{\alpha} d
body := body \{\alpha}
Return Q(x ( ,.., \mp@subsup{x}{k}{}) :- body
```

Note: if there is a query homomorphism from $Q\left(x_{1}, \ldots, x_{k}\right)$:- body to $Q\left(x_{1}, \ldots, x_{k}\right)$:- body $\backslash\{\alpha\}$, then the two queries are equivalent since there is trivially a query homomorphism from the latter to the former query

Minimization Procedure: Example

(a,b,c,d are constants)

minimal query

Note: the mapping $x \mapsto a$ is not valid since x is a distinguished variable

Uniqueness of Minimal Queries

Natural question: does the order in which we remove atoms from the body of the input conjunctive query matter?

Theorem: Consider a conjunctive query Q . Let Q_{1} and Q_{2} be minimal conjunctive queries such that $\mathrm{Q}_{1} \equiv \mathrm{Q}$ and $\mathrm{Q}_{2} \equiv \mathrm{Q}$. Then, Q_{1} and Q_{2} are isomorphic (i.e., they are the same up to variable renaming)

Therefore, given a conjunctive query Q, the result of Minimization (Q) is unique (up to variable renaming) and is called the core of Q

Recap

- The main relational query languages - RA/DRC/TRC
- Evaluation is decidable - foundations of the database industry
- Perfect query optimization is impossible
- Conjunctive queries - an important query language
- All the relevant algorithmic problems are decidable
- Query minimization

*under the active domain semantics

University of Cyprus

MAI649: PRINCIPLES OF ONTOLOGICAL DATABASES

Thank You!

Andreas Pieris

Spring 2022-2023

[^0]: $\pi_{\text {airline }}\left(\left(\right.\right.$ Flight $\bowtie_{\text {origin=code }}\left(\sigma_{\text {city='tondon' }}\right.$ Airport)) $\bowtie_{\text {destination=code }}\left(\sigma_{\text {city='Glasgow' }}\right.$ Airport) $)$
 $\{\mathrm{z} \mid \exists x \exists y \exists u \exists \mathrm{virport}(\mathrm{x}, \mathrm{u}) \wedge \mathrm{u}=$ London $\wedge \operatorname{Airport}(\mathrm{y}, \mathrm{v}) \wedge \mathrm{v}=$ Glasgow \wedge Flight $(\mathrm{x}, \mathrm{y}, \mathrm{z})\}$

