University of Cyprus

MAI649: PRINCIPLES OF ONTOLOGICAL DATABASES

Adding Recursion - Datalog

Andreas Pieris

Spring 2022-2023

Learning Outcomes

- Syntax and semantics of Datalog (CQs + recursion)
- Analyze the complexity of evaluating Datalog queries
- Static analysis of Datalog queries

Limits of CQs

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
GLA	Glasgow	
	EDI	Edinburgh

Limits of CQs

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
GLA	Glasgow	
	EDI	Edinburgh

Limits of CQs

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Limits of CQs

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Q :- Airport(x,Vienna), Airport(y,Glasgow), Flight(x, z, w),
Flight($\left(z_{1}, \mathrm{z}_{1}\right)$, Flight($(\mathrm{z}, \mathrm{y}, \mathrm{v})$

Limits of CQs

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Recursive query - not expressible in CQ (or even in RA and RC)

A Possible Strategy

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

- List all the pairs (a, b) such that b is reachable from a
- Check if there exists a pair (a, b) such that a is in Vienna and b is in Glasgow

A Possible Strategy

> Is Glasgow reachable from Vienna?

Flight	origin	destination	airline

Airport	code	city

- List all the pairs (a, b) such that b is reachable from a

```
Reachable(x,y) :- Flight(x,y,z)
Reachable(x,w) :- Flight(x,y,z), Reachable(y,w)
```

- Check if there exists a pair (a, b) such that a is in Vienna and b is in Glasgow
Answer() :- Airport(x,Vienna), Airport(y,Glasgow), Reachable(x,y)

A Possible Strategy

> Is Glasgow reachable from Vienna?

Flight	origin	destination	airline

Airport	code	city

- List all the pairs (a, b) such that b is reachable from a

```
Reachable(x,y) :- Flight(x,y,z)
Reachable(x,w) :- Flight(x,y,z), Reachable(y,w) - recursion
```

- Check if there exists a pair (a, b) such that a is in Vienna and b is in Glasgow
Answer() :- Airport(x,Vienna), Airport(y,Glasgow), Reachable(x,y)

A Possible Strategy

> Is Glasgow reachable from Vienna?

Flight	origin	destination	airline

Airport	code	city

- List all the pairs (a, b) such that b is reachable from a

```
Reachable(x,y) :- Flight(x,y,z)
Reachable(x,w) :- Flight(x,y,z), Reachable(y,w) - recursion
```

DATALOG

Datalog at First Glance

Transitive closure of a graph

Datalog at First Glance

Edge	start	end
	a	b
	b	c
	c	d

$$
\begin{aligned}
& \text { TrClosure }(x, y):-\operatorname{Edge}(x, y) \\
& \operatorname{TrClosure}(x, y):- \text { Edge(} x, z) \text {, } \operatorname{TrClosure}(z, y) \\
& \text { Answer(} x, y \text {) :- } \operatorname{TrClosure}(x, y)
\end{aligned}
$$

Answer	start	end
	a	b
	a	c
	a	d
	b	c
	b	d
	c	d

Datalog at First Glance

- Semantics: a mapping from databases of the extensional schema to databases of the intensional schema, and the answer is determined by the output relation

Edge	start	end
	a	b
	b	c
	c	d

Answer	start	end
a	b	
	a	c
	a	d
	b	c
b	d	
c	d	

- Equivalent ways for defining the semantics
- Model-theoretic: logical sentences asserting a property of the result
- Fixpoint: solution of a fixpoint procedure

Syntax of Datalog

A Datalog rule is an expression of the form

- $\mathrm{n} \geq 0$ (the body might be empty)
- $\mathrm{S}, \mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}$ are relation names
- $\mathbf{x}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}$ are tuples of variables
- each variable in the head occurs also in the body (safety condition)

Syntax of Datalog

- Datalog program P: a finite set of Datalog rules
- Extensional relation: does not occur in the head of a rule of P
- Intensional relation: occurs in the head of some rule of P
- $\operatorname{EDB}(P)$ is the set of extensional relations of P
- $\operatorname{IDB}(P)$ is the set of intensional relations of P
- Datalog query Q : a pair of the form (P, Answer), where P is a Datalog program, and Answer a distinguished intensional relation, the output relation

Example of Datalog

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline				
				\quad	Airport	code	city
:---	:---	:---					

$$
\left.\begin{array}{c}
P=\left\{\begin{array}{l}
\text { Reachable }(x, y):- \text { Flight }(x, y, z) \\
\text { Reachable }(x, w):-\operatorname{Flight}(x, y, z), \text { Reachable }(y, w) \\
\text { Answer }():- \text { Airport(} x, \text { Vienna }), \text { Airport }(y, \text { Glasgow), Reachable }(x, y)
\end{array}\right\} \\
E \operatorname{EDB}(P)=\{\text { Flight, Airport }\} \quad \text { IDB(P) }=\{\text { Reachable, Answer }\}
\end{array}\right\}
$$

Semantics of Datalog

...it relies on the notion of immediate consequence operator

- Given a database D and a Datalog program P, an atom $R\left(a_{1}, \ldots, a_{n}\right)$ is an immediate consequence for D and P if:
- $R\left(a_{1}, \ldots, a_{n}\right)$ belongs to D, or
- There exists a rule $R\left(x_{1}, \ldots, x_{n}\right)$:- body in P, and a homomorphism h from body to D such that $R\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right)=R\left(a_{1}, \ldots, a_{n}\right)$
- $T_{p}(D)=\left\{R\left(a_{1}, \ldots, a_{n}\right) \mid R\left(a_{1}, \ldots, a_{n}\right)\right.$ is an immediate consequence for D and $\left.P\right\}$
- The immediate consequence operator T_{p} should be understood as a function from databases of $\operatorname{SCH}(\mathrm{P})$ to databases of $\mathrm{SCH}(\mathrm{P})$

Semantics of Datalog

...it relies on the notion of immediate consequence operator

Theorem: For every Datalog program P and database D of $\operatorname{EDB}(P)$, the immediate consequence operator T_{p} has a minimum fixpoint containing D

a database D^{\prime} is a fixpoint of T_{p} if $T_{p}\left(D^{\prime}\right)=D^{\prime}$
the semantics of P on D, denoted $P(D)$, is the minimum fixpoint of P containing D for a Datalog query $Q=(P$, Answer $), Q(D)=\{t \mid A n s w e r(t) \in P(D)\}$
...how do we compute $P(D)$?

Semantics of Datalog

...it relies on the notion of immediate consequence operator

$$
\begin{gathered}
T_{P, 0}(D)=D \quad \text { and } \quad T_{P, i+1}(D)=T_{p}\left(T_{P, i}(D)\right) \\
T_{P, \infty}(D)=T_{P, 0}(D) \cup T_{P, 1}(D) \cup T_{P, 2}(D) \cup T_{P, 3}(D) \cup \cdots
\end{gathered}
$$

Semantics of Datalog: Example

...it relies on the notion of immediate consequence operator
$D=\{\operatorname{Edge}(a, b), \operatorname{Edge}(b, c), \operatorname{Edge}(c, d)\} \quad P=\left\{\begin{array}{l}\operatorname{TrClosure}(x, y):-\operatorname{Edge}(x, y) \\ \operatorname{TrClosure}(x, y):-\operatorname{Edge}(x, z), \operatorname{TrClosure}(z, y) \\ \operatorname{Answer}(x, y):-\operatorname{TrClosure}(x, y)\end{array}\right\}$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{p}, \mathrm{o}}(\mathrm{D})=\mathrm{D} \\
& T_{p, 1}(D)=T_{P}\left(T_{p, 0}(D)\right)=D \cup\{\operatorname{TrClosure}(a, b), \operatorname{TrClosure}(b, c), \operatorname{TrClosure}(c, d)\} \\
& T_{p, 2}(D)=T_{p}\left(T_{p, 1}(D)\right)=T_{p, 1}(D) \cup\{\operatorname{TrClosure}(a, c) \text {, TrClosure }(b, d) \text {, Answer }(a, b) \text {, } \\
& \text { Answer(b,c), Answer(c,d)\} } \\
& T_{p, 3}(D)=T_{p}\left(T_{p, 2}(D)\right)=T_{p, 2}(D) \cup\{\operatorname{TrClosure}(a, d) \text {, Answer(a,c), Answer(b,d) }\} \\
& T_{p, 4}(D)=T_{p}\left(T_{P, 3}(D)\right)=T_{P, 3}(D) \cup\{\text { Answer }(a, d)\} \\
& T_{P, 5}(D)=T_{P}\left(T_{P, 4}(D)\right)=T_{P, 4}(D) \\
& T_{P, \infty}(D)=T_{P, 4}(D)
\end{aligned}
$$

Semantics of Datalog

...it relies on the notion of immediate consequence operator

$$
\begin{gathered}
T_{p, 0}(D)=D \quad \text { and } \quad T_{p, i+1}(D)=T_{p}\left(T_{p, i}(D)\right) \\
T_{P, \infty}(D)=T_{p, 0}(D) \cup T_{p, 1}(D) \cup T_{P, 2}(D) \cup T_{p, 3}(D) \cup \cdots
\end{gathered}
$$

Theorem: For every Datalog program P and database D of $E D B(P), P(D)=T_{p, \infty}(D)$

Complexity of DATALOG

```
QOT(DATALOG)
Input: a database D, a Datalog query Q/k, a tuple of constants t E adom(D)
Question: t \in Q(D)? (i.e., whether Answer(t) \in P(D))
```

Theorem: It holds that:

- QOT(DATALOG) is EXPTIME-complete (combined complexity)
- QOT[Q](DATALOG) is PTIME-complete, for a fixed Datalog query Q (data complexity)

Complexity of DATALOG

- Recall that $P(D)=T_{P, \infty}(D)$
- Computing $T_{p, i}(D)$ takes time

$$
\mathrm{O}\left(\left.|\mathrm{P}| \cdot|\operatorname{adom}(\mathrm{D})|\right|^{\text {maxvar }} \cdot \operatorname{maxbody} \cdot\left|\mathrm{T}_{\mathrm{P}, \mathrm{i}-1}(\mathrm{D})\right|\right)
$$

where maxvar is the maximum number of variables in a rule-body, and maxbody is the maximum number of atoms in a rule-body

- It is clear that $\mid T_{p, i-1}$ (D)| $\leq \mid T_{p, \infty}$ (D)|, and thus, computing $T_{p, i}$ (D) takes time

$$
\mathrm{O}\left(|\mathrm{P}| \cdot|\operatorname{adom}(\mathrm{D})|^{\text {maxvar }} \cdot \operatorname{maxbody} \cdot\left|\mathrm{T}_{\mathrm{P}, \infty}(\mathrm{D})\right|\right)
$$

- Consequently, computing $T_{p, \infty}$ (D) takes time

$$
\mathrm{O}\left(|\mathrm{P}| \cdot|\operatorname{adom}(\mathrm{D})|^{\text {maxvar }} \cdot \operatorname{maxbody} \cdot\left|\mathrm{T}_{\mathrm{P}, \infty}(\mathrm{D})\right|^{2}\right)
$$

- It is not difficult to verify that

$$
\left|T_{P, \infty}(D)\right| \leq|S C H(P)| \cdot|\operatorname{adom}(D)|^{\text {maxarity }}
$$

where maxarity is the maximum arity over all relations of $\mathrm{SCH}(\mathrm{P})$

- Consequently, $T_{p, \infty}(D)$ can be computed in time
$\mathrm{O}\left(|\mathrm{P}| \cdot|\operatorname{adom}(\mathrm{D})|^{\text {maxvar }} \cdot\right.$ maxbody $\left.\cdot|\mathrm{SCH}(\mathrm{P})|^{2} \cdot|\operatorname{adom}(\mathrm{D})|^{2 \text { maxarity }}\right)$

Complexity of DATALOG

```
QOT(DATALOG)
Input: a database D, a Datalog query Q/k, a tuple of constants t E adom(D)
Question: t \in Q(D)? (i.e., whether Answer(t) \in P(D))
```

Theorem: It holds that:

- QOT(DATALOG) is EXPTIME-complete (combined complexity)
- QOT[Q](DATALOG) is PTIME-complete, for a fixed Datalog query Q (data complexity)
$P(D)$ can be computed in time
$\mathrm{O}\left(|\mathrm{P}| \cdot|\operatorname{adom}(\mathrm{D})|^{\text {maxvar }} \cdot \operatorname{maxbody} \cdot|\mathrm{SCH}(\mathrm{P})|^{2} \cdot|\operatorname{adom}(\mathrm{D})|^{2 \text { maxarity }}\right)$

What About Optimization of Datalog?

SAT(DATALOG)

Input: a query $Q \in$ DATALOG
Question: is there a (finite) database D such that $Q(D)$ is non-empty?

```
EQUIV(DATALOG)
Input: two queries }\mp@subsup{Q}{1}{}\in\mathrm{ DATALOG and }\mp@subsup{Q}{2}{}\in\mathrm{ DATALOG
Question: }\mp@subsup{Q}{1}{}\equiv\mp@subsup{Q}{2}{}\mathrm{ ? or }\mp@subsup{Q}{1}{}(D)=\mp@subsup{Q}{2}{}(D)\mathrm{ for every database D}\mathrm{ ?
```


CONT(DATALOG)

Input: two queries $\mathrm{Q}_{1} \in$ DATALOG and $\mathrm{Q}_{2} \in$ DATALOG
Question: $Q_{1} \subseteq Q_{2}$? or $Q_{1}(D) \subseteq Q_{2}(D)$ for every database D ?

What About Optimization of Datalog?

SAT(DATALOG)

Input: a query $Q \in$ DATALOG
Question: is there a (finite) database D such that $Q(D)$ is non-empty?

```
EQUIV(DATALOG)
Input: two queries }\mp@subsup{\textrm{Q}}{1}{}\in\mathrm{ DATALOG and }\mp@subsup{\textrm{Q}}{2}{}\in\mathrm{ DATALOG
Question: }\mp@subsup{Q}{1}{}\equiv\mp@subsup{Q}{2}{}\mathrm{ ? or }\mp@subsup{Q}{1}{}(D)=\mp@subsup{Q}{2}{\prime}(D)&\mp@code{Cvery database D?
CONT(DATALOG)
Input: two queries }\mp@subsup{\textrm{Q}}{1}{}\in\mathrm{ DATALOG and }\mp@subsup{\textrm{Q}}{2}{}\in\mathrm{ DATALOG
Question: }\mp@subsup{Q}{1}{}\subseteq\mp@subsup{Q}{2}{}\mathrm{ ? or }\mp@subsup{Q}{1}{}(D)\subseteq\mp@subsup{Q}{2}{}(D)\mathrm{ for every database D?
```


What About Optimization of Datalog?

```
SAT(DATALOG)
Input: a query Q E DATALOG
Question: is there a (finite) database D such that Q(D) is non-empty?
```

Theorem: SAT(DATALOG) is in EXPTIME

Lemma: Given a Datalog query $Q=(P$, Answer $), Q$ is satisfiable iff $Q\left(D_{P}\right) \neq \emptyset$, where $D_{p}=\left\{R\left(b_{1}, \ldots, b_{m}\right) \mid R \in E D B(P)\right.$ and $\left.b_{i} \in\left\{\star, a_{1}, \ldots, a_{n}\right\}\right\}$, with a_{1}, \ldots, a_{n} being the constants occurring in the rules of P, and \star being a new constant not in $\left\{a_{1}, \ldots, a_{n}\right\}$

Recap

- Recursive queries are not expressible via relational algebra or calculus
- Adding recursion to CQs \rightarrow Datalog
- Fixpoint semantics of Datalog based on the immediate consequence operator
- Evaluating Datalog queries is EXPTIME-complete in combined complexity and PTIME-complete in data complexity
- We can check for satisfiability of Datalog queries, but equivalence and containment are undecidable (perfect query optimization not possible)

University of Cyprus

MAI649: PRINCIPLES OF ONTOLOGICAL DATABASES

Thank You!

Andreas Pieris

Spring 2022-2023

