

Master programmes in Artificial Intelligence 4 Careers in Europe

University of Cyprus

MAI649: PRINCIPLES OF ONTOLOGICAL DATABASES

Adding Recursion - Datalog

Andreas Pieris

Spring 2022-2023

Co-financed by the European Union Connecting Europe Facility

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

Learning Outcomes

• Syntax and semantics of Datalog (CQs + recursion)

• Analyze the complexity of evaluating Datalog queries

• Static analysis of Datalog queries

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Q :- Airport(x,Vienna), Airport(y,Glasgow), Flight(x,z,w),

Flight(z,z₁,w₁), Flight(z,y,v)

YES

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Q :- Airport(x,Vienna), Airport(y,Glasgow), Flight(x,z,w), Flight(z,z₁,w₁), Flight(z,y,v)

NO

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Recursive query - not expressible in CQ (or even in RA and RC)

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

- List all the pairs (a,b) such that b is reachable from a
- Check if there exists a pair (a,b) such that a is in Vienna and b is in Glasgow

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline	Airport	code	city

• List all the pairs (a,b) such that b is reachable from a

Reachable(x,y) :- Flight(x,y,z)

Reachable(x,w) :- Flight(x,y,z), Reachable(y,w)

• Check if there exists a pair (a,b) such that a is in Vienna and b is in Glasgow

Answer() :- Airport(x,Vienna), Airport(y,Glasgow), Reachable(x,y)

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline	Airport	code	city

• List all the pairs (a,b) such that b is reachable from a

Reachable(x,y) :- Flight(x,y,z)

Reachable(x,w) :- Flight(x,y,z), Reachable(y,w) - recursion

• Check if there exists a pair (a,b) such that a is in Vienna and b is in Glasgow

Answer() :- Airport(x,Vienna), Airport(y,Glasgow), Reachable(x,y)

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline	Airport	code	city

• List all the pairs (a,b) such that b is reachable from a

Reachable(x,y) :- Flight(x,y,z)

Reachable(x,w) :- Flight(x,y,z), Reachable(y,w) - recursion

DATALOG

Datalog at First Glance

Transitive closure of a graph

Datalog at First Glance

TrClosure(x,y) :- Edge(x,y)

TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

Answer	start	end
	а	b
	а	С
	а	d
	b	С
	b	d
	С	d

Datalog at First Glance

• Semantics: a mapping from databases of the extensional schema to databases of the intensional schema, and the answer is determined by the output relation

**>	rt	and
	end	
a b	b	
b c	с	
	d	
c u	u	

- Equivalent ways for defining the semantics
 - Model-theoretic: logical sentences asserting a property of the result
 - **Fixpoint:** solution of a fixpoint procedure

Syntax of Datalog

A Datalog rule is an expression of the form

- $n \ge 0$ (the body might be empty)
- S,R₁,...,R_n are relation names
- **x**, **x**₁,...,**x**_n are tuples of variables
- each variable in the head occurs also in the body (safety condition)

Syntax of Datalog

- Datalog program P: a finite set of Datalog rules
- Extensional relation: does not occur in the head of a rule of P
- Intensional relation: occurs in the head of some rule of P
- EDB(P) is the set of extensional relations of P the schema of P
 IDB(P) is the set of intensional relations of P
 SCH(P) = EDB(P) U IDB(P)
- Datalog query Q: a pair of the form (P, Answer), where P is a Datalog program, and Answer a distinguished intensional relation, the output relation

Example of Datalog

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline	Airport	code	city

P = Reachable(x,y) :- Flight(x,y,z) Reachable(x,w) :- Flight(x,y,z), Reachable(y,w) Answer() :- Airport(x,Vienna), Airport(y,Glasgow), Reachable(x,y)

EDB(P) = {Flight, Airport} IDB(P) = {Reachable, Answer}

Q = (P, Answer)

... it relies on the notion of immediate consequence operator

- Given a database D and a Datalog program P, an atom R(a₁,...,a_n) is an immediate consequence for D and P if:
 - R(a₁,...,a_n) belongs to D, or
 - There exists a rule R(x₁,...,x_n) :- body in P, and a homomorphism h from body to D such that R(h(x₁),...,h(x_n)) = R(a₁,...,a_n)

- $T_P(D) = \{R(a_1,...,a_n) \mid R(a_1,...,a_n) \text{ is an immediate consequence for D and P}\}$
- The immediate consequence operator T_P should be understood as a function from databases of SCH(P) to databases of SCH(P)

... it relies on the notion of immediate consequence operator

Theorem: For every Datalog program P and database D of EDB(P), the immediate consequence operator T_P has a minimum **fixpoint** containing D

a database D' is a fixpoint of T_P if $T_P(D') = D'$

the semantics of P on D, denoted P(D), is the minimum fixpoint of P containing D

for a Datalog query $Q = (P, Answer), Q(D) = \{t \mid Answer(t) \in P(D)\}$

...how do we compute P(D)?

... it relies on the notion of immediate consequence operator

$$T_{P,0}(D) = D$$
 and $T_{P,i+1}(D) = T_{P}(T_{P,i}(D))$

 $\mathsf{T}_{\mathsf{P},\infty}(\mathsf{D})=\mathsf{T}_{\mathsf{P},0}(\mathsf{D})\cup\mathsf{T}_{\mathsf{P},1}(\mathsf{D})\cup\mathsf{T}_{\mathsf{P},2}(\mathsf{D})\cup\mathsf{T}_{\mathsf{P},3}(\mathsf{D})\cup\cdots$

Semantics of Datalog: Example

... it relies on the notion of immediate consequence operator

$$\begin{split} T_{P,0}(D) &= D \\ T_{P,1}(D) &= T_P(T_{P,0}(D)) = D \cup \{ \text{TrClosure}(a,b), \text{TrClosure}(b,c), \text{TrClosure}(c,d) \} \\ T_{P,2}(D) &= T_P(T_{P,1}(D)) = T_{P,1}(D) \cup \{ \text{TrClosure}(a,c), \text{TrClosure}(b,d), \text{Answer}(a,b), \\ & \text{Answer}(b,c), \text{Answer}(c,d) \} \\ T_{P,3}(D) &= T_P(T_{P,2}(D)) = T_{P,2}(D) \cup \{ \text{TrClosure}(a,d), \text{Answer}(a,c), \text{Answer}(b,d) \} \\ T_{P,4}(D) &= T_P(T_{P,3}(D)) = T_{P,3}(D) \cup \{ \text{Answer}(a,d) \} \\ T_{P,5}(D) &= T_P(T_{P,4}(D)) = T_{P,4}(D) \end{split}$$

... it relies on the notion of immediate consequence operator

$$T_{P,0}(D) = D$$
 and $T_{P,i+1}(D) = T_{P}(T_{P,i}(D))$

 $\mathsf{T}_{\mathsf{P},\infty}(\mathsf{D}) = \mathsf{T}_{\mathsf{P},0}(\mathsf{D}) \cup \mathsf{T}_{\mathsf{P},1}(\mathsf{D}) \cup \mathsf{T}_{\mathsf{P},2}(\mathsf{D}) \cup \mathsf{T}_{\mathsf{P},3}(\mathsf{D}) \cup \cdots$

Theorem: For every Datalog program P and database D of EDB(P), $P(D) = T_{P,\infty}(D)$

Complexity of **DATALOG**

```
QOT(DATALOG)
```

```
Input: a database D, a Datalog query Q/k, a tuple of constants t \in adom(D)^k
```

Question: $t \in Q(D)$? (i.e., whether Answer(t) $\in P(D)$)

Theorem: It holds that:

- QOT(**DATALOG**) is EXPTIME-complete (combined complexity)
- QOT[Q](DATALOG) is PTIME-complete, for a fixed Datalog query Q (data complexity)

Complexity of **DATALOG**

- Recall that $P(D) = T_{P,\infty}(D)$
- Computing T_{P,i} (D) takes time

```
O(|P| \cdot |adom(D)|^{maxvar} \cdot maxbody \cdot |T_{P,i-1}(D)|)
```

- where <u>maxvar</u> is the maximum number of variables in a rule-body, and <u>maxbody</u> is the maximum number of atoms in a rule-body
- It is clear that $|T_{P,i-1}(D)| \le |T_{P,\infty}(D)|$, and thus, computing $T_{P,i}(D)$ takes time

 $O(|P| \cdot |adom(D)|^{maxvar} \cdot maxbody \cdot |T_{P,\infty}(D)|)$

• Consequently, computing $T_{P,\infty}(D)$ takes time

 $O(|P| \cdot |adom(D)|^{maxvar} \cdot maxbody \cdot |T_{P,\infty}(D)|^2)$

• It is not difficult to verify that

 $|\mathsf{T}_{\mathsf{P},\infty}(\mathsf{D})| \leq |\mathsf{SCH}(\mathsf{P})| \cdot |\mathsf{adom}(\mathsf{D})|^{\mathsf{maxarity}}$

where maxarity is the maximum arity over all relations of SCH(P)

- Consequently, $T_{P,\infty}(D)$ can be computed in time

 $O(|P| \cdot |adom(D)|^{maxvar} \cdot maxbody \cdot |SCH(P)|^2 \cdot |adom(D)|^{2maxarity})$

Complexity of **DATALOG**

QOT(**DATALOG**)

```
Input: a database D, a Datalog query Q/k, a tuple of constants t \in adom(D)^k
```

Question: $t \in Q(D)$? (i.e., whether Answer(t) $\in P(D)$)

Theorem: It holds that:

- QOT(**DATALOG**) is EXPTIME-complete (combined complexity)
- QOT[Q](DATALOG) is PTIME-complete, for a fixed Datalog query Q (data complexity)

P(D) can be computed in time

 $O(|P| \cdot |adom(D)|^{maxvar} \cdot maxbody \cdot |SCH(P)|^2 \cdot |adom(D)|^{2maxarity})$

What About Optimization of Datalog?

SAT(DATALOG)

```
Input: a query Q ∈ DATALOG
```

Question: is there a (finite) database D such that Q(D) is non-empty?

EQUIV(DATALOG)

Input: two queries $Q_1 \in DATALOG$ and $Q_2 \in DATALOG$

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

CONT(DATALOG)

Input: two queries $Q_1 \in DATALOG$ and $Q_2 \in DATALOG$

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?

What About Optimization of Datalog?

SAT(DATALOG)

```
Input: a query Q ∈ DATALOG
```

Question: is there a (finite) database D such that Q(D) is non-empty?

What About Optimization of Datalog?

SAT(DATALOG)

Input: a query **Q** ∈ **DATALOG**

Question: is there a (finite) database D such that Q(D) is non-empty?

Theorem: SAT(DATALOG) is in EXPTIME

Lemma: Given a Datalog query Q = (P, Answer), Q is satisfiable iff $Q(D_P) \neq \emptyset$, where $D_P = \{R(b_1,...,b_m) \mid R \in EDB(P) \text{ and } b_i \in \{*,a_1,...,a_n\}\}$, with $a_1,...,a_n$ being the constants occurring in the rules of P, and * being a new constant not in $\{a_1,...,a_n\}$

Recap

- Recursive queries are not expressible via relational algebra or calculus
- Adding recursion to $CQs \rightarrow Datalog$
- Fixpoint semantics of Datalog based on the immediate consequence operator
- Evaluating Datalog queries is EXPTIME-complete in combined complexity and PTIME-complete in data complexity
- We can check for satisfiability of Datalog queries, but equivalence and containment are undecidable (perfect query optimization not possible)

Master programmes in Artificial Intelligence 4 Careers in Europe

University of Cyprus

MAI649: PRINCIPLES OF ONTOLOGICAL DATABASES

Thank You!

Andreas Pieris

Spring 2022-2023

2.

Co-financed by the European Union Connecting Europe Facility

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

