

Master programmes in Artificial Intelligence 4 Careers in Europe

Human Reasoning and the Weak Completion Semantics

Co-financed by the European Union Connecting Europe Facility This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

Foundations – Fixed Point Theory

Steffen Hölldobler Technische Universität Dresden, Germany North Caucasus Federal University, Russian Federation

- Relations and Partial Orders
- Complete Partial Orders
- Monotonic and Continuous Mappings
- Fixed Point Theorems
- Ordinal Numbers
- Finite Complete Partial Orders

Relations and Partial Orders

- Let S be a set
- A (binary) relation R on S is a subset of $S \times S$
 - ▷ **x**R**y** denotes (**x**, **y**) \in **R**
- ▶ A relation *R* on *S* is a partial order if the following conditions hold
 - $\triangleright \text{ Reflexivity for all } x \in \mathcal{S} \text{ we find } xRx$
 - ▷ Antisymmetry for all $x, y \in S$ we find x = y if xRy and yRx
 - ▷ Transitivity for all $x, y, z \in S$ we find xRz if xRy and yRz
 - S is said to be a partially ordered set wrt the partial order R

Examples

- \triangleright \mathbb{N} is a partially ordered set wrt \leq
- ▷ $2^{\{e,\ell,ab_e\}}$ is a partially ordered set wrt \subseteq
- In the sequel, let < denote a partial order</p>

Upper and Lower Bounds

- ▶ Let S be a partially ordered set wrt \leq , $a, b \in S$, and $X \subseteq S$
- ▶ *a* is an upper bound of X if for every $x \in X$ we have $x \leq a$
- ▶ a is the least upper bound of X if
 - \triangleright a is an upper bound of \mathcal{X} and
 - ▷ for every upper bound a' of \mathcal{X} we have $a \leq a'$
- Iub X denotes the least upper bound of X if it exists
- **b** is a lower bound of \mathcal{X} if for every $x \in \mathcal{X}$ we have $b \leq x$
- b is the greatest lower bound of X if
 - \triangleright *b* is a lower bound of \mathcal{X} and
 - ▷ for every lower bound b' of \mathcal{X} we have $b' \leq b$
- glb X denotes the greatest lower bound of X if it exists

Directed Sets

- \blacktriangleright Let ${\cal S}$ be a partially ordered set wrt \leq and ${\cal X}$ a non-empty subset of ${\cal S}$
- ▶ X is directed

if for every $x, y \in \mathcal{X}$ there exists some $z \in \mathcal{X}$ such that $x \leq z$ and $y \leq z$

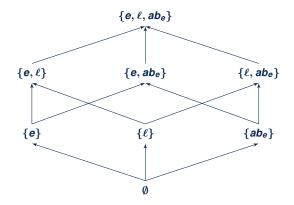
- **Example** Let $\mathcal{A} = \{e, \ell, ab_e\}$ and consider $2^{\mathcal{A}}$ wrt \subseteq
 - $\triangleright \text{ Let } \mathcal{X}_1 = \{\emptyset, \{e\}, \{\ell\}\}$
 - ▷ Let $X_2 = \{\emptyset, \{e\}, \{e\}, \{e, \ell\}\}$
 - > Do least upper and greatest lower bounds exist for these sets?
 - ▷ Are these sets directed?

Complete Partial Orders

- ▶ A partially ordered set S wrt ≤ is a complete partial order if
 - S has a least element and
 - $\triangleright\,$ for every directed subset ${\mathcal X}$ of ${\mathcal S}$ there exists *lub* ${\mathcal X}\in {\mathcal S}$
- ▶ Is $2^{\{e,\ell,ab_e\}}$ wrt \subseteq a complete partial order?

Complete Partial Orders – Hasse Diagram

► Consider 2^{e,ℓ,ab_e} wrt ⊆



Monotonic and Continuous Mappings

- Let S be a partially ordered set wrt ≤ and f : S → S a mapping
- ▶ *f* is monotonic if for every $x, y \in S$ such that $x \leq y$ we have $f x \leq f y$
- ▶ f is continuous if for every directed subset X of S we find

f lub
$$\mathcal{X} =$$
 lub $\{f \ z \mid z \in \mathcal{X}\}$

- ▶ Proposition 1 Let S be a partially ordered set Every continuous mapping $f : S \to S$ is monotonic
- ▶ Proof Consider continuous $f : S \to S$ and some $x, y \in S$ such that $x \leq y$
 - $\triangleright \mathcal{X} = \{x, y\}$ is a directed subset of S and lub $\mathcal{X} = y$
 - By the continuity of f we learn

$$f y = f lub \{x, y\} = f lub \mathcal{X} = lub \{f z \mid z \in \mathcal{X}\} = lub \{f x, f y\}$$

▷ Consequently $f x \leq f y$ which shows that f is monotonic

Steffen Hölldobler

Fixed Points and the Knaster-Tarski Fixed Point Theorem

- $\blacktriangleright x \in S$ is a fixed point of f iff f x = x
- \blacktriangleright $x \in S$ is the least fixed point of f iff
 - x is a fixed point of f and
 - $\triangleright x < y$ for all fixed points $y \in S$ of f
- Theorem 2 (Knaster-Tarski)

Let S be a complete partial order and f a monotonic mapping on SThen f has a least fixed point

How can the least fixed point be computed?

An Informal Introduction to Ordinal Numbers

Ordinal numbers are a generalization of the natural numbers

0, 1, 2, 3, ...

are non-limit ordinal numbers

 ω

is the first limit ordinal number

$$\omega + 1, \omega + 2, \omega + 3, \ldots$$

are the next non-limit ordinal numbers

 $\omega + \omega$

is the second limit ordinal number, and so on

Iterating Functions on Complete Partial Orders

- ▶ Let S be a complete partial order with least element ◇ and f a mapping on S
- We define

 $\begin{array}{lll} f \uparrow 0 &= & \diamond, \\ f \uparrow \alpha &= & f(f \uparrow (\alpha - 1)) & \text{if } \alpha \text{ is a non-limit ordinal and } \alpha \neq 0, \\ f \uparrow \alpha &= & \textit{lub} \{f \uparrow \beta \mid \beta < \alpha\} & \text{if } \alpha \text{ is a limit ordinal} \end{array}$

- ▶ Proposition 3 Let S be a complete partial order, f a monotonic mapping on S and x the least fixed point of f. Then, for some ordinal γ we find $x = f \uparrow \gamma$
- Can you construct an example where we need to iterate beyond the first limit ordinal to obtain the least fixed point?

Kleene Fixed Point Theorem

Theorem 4 (Kleene)

Let S be a complete partial order and f a continuous mapping on S Then, $f \uparrow \omega$ is the least fixed point of f

> Can you construct an example where the least fixed point is reached in

- \triangleright less than ω steps?
- \triangleright precisely ω steps?

Finite Complete Partial Orders

▶ Lemma 5 Let X be a directed set and Y be a finite subset of X Then, X contains an upper bound of Y

- ► Proof ~→ Exercise
- Corollary 6 Any finite directed set contains its own least upper bound
- Proposition 7 Let S be a finite complete partial order and f a monotonic mapping on S Then f is continuous
- ▶ Proof ~→ Exercise

► Corollary 8

Let S be a finite complete partial order and f be a monotonic mapping on S. Then $f \uparrow \omega$ is the least fixed point of f

Master programmes in Artificial Intelligence 4 Careers in Europe

Co-financed by the European Union Connecting Europe Facility This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

