
Master programmes in Artificial
Intelligence 4 Careers in Europe

University of Cyprus

Spring 2022-2023

MAI649: PRINCIPLES OF ONTOLOGICAL DATABASES

Ontological Query Answering

Andreas Pieris

Learning Outcomes

• Ontological query answering via the chase procedure - forward-chaining

• Ontological query answering via query rewriting - backward-chaining

• Linear existential rules

Ontological Query Answering (OQA)

Q(x) :- R1(v1),…,Rm(vm)

D

Σ

(D,Σ)

D

database

ontology

Q

ontological database

existential rules

∀x∀y ("(x,y) → ∃z %(x,z))

conjunctive query

Ontological Query Answering (OQA)

D

Σ

(D,Σ)

D

database

ontology

Q

ontological database

models(D,Σ) = {J | J ⊇ D and J ⊨ Σ}

Ontological Query Answering (OQA)

D

Σ

(D,Σ)

D

database

ontology

Q

ontological database

Answer(Q,D,Σ) = ⋂ Q(J)
J ∈ models(D,Σ)

(≡L means logspace-equivalent)

Theorem: OQA(L) ≡L BOQA(L) for every language L

BOQA(L)

Input: a database D, a set of existential rules Σ ∈ L, a Boolean query Q

Question: is Answer(Q,D,Σ) non-empty?

OQA(L)

Input: a database D, a set of existential rules Σ ∈ L, a CQ Q/k, a tuple of constants t ∈ adom(D)k

Question: t ∈ Answer(Q,D,Σ)?

Ontological Query Answering (OQA)

ontology language based on existential rules

Data Complexity of BOQA
input D, fixed Σ and Q

BOQA[Σ,Q](L)

Input: a database D

Question: is Answer(Q,D,Σ) non-empty?

Query Answering via Universal Models

Theorem: Answer(Q,D,Σ) is non-empty iff Q(U) is non-empty, where U a universal model of (D,Σ)

Proof: (⇒) Trivial since, for every J ∈ models(D,Σ), Q(J) is non-empty

(⇐) By exploiting the universality of U

U

J1 J2

. . .

Jn

. . .

h1 h2
hn

Q by hypothesis

by universality of U

g

∀J ∈ models(D,Σ), ∃h such that h(g(Q)) ⊆ J ⇒ ∀J ∈ models(D,Σ), Q(J) is non-empty

⇒ Answer(Q,D,Σ) is non-empty

The Chase Procedure

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪

The Chase Procedure

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1)

The Chase Procedure

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1),

hasParent(⊥1,⊥2), Person(⊥2)

The Chase Procedure

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1),

hasParent(⊥1,⊥2), Person(⊥2),

hasParent(⊥2,⊥3), Person(⊥3)

The Chase Procedure

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1),

hasParent(⊥1,⊥2), Person(⊥2),

hasParent(⊥2,⊥3), Person(⊥3), …

infinite instance

The Chase Procedure: Formal Definition

J = {R(a), P(a,b)}

∀x (R(x) → ∃y P(x,y))

h = {x ↦ a} g = {x ↦ a, y ↦ b}

O

J = {R(a), P(b,a)}

∀x (R(x) → ∃y P(x,y))

h = {x ↦ a}

P

×

• Chase step - the building block of the chase procedure

• A rule σ = ∀x∀y (&(x,y) → ∃z '(x,z)) is applicable to an instance J if:

1. There exists a homomorphism h such that h(&(x,y)) ⊆ J

2. There is no g ⊇ h|x such that g('(x,z)) ⊆ J

The Chase Procedure: Formal Definition

• Chase step - the building block of the chase procedure

• A rule σ = ∀x∀y ("(x,y) → ∃z %(x,z)) is applicable to an instance J if:

1. There exists a homomorphism h such that h("(x,y)) ⊆ J

2. There is no g ⊇ h|x such that g(%(x,z)) ⊆ J

• Let J+ = J ∪ {g(%(x,z))}, where g ⊇ h|x and g(z) are “fresh” nulls not in J

• The result of applying σ to J is J+, denoted J[σ,h]J+ - single chase step

The Chase Procedure: Formal Definition

• A finite chase of D w.r.t. Σ is a finite sequence

D[σ1,h1]J1[σ2,h2]J2[σ3,h3]J3 ⋯ Jn-1[σn,hn]Jn

and chase(D,Σ) is defined as the instance Jn

• An infinite chase of D w.r.t. Σ is a fair finite sequence

D[σ1,h1]J1[σ2,h2]J2[σ3,h3]J3 ... Jn-1[σn,hn]Jn ...

and chase(D,Σ) is defined as the instance D ∪ J1 ∪ J2 ∪ J3 ∪⋯∪ Jn ∪⋯

all applicable rules will eventually be applied

least fixpoint of a monotonic operator - chase step

Chase: A Universal Model

Theorem: chase(D,Σ) is a universal model of (D,Σ)

Proof:

• By construction, chase(D,Σ) ∈ models(D,Σ)

• It remains to show that chase(D,Σ) can be mapped into every other model of (D,Σ)

• Fix an arbitrary instance J ∈ models(D,Σ). We need to show that there exists h such that

h(chase(D,Σ)) ⊆ J

• By induction on the number of applications of the chase step, we show that for every k ≥ 0,

there exists hk such that hk(chase[k](D,Σ)) ⊆ J, and hk is compatible with hk-1

• Clearly, h0 ∪ h1 ∪⋯∪ hn ∪⋯ is a well-defined homomorphism that maps chase(D,Σ) to J

• The claim follows with h = h0 ∪ h1 ∪⋯∪ hn ∪⋯

the result of the chase after k ≥ 0 applications of the chase step

Chase: Uniqueness Property

• The result of the chase is not unique - depends on the order of rule application

• But, it is unique up to homomorphic equivalence

• Thus, it is unique for query answering purposes

D = {P(a)} σ1 = ∀x (P(x) → ∃y R(y))

Result1 = {P(a), R(⊥), R(a)}

Result2 = {P(a), R(a)}

σ1 then σ2

σ2 then σ1

σ2 = ∀x (P(x) → R(x))

Result1

h12

h21

h23

h32

Result2 Result3

Query Answering via the Chase

Theorem: Answer(Q,D,Σ) is non-empty iff Q(U) is non-empty, where U a universal model of (D,Σ)

&

Theorem: chase(D, Σ) is a universal model of (D,Σ)

⇓

Corollary: Answer(Q,D,Σ) is non-empty iff Q(chase(D,Σ)) is non-empty

• We can tame the first dimension of infinity by exploiting the chase procedure

• What about the second dimension of infinity? - the chase may be infinite

Can we tame the second dimension of infinity?

Undecidability of Ontological Query Answering

Theorem: OBQA(∃RULES) is undecidable

Proof Idea : By simulating a deterministic Turing machine with an empty tape.

Encode the computation of a DTM M with an empty tape using a database D, a set Σ of

existential rules, and a Boolean CQ Q such that Answer(Q,D,Σ) is non-empty iff M accepts

arbitrary existential rules

Gaining Decidability

By restricting the database
• Answer(Q,{Start(c)},Σ) is non-empty iff the DTM M accepts

• The problem is undecidable even for singleton databases

• No much to do in this direction

By restricting the query language

• Answer(Q :- Accept(x),D,Σ) is non-empty iff the DTM M accepts

• The problem is undecidable already for atomic queries

• No much to do in this direction

By restricting the ontology language
• Achieve a good trade-off between expressive power and complexity

• Field of intense research

• Any ideas?

Source of Non-termination

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

infinite instance
1. Existential quantification

2. Recursive definitions

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1),

hasParent(⊥1,⊥2), Person(⊥2),

hasParent(⊥2,⊥3), Person(⊥3), …

Termination of the Chase

• Drop the existential quantification

‒ We obtain the class of full existential rules

‒ Very close to Datalog

• Drop the recursive definitions

‒ We obtain the class of acyclic existential rules

‒ Also known as non-recursive existential rules

Our Simple Example

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1),

hasParent(⊥1,⊥2), Person(⊥2),

hasParent(⊥2,⊥3), Person(⊥3), …

Existential quantification & recursive definitions

are key features for modelling ontologies

Key Question

We need classes of existential rules such that

• Existential quantification and recursive definition coexist

⇒ the chase may be infinite

• BOQA is decidable, and tractable w.r.t. the data complexity

⇓

Tame the infinite chase:

Deal with infinite structures without explicitly building them

Linear Existential Rules

• A linear existential rule is an existential rule of the form

• We denote LINEAR the class of linear existential rules

• But, is this a reasonable ontology language?

∀x∀y (P(x,y) → ∃z $(x,z))

single atom

https://www.w3.org/TR/owl2-profiles/#OWL_2_QL

Chase Graph

The chase can be naturally seen as a graph - chase graph

D = {R(a,b), S(b)}

∀x∀y (R(x,y) ∧ S(y) → ∃z R(z,x))

∀x∀y (R(x,y) → S(x))
Σ =

R(a,b) S(b)

R(z1,a) S(a)

R(z2,z1) S(z1)

R(z3,z2) S(z2)

For LINEAR the chase graph is a forest

Bounded Derivation-Depth Property
D

Q

depth k that does not depend on D

Q(chase(D,Σ)) is non-empty ⇒ Q(chasek(D,Σ)) is non-empty

h

chase(D,Σ)

chase graph up to depth k

For LINEAR, k = |Q|⋅ m

with m = |sch(Σ)|⋅ (2 ⋅ maxarity)maxarity

The Blocking Algorithm for LINEAR

D

Q

h

chase(D,Σ)

k = |Q| ⋅ |sch(Σ)| ⋅ (2 ⋅ maxarity)maxarity

Theorem: BOQA[Σ,Q](LINEAR) is in PTIME for a fixed set Σ, and a Boolean CQ Q

The Blocking Algorithm for LINEAR

Theorem: BOQA[Σ,Q](LINEAR) is in PTIME for a fixed set Σ, and a Boolean CQ Q

but, we can do better

Theorem: BOQA[Σ,Q](LINEAR) is in LOGSPACE for a fixed set Σ, and a Boolean CQ Q

Scalability in OQA

D

Σ

(D,Σ)

D

database

ontology

Q

knowledge base
But in the OQA setting

we have to query a

knowledge base, not just a

relational database

Exploit standard RDBMSs - efficient technology for answering CQs

Query Rewriting

D

ΣQ

evaluation

for every database D, Answer(Q,D,Σ) is non-empty iff QΣ(D) is non-empty

compilation

Relational Calculus
Relational Algebra

SQL query
…

QΣ

Query Rewriting: Formal Definition

Consider a class of existential rules L, and a query language Q.

BOQA(L) is Q-rewritable if, for every Σ ∈ L and Boolean CQ Q,

we can construct a Boolean query QΣ∈ Q such that,

for every database D, Answer(Q,D,Σ) is non-empty iff QΣ(D) is non-empty

NOTE: The construction of QΣ is database-independent

An Example

Σ = {∀x (P(x) ® T(x)), ∀x∀y (R(x,y) ® S(x))}

Q :- S(x), U(x,y), T(y)

QΣ = {Q :- S(x), U(x,y), T(y),

Q1 :- S(x), U(x,y), P(y),

Q2 :- R(x,z), U(x,y), T(y),

Q3 :- R(x,z), U(x,y), P(y)}

An Example

Σ = {∀x∀y (R(x,y) ∧ P(y) ® P(x))}

Q :- P(c)

QΣ = {Q :- P(c),

Q1 :- R(c,y1), P(y1),

Q2 :- R(c,y1), R(y1,y2), P(y2),

Q3 :- R(c,y1), R(y1,y2), R(y2,y3), P(y3),

… }

• This cannot be written as a finite first-order query

• It can be written as Q :- R(c,x), R*(x,y), P(y), but transitive closure is not FO-expressible

Query Rewriting for LINEAR

Theorem: LINEAR is UCQ-rewritable

⇓

Theorem: BOQA[Σ,Q](LINEAR) is in LOGSPACE for a fixed set Σ, and a Boolean CQ Q

…it also tells us that for answering CQs in the presence of LINEAR ontologies,

we can exploit standard database technology

union of conjunctive queries

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• We are going to see the version of the algorithm that assumes normalized existential

rules, where only one atom appears in the head

Normalization Procedure

∀x∀y ("(x,y) → ∃z (P1(x,z) ∧ ⋯ ∧ Pn(x,z)))

∀x∀y ("(x,y) → ∃z Auxiliary(x,z))

∀x∀z (Auxiliary(x,z) → P1(x,z))

∀x∀z (Auxiliary(x,z) → P2(x,z))

…

∀x∀z (Auxiliary(x,z) → Pn(x,z))

NOTE : Linearity is preserved, and we obtain an equivalent ontology w.r.t. query answering

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• We are going to see the version of the algorithm that assumes normalized existential

rules, where only one atom appears in the head

Rewriting Step

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(u,db,v)

hasCollaborator(u,db,v)

g = {x ↦ v, y ↦ db, z ↦ u}

Thus, we can simulate a chase step by applying a backward resolution step

QΣ = {Q :- hasCollaborator(u,db,v),

Q1 :- project(v), inArea(v,db)}

Unsound Rewritings

After applying the rewriting step we obtain the following UCQ

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

hasCollaborator(c,db,v)

g = {x ↦ v, y ↦ db, z ↦ c}
(c is a constant)

Unsound Rewritings

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, QΣ(D) is non-empty

• However, Answer(Q,D,Σ) is empty since there is no way to obtain an atom of the form
hasCollaborator(c,db,_) during the chase

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

Unsound Rewritings

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

the information about the constant c in the original query is lost after the

application of the rewriting step since c is unified with an ∃-variable

Unsound Rewritings

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

hasCollaborator(v,db,v)

g = {x ↦ v, y ↦ db, z ↦ v}

After applying the rewriting step we obtain the following UCQ

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}

Unsound Rewritings

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, QΣ(D) is non-empty

• However, Answer(Q,D,Σ) is empty since there is no way to obtain an atom of the form
hasCollaborator(t,db,t) during the chase

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

the fact that v in the original query participates in a join is lost after the

application of the rewriting step since v is unified with an ∃-variable

Unsound Rewritings

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}

Applicability Condition

Consider a Boolean CQ Q, an atom α in Q, and a (normalized) rule σ.

We say that σ is applicable to α if the following conditions hold:

1. head(σ) and α unify via h

2. For every variable x in head(σ):

1. If h(x) is a constant, then x is a ∀-variable

2. If h(x) = h(y), where y is a shared variable of α, then x is a ∀-variable

3. If x is an ∃-variable of head(σ), and y is a variable in head(σ) such that x ≠ y, then h(x) ≠ h(y)

...but, although it is crucial for soundness, may destroy completeness

Incomplete Rewritings

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x)),

∀x∀y∀z (hasCollaborator(x,y,z) → collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, Q over chase(D,Σ) = D ∪ {hasCollaborator(z,db,a), collaborator(z)} is non-empty

• However, QΣ(D) is empty

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)

Incomplete Rewritings

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x)),

∀x∀y∀z (hasCollaborator(x,y,z) → collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

but, we cannot obtain the last query due to the applicablity condition

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)

Q2 :- project(u), inArea(u,v)

Incomplete Rewritings

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x)),

∀x∀y∀z (hasCollaborator(x,y,z) → collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)

Q2 :- hasCollaborator(u,v,w) - by minimization

Q3 :- project(w), inArea(w,v) - by rewriting

QΣ(D) is non-empty, where D = {project(a), inArea(a,db)}

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• We are going to see the version of the algorithm that assumes normalized existential

rules, where only one atom appears in the head

The Rewriting Algorithm

QΣ := {Q}

repeat
Qaux := QΣ

foreach disjunct q of Qaux do
//Rewriting Step

foreach atom α in q do
foreach rule σ in Σ do

if σ is applicable to α then
qrew := rewrite(q,α,σ) //we resolve α using σ

if qrew does not appear in QΣ (modulo variable renaming) then
QΣ := QΣ ∪ {qrew}

//Minimization Step

foreach pair of atoms α,β in q that unify do
qmin := minimize(q,α,β) //we apply the most general unifier of α and β on q

if qmin does not appear in QΣ (modulo variable renaming) then
QΣ := QΣ ∪ {qmin}

until Qaux = QΣ

return QΣ

Termination

Theorem: The rewriting algorithm terminates under LINEAR

Proof Idea:

• Key observation: the size of each partial rewriting is at most the size of the given CQ Q

• Thus, each partial rewriting can be transformed into an equivalent query that contains
at most (|Q| ⋅ maxarity) variables

• The number of queries that can be constructed using a finite number of predicates and
a finite number of variables is finite

• Therefore, only finitely many partial rewritings can be constructed - in general,
exponentially many

Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewritng algorithm produces rewritings of exponential size

• Can we do better? NO!!!

Σ = {∀x (Rk(x) ® Pk(x))} for k ∈ {1,...,n} Q :- P1(x), …, Pn(x)

Q :- P1(X), …, Pn(X)

P1(X) ∨ R1(X) Pn(X) ∨ Rn(X)

thus, we need to consider 2n disjuncts

Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewritng algorithm produces rewritings of exponential size

• Can we do better? NO!!!

• Although the standard rewriting algorithm is worst-case optimal, it can be

significantly improved

• Optimization techniques can be applied in order to compute efficiently small

rewritings - field of intense research

Recap

Q(x) :- R1(v1),…,Rm(vm)

D

Σ

(D,Σ)

D

database

ontology

Q

knowledge base

existential rules

∀x∀y ("(x,y) → ∃z %(x,z))

conjunctive query

in general, this is an undecidable problem, but well-behaved ontology languages exists - LINEAR

Master programmes in Artificial
Intelligence 4 Careers in Europe

University of Cyprus

Spring 2022-2023

MAI649: PRINCIPLES OF ONTOLOGICAL DATABASES

Thank You!

Andreas Pieris

