

Master programmes in Artificial Intelligence 4 Careers in Europe

Human Reasoning and the Weak Completion Semantics

Co-financed by the European Union Connecting Europe Facility This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

The Weak Completion Semantics – Theory

Steffen Hölldobler Technische Universität Dresden, Germany North Caucasus Federal University, Russian Federation

- Programs
- Weakly Completed Programs
- ► The Meaning of Programs
- Computing Least Models
- Semantic Operators as Contraction Mappings
- Abduction

Programs

- ► A (normal logic) program P is a finite or countably infinite set of clauses of the form
 - $\textit{A} \leftarrow \textit{Body}$
 - A is an atom (but not an equation) called head
 - \triangleright *Body* is either a non-empty conjunction of literals, or \top , or \perp
- Clauses are assumed to be universally closed
- $A \leftarrow \top$ is called (positive) fact
- A ← ⊥ is called (negative) assumption
- All other clauses are called rules
- ▶ *P* is propositional iff all atoms occurring in *P* are propositional
- $\triangleright \mathcal{P}$ is a datalog program iff the terms occurring in \mathcal{P} are variables and constants
- ▶ ${\cal P}$ is a definite program iff it does not contain an occurrence of \perp or \neg

Programs – Example

▶ Let *P* be

$$\begin{array}{rcl} \ell & \leftarrow & e \wedge \neg abe \\ \ell & \leftarrow & t \wedge \neg ab_t \\ e & \leftarrow & \top \\ ab_e & \leftarrow & \bot \\ ab_t & \leftarrow & \bot \end{array}$$

Alphabet

- Let \mathcal{P} be a program and \mathcal{E} an equational theory
 - $\triangleright\,$ The alphabet consists precisely of the symbols occurring in ${\cal P}$ and ${\cal E}$
 - If P or E is a first-order program then the alphabet must contain at least one constant symbol

Ground Instances

- A ground instance of a clause is obtained by replacing each variable occurring in the clause by a ground term
 - The replacement must be consistent in that multiple occurrences of the same variable are replaced by the same ground term
- ► The ground instance of a program \mathcal{P} is the set of all ground instances of clauses occurring in \mathcal{P}
 - \triangleright *g* \mathcal{P} denotes the ground instance of \mathcal{P}
 - ▷ If \mathcal{P} is a propositional program then $g\mathcal{P} = \mathcal{P}$

Ground Programs – Example

Let P be			
	qa	\leftarrow	Т
	q s X	\leftarrow	q X
▶ Then gP consists of			
	q a	\leftarrow	Т
	qsa	\leftarrow	qa
	qssa	\leftarrow	qsa
	:		
	:	÷.,	

▶ Is $q s a \leftarrow q s a \in g \mathcal{P}$?

Defined Ground Atoms

- **•** Let \mathcal{P} be a ground program, \mathcal{E} an equational theory, and A a ground atom
 - ▷ If \mathcal{E} is empty, then A is defined in \mathcal{P} iff \mathcal{P} contains a clause with head A
 - ▷ If \mathcal{E} is not empty, then A is defined in \mathcal{P} iff \mathcal{P} contains a clause with head A' and [A] = [A']
- A is undefined in \mathcal{P} iff A is not defined in \mathcal{P}
- ▶ def 𝒫 denotes the set of defined atoms in 𝒫

Defined Ground Atoms – Examples

Consider the following programs

$$\begin{array}{cccc} \mathcal{E} = \emptyset & \mathcal{E} = \{a \approx b\} \\ \\ \ell & \leftarrow & e \wedge \neg ab_e & pa & \leftarrow & \top \\ \ell & \leftarrow & t \wedge \neg ab_t & qc & \leftarrow & \bot \\ e & \leftarrow & \top & \\ ab_e & \leftarrow & \bot & \\ ab_t & \leftarrow & \bot & \end{array}$$

- \triangleright How does *def* \mathcal{P} look like?
- > Are there any undefined atoms?

Definitions

- \blacktriangleright Let ${\cal P}$ be a ground program, ${\cal E}$ an equational theory, and ${\cal S}$ a consistent set of literals
 - ▷ If \mathcal{E} is empty, then $defs(\mathcal{P}, \mathcal{S}) = \{A \leftarrow Body \in \mathcal{P} \mid A \in \mathcal{S} \text{ or } \neg A \in \mathcal{S}\}$
 - ▷ If \mathcal{E} is not empty, then $defs(\mathcal{P}, \mathcal{S}) = \{A' \leftarrow Body \in \mathcal{P} \mid A \in \mathcal{S} \text{ or } \neg A \in \mathcal{S} \text{ and } [A'] = [A]\}$
- ▶ Let *P* be

$$\ell \leftarrow e \land \neg ab_e$$

 $\ell \leftarrow o \land \neg ab_o$
 $e \leftarrow \top$
 $ab_e \leftarrow \bot$
 $ab_o \leftarrow \bot$
 $ab_e \leftarrow \neg o$
 $ab_o \leftarrow \neg e$

 \triangleright How does $defs(\mathcal{P}, \{e, \neg ab_e\})$ look like?

Assumptions

- **Let** \mathcal{P} be a ground program, \mathcal{E} an equational theory, and A a ground atom
 - ▷ If \mathcal{E} is empty then $\neg A$ is assumed in \mathcal{P} iff
 - \blacktriangleright \mathcal{P} contains an assumption with head A and
 - \blacktriangleright \mathcal{P} does neither contain a fact $\mathbf{A} \leftarrow \top$ nor a rule $\mathbf{A} \leftarrow \mathbf{Body}$
 - ▷ If \mathcal{E} is not empty then $\neg A$ is assumed in \mathcal{P} iff
 - ▶ \mathcal{P} contains an assumption of the form $A' \leftarrow \bot$ with [A] = [A'] and
 - ▶ \mathcal{P} does neither contain a fact $B \leftarrow \top$ nor a rule $B \leftarrow Body$ with [A] = [B]
- Why has the second condition been added?

Assumptions – Examples

▶ What is assumed in the following programs if $\mathcal{E} = \emptyset$?

$$\begin{array}{rcl} \ell & \leftarrow & e \wedge \neg ab_e \\ \ell & \leftarrow & t \wedge \neg ab_t \\ e & \leftarrow & \top \\ ab_e & \leftarrow & \bot \\ ab_t & \leftarrow & \bot \end{array}$$

 \triangleright

 \triangleright

$$\begin{array}{cccc} \ell & \leftarrow & e \land \neg ab_e \\ \ell & \leftarrow & o \land \neg ab_o \\ e & \leftarrow & \top \\ ab_e & \leftarrow & \bot \\ ab_o & \leftarrow & \bot \\ ab_e & \leftarrow & \neg o \\ ab_o & \leftarrow & \neg e \end{array}$$

Weakly Completed Programs

- Let P be a ground program and E an equational theory
- Consider the following transformation
 - 1 For all $A \in def \mathcal{P}$ do
 - ▶ If \mathcal{E} is empty, replace all clauses of the form $A \leftarrow Body_1, A \leftarrow Body_2, \ldots$ occurring in \mathcal{P} by $A \leftarrow Body_1 \lor Body_2 \ldots$
 - ▶ If \mathcal{E} is not empty, replace all clauses of the form $A_1 \leftarrow Body_1, A_2 \leftarrow Body_2, \dots$ occurring in \mathcal{P} with $[A_1] = [A_2] = \dots = [A]$ by $A \leftarrow Body_1 \lor Body_2 \dots$
 - 2 Add A $\leftarrow \perp$ for all undefined ground atoms A occurring in $\mathcal P$
 - 3 Replace all occurrences of \leftarrow by \leftrightarrow
 - **•** The resulting set is called completion of \mathcal{P} or $c \mathcal{P}$
 - If step 2 is omitted then the resulting set is called weak completion of *P* or wc *P*

Program Completion – Example

▶ Let *P* be

 $\begin{array}{rcl} \ell & \leftarrow & e \wedge \neg ab_e \\ \ell & \leftarrow & t \wedge \neg ab_t \\ e & \leftarrow & \top \\ ab_e & \leftarrow & \bot \\ ab_t & \leftarrow & \bot \end{array}$

The weak completion of P consists of

$$\begin{array}{ccc} \ell & \leftrightarrow & (e \wedge \neg ab_e) \lor (t \wedge \neg ab_t) \\ e & \leftrightarrow & \top \\ ab_e & \leftrightarrow & \bot \\ ab_t & \leftrightarrow & \bot \end{array}$$

▶ The completion of *P* is obtained by adding

 $t \leftrightarrow \perp$

Program Completion – Another Example

▶ Let *P* be

 $pa \leftarrow \top$ $qb \leftarrow rb$

- ▶ How does $c \mathcal{P}$ look like?
- ► How does wc P look like?

Program Completion – Yet Another Example

▶ Let *P* be

$$\begin{array}{rcl} \ell &\leftarrow e \wedge \neg ab_e \\ \ell &\leftarrow o \wedge \neg ab_o \\ e &\leftarrow \top \\ ab_e &\leftarrow \bot \\ ab_o &\leftarrow \bot \\ ab_e &\leftarrow \neg o \\ ab_o &\leftarrow \neg e \end{array}$$

The weak completion of P consists of

$$\begin{array}{rccc} \ell & \leftrightarrow & (e \wedge \neg ab_e) \vee (o \wedge \neg ab_o) \\ e & \leftrightarrow & \top \\ ab_e & \leftrightarrow & \bot \vee \neg o \\ ab_o & \leftrightarrow & \bot \vee \neg e \end{array}$$

• Under Łukasiewicz logic we find $F \lor \bot \equiv F$

Steffen Hölldobler The Weak Completion Semantics – Theory

Convention

- **•** Let \mathcal{P} be a ground program and \mathcal{E} an equational theory
- In the future
 - If E is empty, we will delete an assumption A ← ⊥ if the program contains a fact A ← ⊤ or a rule A ← Body
 - ▶ If \mathcal{E} is not empty, then $A \leftarrow \bot$ will be deleted if the ground program contains $B \leftarrow \top$ or $B \leftarrow Body$ with [A] = [B]

Sets of Literals versus Sets of Facts and Assumptions

- Let S be a consistent set of ground literals
- $\blacktriangleright S^{\uparrow} = \{ A \leftarrow \top \mid A \in S \} \cup \{ A \leftarrow \bot \mid \neg A \in S \}$
- \blacktriangleright Let ${\cal P}$ be a ground program containing only facts and assumptions

Remember our convention!

$$\blacktriangleright \mathcal{P}^{\downarrow} = \{ \mathbf{A} \mid \mathbf{A} \leftarrow \top \in \mathcal{P} \} \cup \{ \neg \mathbf{A} \mid \mathbf{A} \leftarrow \bot \in \mathcal{P} \}$$

- ▶ Example Let $S = \{e, \neg ab_e\}$ and $P = \{e \leftarrow \top, ab_e \leftarrow \bot\}$
 - $\triangleright \ \mathcal{S}^{\uparrow} = \mathcal{P}$
 - $\triangleright \ \mathcal{P}^{\downarrow} = \mathcal{S}$
- ▶ Is \mathcal{P}^{\downarrow} consistent?

The Depends On Relation

- ▶ Let *P* be a ground program
- Atom A directly depends on atom B if
 - $\triangleright \ \mathcal{P}$ contains a rule of the form $\textbf{A} \leftarrow \textbf{Body}$ and
 - ▶ *B* occurs (positively or negatively) in *Body*
- The depends on relation is the transitive closure of the directly depends on relation
- **Example** Let $\mathcal{P} = \{q a \leftarrow \top, q s a \leftarrow q a, q s s a \leftarrow q s a, \ldots\}$
 - q s a directly depends on q a
 - q s s a directly depends on q s a
 - ▷ q s a depends on q a
 - ▷ q s s a depends on q s a and q a

The Function deps

▶ Let *P* be a ground program and *S* a consistent set of ground literals

 $\frac{deps(\mathcal{P}, \mathcal{S})}{\neg A \in \mathcal{S}} = \{B \leftarrow Body \in \mathcal{P} \mid Body \in \{\top, \bot\} \text{ and there exists } A \in \mathcal{S} \text{ or } \neg A \in \mathcal{S} \text{ such that } A \text{ depends on } B\}$

- **Example** Let $\mathcal{P} = \{q a \leftarrow \top, q s a \leftarrow q a, q s s a \leftarrow q s a, \ldots\}$
 - $\triangleright deps(\mathcal{P}, \{q s a a, \neg q s a\}) = \{q a \leftarrow \top\}$

The Meaning of Programs

- Let \mathcal{P} be a program and \mathcal{E} an equational theory
 - ▷ In many scenarios $\mathcal{E} = \emptyset$
 - ▷ When modeling ethical decision problems $\mathcal{E} = AC1$
- ▶ Recall equations, equational theories, interpretations, and models
- ▶ What is the meaning of *P*?

Łukasiewicz Three-Valued Logic

Kleene Three-Valued Logic

Steffen Hölldobler The Weak Completion Semantics – Theory

Fitting Three-Valued Logic

Three-Valued Interpretations

- A (three-valued) interpretation assigns to each formula a value from {⊤, ⊥, U}
- ▶ It is represented by $\langle I^{\top}, I^{\perp} \rangle$, where
 - \triangleright $I^{ op}$ contains all ground atoms which are mapped to op
 - \triangleright *I*^{\perp} contains all ground atoms which are mapped to \perp

$$I^{\top} \cap I^{\perp} = \emptyset$$

- ▷ All ground atoms which occur neither in I^{\top} nor I^{\perp} are mapped to U
- ▶ In the sequel, I, J denote interpretations $\langle I^{\top}, I^{\perp} \rangle, \langle J^{\top}, J^{\perp} \rangle$, respectively
- ▶ The intersection $I \cap J$ is defined as $\langle I^{\top} \cap J^{\top}, I^{\perp} \cap J^{\perp} \rangle$

Three-Valued Interpretations – Examples

Consider

		${\cal P}$			wc ${\cal P}$			c P
l	\leftarrow	e ∧ ¬ab _e	l	\leftrightarrow	(<i>e</i> ∧ ¬ <i>ab_e</i>)	l	\leftrightarrow	(<i>e</i> ∧ ¬ <i>ab_e</i>)
l	\leftarrow	$t \wedge \neg ab_t$			\lor ($t \land \neg ab_t$)			\vee ($t \land \neg ab_t$)
е	\leftarrow	Т	е	\leftrightarrow	Т	е	\leftrightarrow	Т
ab _e	\leftarrow	\perp	ab _e	\leftrightarrow	\perp	ab _e	\leftrightarrow	\perp
ab _t	\leftarrow	\perp	ab _t	\leftrightarrow	\perp	ab _t	\leftrightarrow	\perp
						t	\leftrightarrow	\perp

Then

1	IP	I wc \mathcal{P}	IcP
$\langle \{e, ab_e\}, \emptyset \rangle$	Т	\perp	\perp
$\langle \{ e, \ell \}, \{ ab_e, ab_t \} angle$	Т	Т	U
$\langle \{e, \ell, t\}, \{ab_e, ab_t\} \rangle$	Т	Т	\perp
$\langle \{ e, \ell \}, \{ ab_e, ab_t, t \} angle$	Т	Т	Т

Steffen Hölldobler The Weak Completion Semantics – Theory

Models

- An interpretation *I* is a model for a program $\mathcal{P}(I \models \mathcal{P})$ iff $I \mathcal{P} = \top$
- This definition depends on the underlying logic!
 - \triangleright We will indicate the underlying logic by adding a subscript to \models
 - Ł denotes Łukasiewicz logic
 - K denotes Kleene logic
 - F denotes Fitting logic
- Which of the following interpretations are models for

$$\mathcal{P} = \{ \pmb{a} \leftarrow \pmb{b} \}$$

- $\triangleright \langle \emptyset, \emptyset \rangle \stackrel{?}{\models}_{\mathsf{L}} \mathcal{P} \quad \langle \{a, b\}, \emptyset \rangle \stackrel{?}{\models}_{\mathsf{L}} \mathcal{P} \quad \langle \emptyset, \{a, b\} \rangle \stackrel{?}{\models}_{\mathsf{L}} \mathcal{P}$ $\triangleright \langle \emptyset, \emptyset \rangle \stackrel{?}{\models}_{\mathsf{K}} \mathcal{P} \quad \langle \{a, b\}, \emptyset \rangle \stackrel{?}{\models}_{\mathsf{K}} \mathcal{P} \quad \langle \emptyset, \{a, b\} \rangle \stackrel{?}{\models}_{\mathsf{K}} \mathcal{P}$

In the sequel, we use Łukasiewicz logic if not stated otherwise

Model Intersection Property

We would like to show that

$\cap \{I \mid I \models \mathcal{P}\} \models \mathcal{P}$

- It holds in classical two-valued logic for definite programs
- But it does not hold in classical two-valued logic for normal programs
- Under Łukasiewicz logic
 - > The intersection of two models is not necessarily a model
 - Let P be the definite program

 $\begin{array}{rcccc} p & \leftarrow & q_1 \wedge r_1 \\ p & \leftarrow & q_2 \wedge r_2 \end{array}$

- $\triangleright \langle \emptyset, \{p, q_1, r_2\} \rangle \models \mathcal{P}$
- $\triangleright \langle \emptyset, \{ p, q_2, r_1 \} \rangle \models \mathcal{P}$
- ▷ But $\langle \emptyset, \{p\} \rangle \not\models \mathcal{P}$

The Meaning of Programs

- ▶ Proposition 10 If $I = \langle I^{\top}, I^{\perp} \rangle \models \mathcal{P}$ then $I' = \langle I^{\top}, \emptyset \rangle \models \mathcal{P}$
- ▶ Proof Suppose $I \models \mathcal{P}$, i.e., for all $A \leftarrow Body \in g\mathcal{P}$ we find $I \models A \leftarrow Body$
 - \triangleright We consider the truth ordering $\perp <_t \cup <_t \top$
 - ▷ We consider all cases for I A
 - ▷ We will show $I' \models A \leftarrow Body$ by $I' A \ge_t I' Body$
 - We distinguish three cases

1
$$IA = \top$$
 In this case $A \in I^{\top}$ and hence $I' \models A \leftarrow Body$
2 $IA = \bot$
3 $IA = U$

Proof of Proposition 10 Case 2

- 2 $IA = \bot$ In this case $A \in I^{\bot}$ and I'A = U
 - ▷ Because $I \models A \leftarrow Body$ we conclude $I Body = \bot$
 - ▷ Hence we find a literal $L \in Body$ such that $IL = \bot$

 \blacktriangleright L = B In this case I B = \perp and hence I' B = I' L = U

▶ $L = \neg B$ In this case $IB = \top$ and hence $I'B = \top$ and $I'L = \bot$

- ▷ Consequently *I'* Body \in {U, \perp }
- ▷ Because I' A = U we conclude $I' \models A \leftarrow Body$

Proof of Proposition 10 Case 3

- 3 IA = U In this case I'A = U
 - ▷ *I* Body = \bot As in the previous case we find *I'* Body $\in \{\bot, U\}$
 - **b** Consequently $I' \models A \leftarrow Body$
 - \triangleright *I* Body = U In this case we find a literal $L \in$ Body with IL = U
 - **b** Then I'L = U
 - Consequently I' Body = U
 - \blacktriangleright Hence $I' \models A \leftarrow Body$

Proposition 10 – Examples

▶ Let
$$\mathcal{P} = \{\ell \leftarrow e \land \neg ab_e, \ e \leftarrow \top, \ ab_e \leftarrow \bot\}$$

▷ $\langle \{e, \ell\}, \{ab_e\} \rangle \models \mathcal{P}$
▷ $\langle \{e, \ell\}, \emptyset \rangle \models \mathcal{P}$

▶ Let
$$\mathcal{E} = \{a \approx b\}$$
 and $\mathcal{P} = \{q X \leftarrow \neg p X, p a \leftarrow \top\}$
▷ $\langle \{[p a]\}, \{[q b]\} \rangle \models \mathcal{P}$

$$\triangleright \langle \{[p \, a]\}, \emptyset \rangle \models \mathcal{P}$$

▶ Does Proposition 10 hold under Kleene or Fitting logic?

Intersection of Two Models with Empty *L*-Part

▶ Proposition 11 Let $l_1 = \langle I_1^{\top}, \emptyset \rangle$ and $l_2 = \langle I_2^{\top}, \emptyset \rangle$ be two models of \mathcal{P} Then $I = \langle I_1^{\top} \cap I_2^{\top}, \emptyset \rangle$ is also a model of \mathcal{P}

Proof Suppose
$$I \not\models \mathcal{P}$$

- ▷ Then we find $A \leftarrow Body \in g\mathcal{P}$ such that $I \not\models A \leftarrow Body$
- We distinguish three cases

1 $IA = \bot$ and $IBody = \top$ Impossible because $I^{\bot} = \emptyset$ 2 $IA = \bot$ and IBody = U Impossible because $I^{\bot} = \emptyset$ 3 IA = U and $IBody = \top$ Because IA = U we find $j \in \{1, 2\}$ with $I_j A = U$ Because $I_j \models A \leftarrow Body$ we find $I_j Body \in \{U, \bot\}$ (*) Because $IBody = \top$ and $I^{\bot} = \emptyset$ we find for all $L \in Body$ that L is an atom and $L \in I^{\top}$ Hence for all $L \in Body$ we find $L \in I_j^{\top}$, $j \in \{1, 2\}$ Consequently $I_j Body = \top$, $j \in \{1, 2\}$ contradicting (*)

Model Intersection

- ► Theorem 12 The model intersection property holds for \mathcal{P} i.e., $\cap \{I \mid I \models \mathcal{P}\} \models \mathcal{P}$
- Proof Follows immediately from Propositions 10 and 11
- **Example** Consider $\mathcal{P} = \{p \leftarrow q\}$

▷ The least model of \mathcal{P} under Łukasiewicz logic is $\langle \emptyset, \emptyset \rangle$

- Theorem 12 does not hold under Fitting logic (|=F)
 - $\triangleright \ \langle \{p,q\}, \emptyset \rangle \models_{\mathsf{F}} p \leftarrow q$
 - $\triangleright \ \langle \emptyset, \{p,q\} \rangle \models_{\mathsf{F}} p \leftarrow q$
 - $\triangleright \text{ However } \langle \emptyset, \emptyset \rangle \not\models_{\mathsf{F}} p \leftarrow q$
- Theorem 12 does not hold under Kleene logic (⊨_K)
- What are the least models for the first three programs in the suppression task?

The Meaning of Weakly Completed Programs

- **Theorem 13** The model intersection property holds for $wc \mathcal{P}$ as well
- Proof later in the lecture
- M_{wcP} denotes the least model of wcP
- ▶ Is $\mathcal{M}_{wc\mathcal{P}}$ the least model of \mathcal{P} ?
- ▶ Corollary 14 If $I \models wc \mathcal{P}$ then $I \models \mathcal{P}$
- ▶ Proof $F \leftrightarrow G \equiv (F \rightarrow G) \land (G \rightarrow F)$ under Łukasiewicz logic
- Proposition 14 does not hold under Fitting logic
 - $\triangleright \ \langle \emptyset, \emptyset \rangle \models_{\mathsf{F}} \mathit{wc} \{ p \leftarrow q \} = \{ p \leftrightarrow q \}$
 - ▷ However $\langle \emptyset, \emptyset \rangle \not\models_{\mathsf{F}} \{ p \leftarrow q \}$

The Suppression Task – Experiments 1-3

Ex .	\mathcal{P}		wc P		wc ${\cal P}$	$\mathcal{M}_{wc\mathcal{P}}$	
1	е	\leftarrow	Т	е	\leftrightarrow	Т	$\langle \{ e, \ell \}, \{ ab_e \} angle$
	l	\leftarrow	$e \wedge \neg ab_e$	l	\leftrightarrow	$e \wedge \neg ab_e$	
	ab _e	\leftarrow	\perp	ab _e	\leftrightarrow	\perp	
2	е	\leftarrow	Т	е	\leftrightarrow	Т	$\langle \{e, \ell\}, \{ab_e, ab_t\} \rangle$
	l	\leftarrow	$e \wedge \neg ab_e$	l	\leftrightarrow	$(e \land \neg ab_e) \lor (t \land \neg ab_t)$	
	l	\leftarrow	$t \wedge \neg ab_t$	abe	\leftrightarrow	\perp	
	abe	\leftarrow	\perp	abt	\leftrightarrow	\perp	
	ab _t	\leftarrow	\perp				
3	е	\leftarrow	Т	е	\leftrightarrow	Т	$\langle \{e\}, \{ab_o\} \rangle$
	l	\leftarrow	$oldsymbol{e} \wedge eg a oldsymbol{b}_{oldsymbol{e}}$	l	\leftrightarrow	$(e \land \neg ab_e) \lor (o \land \neg ab_o)$	
	l	\leftarrow	<i>o</i> ∧ ¬ <i>ab</i> ₀	abe	\leftrightarrow	$\perp \lor \neg o$	
	abe	\leftarrow	\perp	abo	\leftrightarrow	$\perp \lor \neg e$	
	ab _o	\leftarrow	\perp				
	abe	\leftarrow	¬ <i>o</i>				
	abo	\leftarrow	¬ <i>e</i>				

The Suppression Task – Experiments 4-6

Ex .	\mathcal{P}			wc \mathcal{P}		wc P	$\mathcal{M}_{\mathit{wcP}}$
4	е	\leftarrow	\perp	е	\leftrightarrow	\bot	$\langle \emptyset, \{ e, \ell, ab_e \} angle$
	l	\leftarrow	$oldsymbol{e} \wedge eg a oldsymbol{b}_{oldsymbol{e}}$	l	\leftrightarrow	$e \wedge \neg ab_e$	
	ab _e	\leftarrow	\perp	ab _e	\leftrightarrow	\perp	
5	е	\leftarrow	\perp	е	\leftrightarrow	\perp	$\langle \emptyset, \{e, ab_e, ab_t\} \rangle$
	l	\leftarrow	e ∧ ¬ab _e	l	\leftrightarrow	$(e \land \neg ab_e) \lor (t \land \neg ab_t)$	
	l	\leftarrow	$t \wedge \neg ab_t$	abe	\leftrightarrow	\perp	
	abe	\leftarrow	\perp	abt	\leftrightarrow	\perp	
	abt	\leftarrow	1				
6	е	\leftarrow	\perp	е	\leftrightarrow	\perp	$\langle \{ab_o\}, \{e, \ell\} \rangle$
	l	\leftarrow	$oldsymbol{e} \wedge eg a oldsymbol{b}_{oldsymbol{e}}$	l	\leftrightarrow	$(e \land \neg ab_e) \lor (o \land \neg ab_o)$	
	l	\leftarrow	<i>o</i> ∧ ¬ <i>ab</i> ₀	abe	\leftrightarrow	$\perp \lor \neg o$	
	abe	\leftarrow	\perp	abo	\leftrightarrow	$\perp \lor \neg e$	
	ab _o	\leftarrow	\perp				
	abe	\leftarrow	¬ <i>o</i>				
	abo	\leftarrow	¬ <i>e</i>				

Monotonicity

- Let P and P' be sets of formulas and G a formula A logic is monotonic if the following holds: If P ⊨ G then P ∪ P' ⊨ G
- Classical logic is monotonic
- A logic based on the weak completion semantics is non-monotonic
 - Consider

$$\mathcal{P} = \{ \mathbf{c} \leftarrow \bot \}$$

$$\mathcal{P}' = \{ \mathbf{c} \leftarrow \top \}$$

> Then

$$wc \mathcal{P} = \{c \leftrightarrow \bot\} \models \neg c$$

 $wc (\mathcal{P} \sqcup \mathcal{P}') = \{c \leftrightarrow \bot \lor \top\} \models c$

Computing Least Models

How can we compute the least models of weakly completed programs?

In classical two-valued logic we obtain

$$T_{\mathcal{P}} I = \{A \mid \text{there exists } A \leftarrow Body \in g \mathcal{P} \text{ with } I Body = \top\}$$

where \mathcal{P} is a definite logic program and I an interpretation

▶ In three-valued logic programming we obtain $\Psi_{\mathcal{P}} I = \langle J^{\top}, J^{\perp} \rangle$ where

$$J^{\top} = \{A \mid \text{there exists } A \leftarrow Body \in g \mathcal{P} \text{ with } I \text{ Body} = \top \}$$

 $J^{\perp} = \{A \mid \text{for all } A \leftarrow Body \in g \mathcal{P} \text{ we find } I \text{ Body} = \bot \}$

- ▷ $\Psi_{\mathcal{P}}$ is monotone on (\mathcal{I}, \subseteq)
- ▷ The least model of c P under Fitting logic is the least fixed point of Ψ_P
- Inadequate for human reasoning ~~ Why?

The Semantic Operator for Weakly Completed Programs

Consider the following immediate consequence operator

 $\Phi'_{\mathcal{P}} I = \langle J^{\top}, J^{\perp} \rangle$ where

$$\begin{array}{rcl} J^{\top} &=& \{A \mid \text{there exists } A \leftarrow Body \in g \, \mathcal{P} \text{ with } I \, Body = \top \} \\ J^{\perp} &=& \{A \mid \text{there exists } A \leftarrow Body \in g \, \mathcal{P} \text{ and} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array}$$

• $\Phi'_{\mathcal{P}}$ "without the red condition" is $\Psi_{\mathcal{P}}$

The Semantic Operator for Weakly Completed Programs with Equality

- Let \mathcal{P} be a program, \mathcal{E} an equational theory, and I an interpretation
- ► Consider the following immediate consequence operator $\Phi_{\mathcal{P}} I = \langle J^{\top}, J^{\perp} \rangle$ where

$$J^{\top} = \{ [A] \mid \text{there exists } A \leftarrow Body \in g \mathcal{P} \text{ with } I Body = \top \}$$

 $J^{\perp} = \{ [A] \mid \text{there exists } A \leftarrow Body \in g \mathcal{P} \text{ and} \\ \text{for all } A' \leftarrow Body \in g \mathcal{P} \text{ with } [A] = [A'] \text{ we find } I Body = \bot \}$

and [A] denotes the finest congruence class defined by \mathcal{E} and containing A

Semantic Operator – Examples

- ▶ Iteratively apply $\Phi_{\mathcal{P}}$ to the following programs starting with $\langle \emptyset, \emptyset \rangle$
 - $\triangleright \ \mathcal{P} = \{ e \leftarrow \top, \ \ell \leftarrow e \land \neg ab_e, \ ab_e \leftarrow \bot \} \text{ and } \mathcal{E} = \emptyset$
 - $\triangleright \mathcal{P} = \{q X \leftarrow \neg p X, p a \leftarrow \top\} \text{ and } \mathcal{E} = \{a \approx b\}$
- Do least fixed points of Φ_P always exist?
- How long does it take to compute least fixed points of Φ_P?
 - Recall fixed point theory

The Complete Partial Order of Interpretations – Example

- ▶ Let $\mathcal{P} = \{p X \leftarrow q X\}$ and $\mathcal{E} = \{a \approx b\}$
- Let I denote the set of all three-valued interpretations

▶
$$I = \langle I^{\top}, I^{\perp} \rangle \subseteq \langle J^{\top}, J^{\perp} \rangle = J$$
 iff $I^{\top} \subseteq J^{\top}$ and $I^{\perp} \subseteq J^{\perp}$

• (\mathcal{I}, \subseteq) is a complete partial order

The Complete Partial Order of Interpretations 1

- Let P be a program and E an equational theory
- ▶ Let *J* be a set of interpretations

 $\begin{array}{l} \triangleright \ \mathcal{J}^{\top} = \{ I^{\top} \mid \langle I^{\top}, I^{\perp} \rangle \in \mathcal{J} \} \\ \triangleright \ \mathcal{J}^{\perp} = \{ I^{\perp} \mid \langle I^{\top}, I^{\perp} \rangle \in \mathcal{J} \} \end{array}$

- Proposition 15 Let *J* be a directed set of interpretations Then the interpretation *I* = ⟨∪ *J*[⊤], ∪ *J*[⊥]⟩ is the least upper bound of *J*
- Proof Given J we have to show that
 - (i) I is an interpretation
 - (ii) *I* is an upper bound of $\mathcal{J} \rightsquigarrow \mathsf{Exercise}$
 - (iii) I is the least upper bound of $\mathcal{J} \longrightarrow \mathsf{Exercise}$

Proof of Proposition 15 (i)

- ▶ To show $I = \langle \bigcup \mathcal{J}^{\top}, \bigcup \mathcal{J}^{\perp} \rangle$ is an interpretation
 - $\triangleright\,$ By definition $\bigcup\,\mathcal{J}^{\top}$ and $\bigcup\,\mathcal{J}^{\perp}$ are unions of congruence classes
 - ▷ It remains to show $\bigcup \mathcal{J}^{\top} \cap \bigcup \mathcal{J}^{\perp} = \emptyset$
 - ▷ Suppose we find $[A] \in \bigcup \mathcal{J}^{\top} \cap \bigcup \mathcal{J}^{\perp}$
 - \triangleright Then we find $I_1, I_2 \in \mathcal{J}$ with $[A] \in I_1^{\top}$ and $[A] \in I_2^{\perp}$
 - ▷ Because \mathcal{J} is directed, it contains a common upper bound K of I_1 and I_2
 - ▶ We find $[A] \in K^{\top}$ and $[A] \in K^{\perp}$
 - ▶ Hence, K cannot be an interpretation → contradiction

The Complete Partial Order of Interpretations 2

► Corollary 16

The set of all interpretations $\mathcal I$ is a complete partial order with respect to \subseteq

Proof

- ▷ Reflexivity, antisymmetry, and transitivity holds for ⊆
- $\triangleright\,$ By Proposition 15 every directed subset of ${\cal I}$ has a least upper bound in ${\cal I}$

Monotonocity of the Semantic Operator

Proposition 17
For each program P and equational theory E the mapping Φ_P is monotonic

Proof Let I = ⟨I^T, I[⊥]⟩ ⊆ ⟨J^T, J[⊥]⟩ = J
To show Φ_P I = I' = ⟨I'^T, I'[⊥]⟩ ⊆ ⟨J'^T, J'[⊥]⟩ = J' = Φ_P J
I'^T ⊆ J'^T
[A] ∈ I'^T iff we find A ← Body ∈ g P such that I Body = T
Because I ⊆ J we claim J Body = ⊤ prove it!
Hence, [A] ∈ J'^T

 \triangleright $I'^{\perp} \subseteq J'^{\perp} \quad \rightsquigarrow \quad \text{Exercise}$

C

Non-Continuity of the Semantic Operator 1

$$qa \leftarrow \top$$

 $qsX \leftarrow qX$
 $p \leftarrow \neg qX$

► The least fixed point of Φ_P is

$$\langle \{ [q \, s^k \, a] \mid k \in \mathbb{N} \}, \{ [p] \} \rangle$$

- **•** It is reached after $\omega + 1$ iterations
- **•** By the Kleene Fixed Point Theorem 4 $\Phi_{\mathcal{P}}$ is not continuous
- The Herbrand base contains infinitely many equivalence classes

[p], [q a], [q s a], ...

where each equivalence class has one member

Non-Continuity of the Semantic Operator 2

► Let \mathcal{P} be $q1 \leftarrow \top$ $q(X \circ a) \leftarrow qX$ $p \leftarrow \neg qX$ and \mathcal{E} be $X \circ (Y \circ Z) \approx (X \circ Y) \circ Z$ $X \circ Y \approx Y \circ X$ $X \circ 1 \approx X$

The least fixed point of Φ_P is

$$\langle \{ [q(1 \circ \overbrace{a \circ \ldots \circ a}^k)] \mid k \in \mathbb{N} \}, \{ [p] \} \rangle$$

- **•** It is reached after $\omega + 1$ iterations
- By Kleene Fixed Point Theorem 4
 P
 P
 is not continuous
- The Herbrand base contains infinitely many equivalence classes

 $[p], [q 1], [q a], [q(a \circ a)], \ldots$

where with the exception of [p] each of these equivalence classes is infinite

Finite Propositional and Finite Ground Programs

Proposition 18

For each finite propositional program ${\mathcal P}$ the mapping $\Phi_{{\mathcal P}}$ is continuous

Proof

TECHNISCHE

- \triangleright Because ${\cal P}$ is finite, the set ${\cal I}$ of interpretations is finite
- ▶ By Corollary 16 (\mathcal{I}, \subseteq) is a complete partial order
- ▷ By Proposition 17 $\Phi_{\mathcal{P}}$ is monotonic on \mathcal{I}
- ▷ By Proposition 7 the mapping $\Phi_{\mathcal{P}}$ is continuous

Proposition 19

If the Herbrand base for a program ${\cal P}$ and a set of equations ${\cal E}$ is finite then the mapping $\Phi_{\cal P}$ is continuous

Proof

- Define a bijection between the set of ground atoms occurring in P and an equally large set of propositional atoms
- Replace each ground atom by a propositional atom
- Apply Proposition 18

Least Fixed Points and Models

Lemma 20 Let J be the least fixed point of $\Phi_{\mathcal{P}}$ and I a model of $wc\mathcal{P}$

▶ Then for every ground atom A we find

$$\blacktriangleright If J A = \top then I A = \top$$

 \blacktriangleright If $JA = \bot$ then $IA = \bot$

Proof Let J be the least fixed point of $\Phi_{\mathcal{P}}$ and I a model of $wc\mathcal{P}$

- ▷ We start iterating $\Phi_{\mathcal{P}}$ on $\langle \emptyset, \emptyset \rangle$
- \triangleright Claim For every ordinal α and every ground atom A we find

 \blacktriangleright If $\Phi_{\mathcal{P}} \uparrow \alpha \mathbf{A} = \top$ then $I \mathbf{A} = \top$

 $\blacktriangleright If \Phi_{\mathcal{P}} \uparrow \alpha A = \bot then I A = \bot$

- ▷ Proof of the Claim by transfinite induction → Exercise
- The lemma follows from Propositions 3 and 17

Lemma 20 – Example

$$\begin{array}{rcl} \Phi_{\mathcal{P}} \uparrow \mathbf{0} & \langle \emptyset, \emptyset \rangle \\ \Phi_{\mathcal{P}} \uparrow \mathbf{1} & \langle \{qa, ra\}, \emptyset \rangle \\ \Phi_{\mathcal{P}} \uparrow \mathbf{2} & \langle \{qa, qsa, ra\}, \emptyset \rangle \\ & \vdots & \vdots \\ \Phi_{\mathcal{P}} \uparrow \omega & \langle \{qs^{k} \ a \ | \ k \in \mathbb{N}\} \cup \{ra\}, \emptyset \rangle \\ \Phi_{\mathcal{P}} \uparrow (\omega + 1) & \langle \{qs^{k} \ a \ | \ k \in \mathbb{N}\} \cup \{ra\}, \{p\} \rangle \end{array}$$

Steffen Hölldobler The Weak Completion Semantics – Theory

Fixed Points are Models

Lemma 21

If I is a fixed point of $\Phi_{\mathcal{P}}$ then I is a model of wc \mathcal{P}

- ▶ Proof to show $I(A \leftrightarrow F) = \top$ for all $A \leftrightarrow F \in wc \mathcal{P}$
 - ▷ $[A] \in I^{\top}$ We find $A \leftarrow Body \in \mathcal{P}$ with $I Body = \top$

• Then,
$$F = Body \lor F'$$
 and $IF = \top$

- \triangleright [A] \in I^{\perp} \rightsquigarrow Exercise
- $\triangleright \ [\mathbf{A}] \not\in \mathbf{I}^\top \cup \mathbf{I}^\perp \quad \rightsquigarrow \quad \mathsf{Exercise}$

Least Fixed Points are Minimal Models

▶ Proposition 22

If J is the least fixed point of $\Phi_{\mathcal{P}}$ then J is a minimal model of wc \mathcal{P}

- **Proof** Let J be the least fixed point of $\Phi_{\mathcal{P}}$
 - ▶ By Lemma 21 *J* is a model of *wc P*
 - ▶ By Proposition 20 for every model *I* of *wcP* we find $J^{\top} \subseteq I^{\top}$ and $J^{\perp} \subseteq I^{\perp}$, i.e., $J \subseteq I$
 - ▶ Hence, *J* is a minimal model of *wc P*

Least Fixed Points and Least Models

Proposition 23 If *I* is a minimal model of wc P then *I* is the least fixed point of Φ_P

- **Proof** Let *I* be a minimal model of $wc\mathcal{P}$ and *J* be the least fixed point of $\Phi_{\mathcal{P}}$
 - \triangleright From Lemma 20 we learn that $J^{ op} \subseteq I^{ op}$ and $J^{\perp} \subseteq I^{\perp}$
 - ▷ But then I = J as otherwise we have a conflict with the minimality of I
- **Theorem 13** wc \mathcal{P} has a least model
- Proof Follows from Propositions 22 and 23 and the fact that the least fixed point of Φ_P is unique
- ▶ Theorem 24 *I* is the least fixed point of Φ_P iff *I* is the least model of wc P
- Proof Follows from Theorem 13 and Propositions 22 and 23

Entailment under the Weak Completion Semantics

- Let M_{wcP} denote the least fixed point of Φ_P
 - \triangleright which is equal to the least model of wc \mathcal{P}
- ▶ *P* entails *F* under the weak completion semantics

$$\mathcal{P}\models_{wcs} F \quad \text{iff} \quad \mathcal{M}_{wc\mathcal{P}} F = \top$$

Two Examples

- Consider the program $\mathcal{P} = \{ p \leftarrow q, q \leftarrow p \}$
 - ▶ It has a least model $\langle \emptyset, \emptyset \rangle$
 - ▷ It can be computed iterating $\Phi_{\mathcal{P}}$ starting with $\langle \emptyset, \emptyset \rangle$
 - ▷ But if the iteration would start with $\langle \{ p \}, \emptyset \rangle$ then it will run forever
 - > Do humans always start with the empty interpretation?
- ▶ Consider the program $\mathcal{P} = \{even \ 0 \leftarrow \top, even \ s \ X \leftarrow \neg even \ X\}$
 - ▷ It has a least model $\langle \{even \ s^k \ 0 \mid k \text{ is even} \}, \{even \ s^k \ 0 \mid k \text{ is odd} \} \rangle$
 - ▷ It can be computed iterating $\Phi_{\mathcal{P}}$ starting with $\langle \emptyset, \emptyset \rangle$
 - ▷ How many steps do we need?
- We will address both questions using metric methods

Semantic Operators as Contraction Mappings

A level mapping for P is a mapping *level* from the set of ground atoms to N such that *level A* = *level B* iff [A] = [B]

▷ It is extended to a mapping from ground literals to \mathbb{N} by *level* $\neg A = level A$

▶ Let *level* be a level mapping for *P*

- $\begin{array}{l} \triangleright \ \mathcal{P} \ \text{is acyclic with respect to } \textit{level} & \text{iff} \\ \text{for every rule } \textit{A} \leftarrow \textit{L}_1 \land \ldots \land \textit{L}_n \in \textit{g} \ \mathcal{P} \\ \text{we find } \textit{level} \ \textit{A} > \textit{level} \ \textit{L}_i \ \text{for all} \ 1 \leq i \leq n \\ \end{array}$
- ▷ P is acyclic iff it is acyclic with respect to some level mapping
- $\triangleright\,$ The problem to determine whether ${\cal P}$ is acyclic is undecidable

Acyclic Programs – Examples 1

Consider the program P

$$\begin{array}{rcl} p & \leftarrow & r \land q \\ q & \leftarrow & r \land p \end{array}$$

\triangleright Is \mathcal{P} acyclic?

 \triangleright How many fixed points has $\Phi_{\mathcal{P}}$?

 \triangleright Is $\Phi_{\mathcal{P}}$ a contraction on a complete metric space?

- ► Are the followig programs acyclic?
 - $\triangleright \{q a \leftarrow \top, q s X \leftarrow q X, p \leftarrow \neg q X\}$
 - ▷ {even 0 \leftarrow \top , even s X \leftarrow \neg even X}

Acyclic Programs – Examples 2

Consider the program P

$$p \leftarrow q \wedge r$$

 $q \leftarrow \neg r$
 $r \leftarrow \top$

▶ Let level r = 0, level q = 1, level p = 2

▷ *P* is acyclic with respect to *level*

We find

 $\Phi_{\mathcal{P}}(\langle \{q,r\},\{p\}\rangle) = \langle \{p,r\},\{q\}\rangle$ $\Phi_{\mathcal{P}}(\langle \{p,r\},\{q\}\rangle) = \langle \{r\},\{p,q\}\rangle$

$$\begin{array}{lll} \Phi_{\mathcal{P}}(\langle \{p\}, \emptyset \rangle) &=& \langle \{r\}, \emptyset \rangle \\ \Phi_{\mathcal{P}}(\langle \{r\}, \emptyset \rangle) &=& \langle \{r\}, \{q\} \rangle \\ \Phi_{\mathcal{P}}(\langle \{r\}, \{q\} \rangle) &=& \langle \{r\}, \{p, q\} \rangle \end{array}$$

 $\triangleright \langle \{r\}, \{p, q\} \rangle$ is the unique fixed point of $\Phi_{\mathcal{P}}$

 \triangleright Is $\Phi_{\mathcal{P}}$ a contraction? If so, on what metric space?

Programs and Metric Spaces

▶ Proposition 25 Let \mathcal{P} be a program, \mathcal{E} an equational theory, *level* a level mapping for \mathcal{P}, \mathcal{I} the set of interpretations for \mathcal{P} , and $I, J \in \mathcal{I}$

▷ The function $d_{level} : \mathcal{I} \times \mathcal{I} \rightarrow \mathbb{R}$ defined as

$$d_{level}(I, J) = \begin{cases} \frac{1}{2^n} & I \neq J \text{ and} \\ & IA = JA \neq U \text{ for all } A \text{ with } level A < n \text{ and} \\ & IA \neq JA \text{ or } IA = JA = U \text{ for some } A \text{ with } level A = n \\ 0 & \text{ otherwise} \end{cases}$$

is a metric

► Proof ~→ Exercise

Programs and Metric Spaces – Example 1

▶ Consider the program *P*

Let

$$\begin{array}{lll} I &=& \langle \{even \ s^k \ 0 \ | \ k \in \{0, 2, \ldots\}\}, \{even \ s^k \ 0 \ | \ k \in \{1, 3, \ldots\}\} \rangle \\ J &=& \langle \{even \ s^k \ 0 \ | \ k \in \{0, 2, \ldots\}\}, \emptyset \rangle \end{array}$$

and

level even $s^k 0 = k$

Then

$$d_{level}(I,J) = \frac{1}{2}$$

Note $g \mathcal{P}$ is infinite and \mathcal{P} is acyclic

Steffen Hölldobler The Weak Completion Semantics – Theory

Programs and Metric Spaces – Example 2

Consider again the program P

 $even 0 \leftarrow \top$ $even s X \leftarrow \neg even X$

- **•** Let again *level even* $s^k 0 = k$
- For all $n \in \mathbb{N}$ let

 $I_n = \langle \{even \ s^k \ 0 \mid k \leq n \text{ and } k \text{ even} \}, \{even \ s^k \ 0 \mid k \leq n \text{ and } k \text{ odd} \} \rangle$

- ▶ What is the distance between *I_n* and *I_m*?
- ▶ Is the sequence $(I_n | n \ge 0)$ a Cauchy sequence?
- **•** Does the sequence $(I_n | n \ge 0)$ converge?

Programs and Complete Metric Spaces

- Let *level* be a level mapping for P, E an equational theory and I the set of interpretations for P
- **Proposition 26** (\mathcal{I}, d_{level}) is a complete metric space
- Proof To show Every Cauchy sequence of interpretations converges
 - ▷ Let $(I_k | k \ge 1)$ be a Cauchy sequence of interpretations
 - ▷ I.e., for all $\varepsilon > 0$ there is $K \in \mathbb{N}$: for all $k_1, k_2 \ge K$ we find $d_{level}(I_{k_1}, I_{k_2}) \le \varepsilon$
 - ▷ In particular, for all $n \in \mathbb{N}$, there is $K \in \mathbb{N}$: for all $k_1, k_2 \ge K$ we find

$$d_{\textit{level}}(\textit{I}_{k_1},\textit{I}_{k_2}) \leq \frac{1}{2^{n+1}}$$

- ▷ For all $n \in \mathbb{N}$ let K_n be the least such K
- ▷ Hence, if $n_1 \le n_2$ then $\frac{1}{2^{n_1+1}} \ge \frac{1}{2^{n_2+1}}$ and $K_{n_1} \le K_{n_2}$
- ▷ To show $(I_k | k \ge 1)$ converges
- ▷ i.e., there is *I*: for every $\varepsilon > 0$, there is a *K*: for all $k \ge K$ we find $d(I, I_k) \le \varepsilon$

Proof of Proposition 26 – Continued

- ▶ Let *I* be such that for each ground atom *A* we have $I A = I_{K_{\ell}} A$ where $\ell = Ievel A$
- ▶ We choose $\varepsilon > 0$ and let $n \in \mathbb{N}$ be such that $\frac{1}{2^{n+1}} \leq \varepsilon$
- ▶ Claim $d_{level}(I, I_k) \le \frac{1}{2^{n+1}} \le \varepsilon$ for any $k \ge K_n$
- ► Proof of the Claim → Exercise

Programs and Contractions

- Let *level* be a level mapping for P, E an equational theory and I the set of interpretations for P
- ▶ Theorem 27

If \mathcal{P} is acyclic with respect to *level* then $\Phi_{\mathcal{P}}$ is a contraction on (\mathcal{I}, d_{level})

- Proof we will prove a more general result later in the lecture
- ► Corollary 28 If \mathcal{P} is acyclic then $\Phi_{\mathcal{P}}$ has a unique fixed point which can be reached by iterating $\Phi_{\mathcal{P}}$ up to ω times starting with any interpretation
- Proof Follows from Theorems 27 and 9

Reconsidering Two Examples

- ▶ Reconsider the program $\mathcal{P} = \{p \leftarrow q, q \leftarrow p\}$
 - It is not acyclic
 - Model construction must start with the empty interpretation
- ▶ Reconsider the program $\mathcal{P} = \{even \ 0 \leftarrow \top, even \ s \ X \leftarrow \neg even \ X\}$
 - It is acyclic
 - Model construction can start with any interpretation

$\Phi_{\mathcal{P}}$	I	l⊥
↑ 0		even 0
↑ 1	even 0	
	even s O	
↑ 2	even 0	even s 0
		even s s O
-		
:	:	:

 $\triangleright\,$ The least fixed point will be computed in ω steps

Abduction – Overview

- Integrity constraints
- Abducibles
- Abductive Frameworks
- Observations
- Credulous versus skeptical reasoning
- Examples

Abduction

- Charles Sanders Peirce 1932
 - ▶ given a program and an observation (which is not entailed by the program)
 - > a consistent set of facts (and assumptions) is infered or abduced
 - > such that the program and the facts entail the observation
- The set of facts is called explanation for the observation

Applications

- fault diagnosis
- high level vision
- natural language processing
- planning
- knowledge assimilation
- ▷ ...

Integrity Constraints

Integrity constraints are formulas of the form

 $U \leftarrow Body$ (weak IC) or $\perp \leftarrow Body$ (strong IC)

where Body is a conjunction of literals

- IC denotes a finite set of integrity constraints
- ▶ Interpretation *I* satisfies \mathcal{IC} iff *I* satisfies each constraint occurring in \mathcal{IC}
- Integrity constraints eliminate models
- Examples

а	U <i>← a</i>	⊥ <i>← a</i>	U ← ¬ <i>a</i>	$\bot \leftarrow \neg a$
Т	U	\perp	Т	Т
U	Т	U	Т	U
\perp	Т	Т	U	\perp

▶ What is the difference between $\bot \leftarrow a$ and $a \leftarrow \bot$?

Integrity Constraints – Preferences

Michael believes that offering Kim a homemade cake or homemade cookies will make her happy. But he also knows that she does not want both.

happy	\leftarrow	$\mathit{cake} \land \neg \mathit{ab}_{\mathit{cake}}$
happy	\leftarrow	$cookies \land \neg ab_{cookies}$
ab _{cake}	\leftarrow	\perp
ab _{cookies}	\leftarrow	\perp

cake	cookies	$\textbf{U} \leftarrow \textit{cake} \land \textit{cookies}$	$\perp \leftarrow \textit{cake} \land \textit{cookies}$
Т	Т	U	\perp
Т	U	Т	U
Т	\perp	Т	Т
U	Т	Т	U
U	U	Т	U
U	\perp	Т	Т
\perp	Т	Т	Т
\perp	U	Т	Т
\perp	\perp	Т	Т

Integrity Constraints and Models

- **Suppose** $\mathcal{IC} \neq \emptyset$
- ▶ Then *P* as well as *wc P* may not have models satisfying *IC*
- ► Can you specify an example?

Abducibles

- ▶ Let *P* be a ground program
- ► The set of abducibles is

 $\mathcal{A}_{\mathcal{P}} = \{ A \leftarrow \top \mid A \text{ is undefined in } \mathcal{P} \} \cup \{ A \leftarrow \bot \mid A \text{ is undefined in } \mathcal{P} \}$

Should defeaters of negative assumptions be added to this set?

Abductive Frameworks

▶ Let *P* be a ground program

- ► An abductive framework (P, A_P, IC, ⊨_{wcs}) consists of
 - \triangleright a program \mathcal{P}
 - \triangleright a set of abducibles $\mathcal{A}_{\mathcal{P}}$
 - a set IC of integrity constraints
 - ▷ the entailment relation ⊨_{wcs}
- In the sequel, we sometimes consider datalog programs
 - In this case, the set of abducibles as well as abductive frameworks are defined with respect to the ground instances of the program

The Suppression Task – Abducibles

	\mathcal{P}			$\mathcal{A}_\mathcal{P}$	
l	\leftarrow	e ∧ ¬ab _e	е	\leftarrow	Т
abe	\leftarrow	<u> </u>	е	\leftarrow	
l	\leftarrow	e ∧ ¬ab _e	е	\leftarrow	Т
l	\leftarrow	$t \wedge \neg ab_t$	e	\leftarrow	\perp
abe	\leftarrow	\perp	t	\leftarrow	Т
ab _t	\leftarrow	\perp	t	\leftarrow	\perp
l	~	e ∧ ¬ab _e	е	\leftarrow	Т
l	\leftarrow	o ∧ ¬ab₀	e	\leftarrow	\perp
abe	\leftarrow	\perp	0	\leftarrow	Т
abo	\leftarrow	\perp	0	\leftarrow	\perp
abe	\leftarrow	¬ <i>o</i>			
abo	\leftarrow	¬ <i>e</i>			

Steffen Hölldobler The Weak Completion Semantics – Theory

Observations and Explanations

- An observation O is a set of ground literals
- ▶ \mathcal{O} is explainable in the abductive framework $\langle \mathcal{P}, \mathcal{A}_{\mathcal{P}}, \mathcal{I}\!\mathcal{C}, \models_{wcs} \rangle$ iff there exists a non-empty $\mathcal{X} \subset \mathcal{A}_{\mathcal{P}}$ called explanation such that
 - $\triangleright \ \mathcal{M}_{wc(\mathcal{P}\cup\mathcal{X})} \models_{wcs} L \text{ for all } L \in \mathcal{O}$
 - $\triangleright \ \mathcal{M}_{wc(\mathcal{P}\cup\mathcal{X})} \text{ satisfies } \mathcal{IC}$
- Sometimes explanations are required to be minimal
 - \triangleright where \mathcal{X} is minimal if there does not exist an explanation \mathcal{X}' with $\mathcal{X}' \subseteq \mathcal{X}$
- ▶ Is $\mathcal{P} \cup \mathcal{X}$ satisfiable?
- Is the empty observation explainable?

Observations and Explanations – Example

Let P consist of

\leftarrow	$\mathit{cake} \land \neg \mathit{ab}_{\mathit{cake}}$
\leftarrow	$cookies \land \neg ab_{cookies}$
\leftarrow	\perp
\leftarrow	\perp
	$\begin{array}{c} \downarrow \\ \downarrow $

▶ Then A_P consists of

cake	\leftarrow	Т	cookies	\leftarrow	Т
cake	\leftarrow	\bot	cookies	\leftarrow	\bot

• Let
$$\mathcal{IC} = \{ \mathsf{U} \leftarrow \mathit{cake} \land \mathit{cookies} \}$$

- ▶ Let *O* = {*happy*}
- ▶ {*cake* $\leftarrow \top$ } and {*cookies* $\leftarrow \top$ } are explanations
- ▶ {*cake* $\leftarrow \top$, *cookies* $\leftarrow \top$ } is not an explanation

The Suppression Task – Experiments 7-9

Ex.		\mathcal{P}			$\mathcal{A}_\mathcal{P}$		O	Х е
7	l	\leftarrow	e ∧ ¬ab _e	е	\leftarrow	Т	l	$e \leftarrow \top$ 0.71
	ab _e	\leftarrow	\perp	е	\leftarrow	\perp		
8	l	\leftarrow	e ∧ ¬ab _e	е	\leftarrow	Т	l	$e \leftarrow \top t \leftarrow \top 0.13$
	l	\leftarrow	$t \wedge \neg ab_t$	e	\leftarrow	\bot		
	abe	\leftarrow	\perp	t	\leftarrow	Т		
	ab _t	\leftarrow	\perp	t	\leftarrow	\perp		
9	l	\leftarrow	e ∧ ¬ab _e	е	\leftarrow	Т	l	$e \leftarrow \top$ 0.54
	l	\leftarrow	<i>o</i> ∧ ¬ <i>ab₀</i>	e	\leftarrow	\perp		$\sigma \leftarrow \top$
	ab _e	\leftarrow	\perp	0	\leftarrow	Т		
	abo	\leftarrow	\perp	0	\leftarrow	\perp		
	abe	\leftarrow	¬ <i>o</i>					
	ab _o	\leftarrow	¬ <i>e</i>					

The Suppression Task – Experiments 10-12

Ex.		\mathcal{P}			$\mathcal{A}_{\mathcal{P}}$		O			2	r			¬ <i>e</i>
10	l	~	e ∧ ¬ab _e	е	\leftarrow	Т	$\neg \ell$			<i>e</i> +	- 1			0.96
	ab _e	\leftarrow	<u> </u>	е	\leftarrow	\bot								
11	l	~	e ∧ ¬ab _e	е	\leftarrow	Т	$\neg \ell$			<i>e</i> +	- 1			0.96
	l	\leftarrow	$t \wedge \neg ab_t$	е	\leftarrow	\perp				<i>t</i> ←	- ⊥			
	abe	\leftarrow	\perp	t	\leftarrow	Т								
	abt	\leftarrow	\perp	t	\leftarrow	\perp								
12	l	\leftarrow	e ∧ ¬ab _e	е	\leftarrow	Т	$\neg \ell$	е	\leftarrow	\perp	0	\leftarrow	\bot	0.33
	l	\leftarrow	$o \wedge \neg ab_3$	e	\leftarrow	\perp								
	abe	\leftarrow	\perp	0	\leftarrow	Т								
	ab ₃	\leftarrow	\perp	0	\leftarrow	\perp								
	abe	\leftarrow	¬ <i>o</i>											
	ab ₃	\leftarrow	¬ <i>e</i>											

Skeptical and Credulous Consequences

- ▶ Let ⟨P, AP, IC, ⊨wcs⟩ be an abductive framework, O an observation, and F a formula
- ► F follows credulously from P and O
 - iff there exists an explanation \mathcal{X} for \mathcal{O} such that $\mathcal{P} \cup \mathcal{X} \models_{wcs} F$
- ► F follows skeptically from P and O
 - iff for all explanations \mathcal{X} for \mathcal{O} we find $\mathcal{P} \cup \mathcal{X} \models_{wcs} F$

Complementary Pairs

- ▶ A pair of clauses of the form $c \leftarrow \top$ and $c \leftarrow \bot$ is complementary
- A set of clauses is complementary if it contains a complementary pair
- Proposition 29 Let ⟨𝒫, 𝒫_𝒫, 𝒯, ⊨_{wcs}⟩ be an abductive framework 𝒪 an observation and 𝑋 ⊆ 𝒫_𝒫 an explanation for 𝒪 which contains a complementary pair c ← ⊤ and c ← ⊥
 - ▷ Then, X' = X \ {c ← ⊥} is also an explanation for O and M_{wc(P∪X)} = M_{wc(P∪X')}
- ► Proof ~→ Exercise
- Proposition 30 Given *n* undefined atoms in a ground program *P* there are 2^{2ⁿ} subsets of *A_P* and 3ⁿ non-complementary subsets of *A_P*
- ► Proof ~→ Exercise
- ▶ Are humans considering 3ⁿ − 1 possible explanations?

Reasoning to the Best Explanation 1

- If I watered the garden, then the grass is wet If it was raining, then the grass is wet
- Reasoning towards a program

wet_grass ← watered ∧ ¬ab_{watered} ab_{watered} ← ⊥ wet_grass ← rain ∧ ¬ab_{rain} ab_{rain} ← ⊥

- Observation The grass is wet
- What are the minimal explanations?

Reasoning to the Best Explanation 2

- If I watered the garden, then the grass is wet If it was raining, then the grass is wet The sky was clear all day
- Reasoning towards a program

wet_grass ← watered ∧ ¬ab_{watered} ab_{watered} ← ⊥ wet_grass ← rain ∧ ¬ab_{rain} ab_{rain} ← ⊥ clear_sky ← ⊤

- **Common sense** $U \leftarrow clear sky \wedge rain$
- Observation The grass is wet
- What is the best minimal explanation?

The Tweety Scenario 1

- Birds usually fly, but kiwis and penguins do not; Tweety and Jerry are birds
- Reasoning towards a program

fly X	\leftarrow	bird X ∧ ¬ab _{fly} X
ab _{flv} X	\leftarrow	kiwi X
ab _{fly} X	\leftarrow	penguin X
bird tweety	\leftarrow	Т
bird jerry	\leftarrow	Т

The least model of its weak completion

 $\langle \{ bird tweety, bird jerry \}, \emptyset \rangle$

- The set of abducibles
 - kiwi tweety \leftarrow \top
 - *kiwi jerry* ← ⊤
 - penguin tweety $\leftarrow \top$ penguin tweety $\leftarrow \bot$
 - penguin jerry \leftarrow \top

- kiwi tweety $\leftarrow \perp$
 - *kiwi jerry* ← ⊥
- - penguin jerry $\leftarrow \perp$

The Tweety Scenario 2

- Birds usually fly, but kiwis and penguins do not; Tweedy and Jerry are birds
- Suppose we observe that Jerry does fly
- The minimal explanation is

 $\mathcal{X} = \{$ kiwi jerry $\leftarrow \bot,$ penguin jerry $\leftarrow \bot \},$

- The observation follows
- ► Are you happy with this formalization?

The Tweety Scenario 3

- Birds usually fly; Tweety and Jerry are birds
- Reasoning towards a program

▶ The least model of its weak completion

 $\langle \{ bird tweety, bird jerry, fly tweety, fly jerry \}, \{ ab_{fly} tweety, ab_{fly} jerry \} \rangle$.

- What is the set of abducibles in this case?
- Can the observation that Tweety does not fly be explained?
- Are you happy with this formalization?

Summary of Chapter 3

- Programs as well as their weak completions admit least models under the three-valued Łukasiewicz logic
 - > This does not hold if Kleene or Fitting logic is used
- The least models of weakly completed programs can be computed as least fixed points of an associated semantic operator
- These computations are bounded by the first limit ordinal in case of finite propositional programs, finite datalog programs or acyclic programs
- Abduction can be applied to explain observations
 - Humans seem to apply skeptical abduction
- The approach adequately models an average human reasoner in the suppression task
- All results hold in the presence of an equational theory

Master programmes in Artificial Intelligence 4 Careers in Europe

Co-financed by the European Union Connecting Europe Facility This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

