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Programs

I A (normal logic) program P is a finite or countably infinite set of clauses of the
form

A← Body

. A is an atom (but not an equation) called head

. Body is either a non-empty conjunction of literals, or>, or⊥

I Clauses are assumed to be universally closed

I A← > is called (positive) fact

I A← ⊥ is called (negative) assumption

I All other clauses are called rules

I P is propositional iff all atoms occurring in P are propositional

I P is a datalog program iff the terms occurring in P are variables and constants

I P is a definite program iff it does not contain an occurrence of⊥ or ¬
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Programs – Example

I Let P be
` ← e ∧ ¬abe
` ← t ∧ ¬abt
e ← >

abe ← ⊥
abt ← ⊥
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Alphabet

I Let P be a program and E an equational theory

. The alphabet consists precisely of the symbols occurring in P and E

. If P or E is a first-order program
then the alphabet must contain at least one constant symbol
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Ground Instances

I A ground instance of a clause is obtained by replacing each variable occurring
in the clause by a ground term

. The replacement must be consistent in that multiple occurrences of the
same variable are replaced by the same ground term

I The ground instance of a program P is the set of all ground instances of
clauses occurring in P

. gP denotes the ground instance of P

. If P is a propositional program then gP = P
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Ground Programs – Example

I Let P be
q a ← >

q s X ← q X

I Then gP consists of
q a ← >

q s a ← q a
q s s a ← q s a

...
...

...

I Is q s a ← q s a ∈ gP ?
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Defined Ground Atoms

I Let P be a ground program, E an equational theory, and A a ground atom

. If E is empty, then A is defined in P iff P contains a clause with head A

. If E is not empty, then A is defined in P iff P contains a clause with head
A′ and [A] = [A′]

I A is undefined in P iff A is not defined in P

I def P denotes the set of defined atoms in P
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Defined Ground Atoms – Examples

I Consider the following programs

E = ∅ E = {a ≈ b}

` ← e ∧ ¬abe p a ← >
` ← t ∧ ¬abt q c ← ⊥
e ← >

abe ← ⊥
abt ← ⊥

. How does def P look like?

. Are there any undefined atoms?
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Definitions

I Let P be a ground program, E an equational theory, and S a consistent set of
literals

. If E is empty, then defs(P,S) = {A← Body ∈ P | A ∈ S or ¬A ∈ S}

. If E is not empty,
then defs(P,S) = {A′ ← Body ∈ P | A ∈ S or ¬A ∈ S and [A′] = [A]}

I Let P be
` ← e ∧ ¬abe
` ← o ∧ ¬abo
e ← >

abe ← ⊥
abo ← ⊥
abe ← ¬o
abo ← ¬e

. How does defs(P, {e,¬abe}) look like?
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Assumptions

I Let P be a ground program, E an equational theory, and A a ground atom

. If E is empty then ¬A is assumed in P iff

II P contains an assumption with head A and

II P does neither contain a fact A← > nor a rule A← Body

. If E is not empty then ¬A is assumed in P iff

II P contains an assumption of the form A′ ← ⊥ with [A] = [A′] and

II P does neither contain a fact B ← > nor a rule B ← Body with [A] = [B]

I Why has the second condition been added?
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Assumptions – Examples

I What is assumed in the following programs if E = ∅?

.
` ← e ∧ ¬abe
` ← t ∧ ¬abt
e ← >

abe ← ⊥
abt ← ⊥

.
` ← e ∧ ¬abe
` ← o ∧ ¬abo
e ← >

abe ← ⊥
abo ← ⊥
abe ← ¬o
abo ← ¬e

I Assumptions can be overridden
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Weakly Completed Programs

I Let P be a ground program and E an equational theory

I Consider the following transformation

1 For all A ∈ def P do

II If E is empty, replace all clauses of the form
A← Body1, A← Body2, . . . occurring in P by A← Body1 ∨ Body2 . . .

II If E is not empty, replace all clauses of the form
A1 ← Body1, A2 ← Body2, . . . occurring in P with
[A1] = [A2] = . . . = [A] by A← Body1 ∨ Body2 . . .

2 Add A← ⊥ for all undefined ground atoms A occurring in P
3 Replace all occurrences of← by↔

II The resulting set is called completion of P or cP
II If step 2 is omitted then the resulting set is called

weak completion of P or wcP
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Program Completion – Example

I Let P be
` ← e ∧ ¬abe
` ← t ∧ ¬abt
e ← >

abe ← ⊥
abt ← ⊥

I The weak completion of P consists of

` ↔ (e ∧ ¬abe) ∨ (t ∧ ¬abt )
e ↔ >

abe ↔ ⊥
abt ↔ ⊥

I The completion of P is obtained by adding

t ↔ ⊥
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Program Completion – Another Example

I Let P be
p a ← >
q b ← r b

I How does cP look like?

I How does wcP look like?
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Program Completion – Yet Another Example

I Let P be
` ← e ∧ ¬abe
` ← o ∧ ¬abo
e ← >

abe ← ⊥
abo ← ⊥
abe ← ¬o
abo ← ¬e

I The weak completion of P consists of

` ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo)
e ↔ >

abe ↔ ⊥∨ ¬o
abo ↔ ⊥∨ ¬e

I Under Łukasiewicz logic we find F ∨ ⊥ ≡ F
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Convention

I Let P be a ground program and E an equational theory

I In the future

. If E is empty, we will delete an assumption A← ⊥ if the program contains a
fact A← > or a rule A← Body

. If E is not empty, then A← ⊥ will be deleted if the ground program contains
B ← > or B ← Body with [A] = [B]
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Sets of Literals versus Sets of Facts and Assumptions

I Let S be a consistent set of ground literals

I S↑ = {A← > | A ∈ S} ∪ {A← ⊥ | ¬A ∈ S}

I Let P be a ground program containing only facts and assumptions

. Remember our convention!

I P↓ = {A | A← > ∈ P} ∪ {¬A | A← ⊥ ∈ P}

I Example Let S = {e,¬abe} and P = {e ← >, abe ← ⊥}

. S↑ = P

. P↓ = S

I Is P↓ consistent?
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The Depends On Relation

I Let P be a ground program

I Atom A directly depends on atom B if

. P contains a rule of the form A← Body and

. B occurs (positively or negatively) in Body

I The depends on relation is the transitive closure of the directly depends on
relation

I Example Let P = {q a ← >, q s a ← q a, q s s a ← q s a, . . .}

. q s a directly depends on q a

. q s s a directly depends on q s a

. q s a depends on q a

. q s s a depends on q s a and q a
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The Function deps

I Let P be a ground program and S a consistent set of ground literals

deps(P,S) = {B ← Body ∈ P | Body ∈ {>,⊥} and there exists A ∈ S or
¬A ∈ S such that A depends on B}

I Example Let P = {q a ← >, q s a ← q a, q s s a ← q s a, . . .}

. deps(P, {q s a a, ¬ q s a}) = {q a ← >}
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The Meaning of Programs

I Let P be a program and E an equational theory

. In many scenarios E = ∅

. When modeling ethical decision problems E = AC1

I Recall equations, equational theories, interpretations, and models

I What is the meaning of P?
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Łukasiewicz Three-Valued Logic

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U > >
⊥ ⊥ U >

↔ > U ⊥
> > U ⊥
U U > U
⊥ ⊥ U >
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Kleene Three-Valued Logic

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U U >
⊥ ⊥ U >

↔ > U ⊥
> > U ⊥
U U U U
⊥ ⊥ U >
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Fitting Three-Valued Logic

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U U >
⊥ ⊥ U >

↔ > U ⊥
> > ⊥ ⊥
U ⊥ > ⊥
⊥ ⊥ ⊥ >
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Three-Valued Interpretations

I A (three-valued) interpretation assigns to each formula a value from {>,⊥,U}

I It is represented by 〈I>, I⊥〉, where

. I> contains all ground atoms which are mapped to>

. I⊥ contains all ground atoms which are mapped to⊥

. I> ∩ I⊥ = ∅

. All ground atoms which occur neither in I> nor I⊥ are mapped to U

I In the sequel, I, J denote interpretations 〈I>, I⊥〉, 〈J>, J⊥〉, respectively

I The intersection I ∩ J is defined as 〈I> ∩ J>, I⊥ ∩ J⊥〉
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Three-Valued Interpretations – Examples

I Consider

P wcP cP
` ← e ∧ ¬abe ` ↔ (e ∧ ¬abe) ` ↔ (e ∧ ¬abe)
` ← t ∧ ¬abt ∨ (t ∧ ¬abt ) ∨ (t ∧ ¬abt )
e ← > e ↔ > e ↔ >

abe ← ⊥ abe ↔ ⊥ abe ↔ ⊥
abt ← ⊥ abt ↔ ⊥ abt ↔ ⊥

t ↔ ⊥

I Then
I I P I wcP I cP
〈{e, abe}, ∅〉 > ⊥ ⊥
〈{e, `}, {abe, abt}〉 > > U
〈{e, `, t}, {abe, abt}〉 > > ⊥
〈{e, `}, {abe, abt , t}〉 > > >
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Models

I An interpretation I is a model for a program P (I |= P) iff I P = >

I This definition depends on the underlying logic!

. We will indicate the underlying logic by adding a subscript to |=

. Ł denotes Łukasiewicz logic

. K denotes Kleene logic

. F denotes Fitting logic

I Which of the following interpretations are models for

P = {a ← b}

. 〈∅, ∅〉
?
|=Ł P 〈{a, b}, ∅〉

?
|=Ł P 〈∅, {a, b}〉

?
|=Ł P

. 〈∅, ∅〉
?
|=K P 〈{a, b}, ∅〉

?
|=K P 〈∅, {a, b}〉

?
|=K P

I In the sequel, we use Łukasiewicz logic if not stated otherwise
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Model Intersection Property

I We would like to show that

∩{I | I |= P} |= P

I It holds in classical two-valued logic for definite programs

I But it does not hold in classical two-valued logic for normal programs

I Under Łukasiewicz logic

. The intersection of two models is not necessarily a model

. Let P be the definite program

p ← q1 ∧ r1
p ← q2 ∧ r2

. 〈∅, {p, q1, r2}〉 |= P

. 〈∅, {p, q2, r1}〉 |= P

. But 〈∅, {p}〉 6|= P
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The Meaning of Programs

I Proposition 10 If I = 〈I>, I⊥〉 |= P then I′ = 〈I>, ∅〉 |= P

I Proof Suppose I |= P ,
i.e., for all A← Body ∈ gP we find I |= A← Body

. We consider the truth ordering ⊥ <t U <t >

. We consider all cases for I A

. We will show I′ |= A← Body by I′ A ≥t I′ Body

. We distinguish three cases

1 I A = > In this case A ∈ I> and hence I′ |= A← Body

2 I A = ⊥
3 I A = U
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Proof of Proposition 10 Case 2

2 I A = ⊥ In this case A ∈ I⊥ and I′ A = U

. Because I |= A← Body we conclude I Body = ⊥

. Hence we find a literal L ∈ Body such that I L = ⊥

II L = B In this case I B = ⊥ and hence I′ B = I′ L = U

II L = ¬B In this case I B = > and hence I′ B = > and I′ L = ⊥

. Consequently I′ Body ∈ {U,⊥}

. Because I′ A = U we conclude I′ |= A← Body
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Proof of Proposition 10 Case 3

3 I A = U In this case I′ A = U

. I Body = ⊥ As in the previous case we find I′ Body ∈ {⊥,U}

II Consequently I′ |= A← Body

. I Body = U In this case we find a literal L ∈ Body with I L = U

II Then I′ L = U

II Consequently I′ Body = U

II Hence I′ |= A← Body 2
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Proposition 10 – Examples

I Let P = {`← e ∧ ¬abe, e ← >, abe ← ⊥}

. 〈{e, `}, {abe}〉 |= P

. 〈{e, `}, ∅〉 |= P

I Let E = {a ≈ b} and P = {q X ← ¬ p X , p a ← >}

. 〈{[p a]}, {[q b]}〉 |= P

. 〈{[p a]}, ∅〉 |= P

I Does Proposition 10 hold under Kleene or Fitting logic?
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Intersection of Two Models with Empty ⊥-Part

I Proposition 11 Let I1 = 〈I>1 , ∅〉 and I2 = 〈I>2 , ∅〉 be two models of P
Then I = 〈I>1 ∩ I>2 , ∅〉 is also a model of P

I Proof Suppose I 6|= P

. Then we find A← Body ∈ gP such that I 6|= A← Body

. We distinguish three cases

1 I A = ⊥ and I Body = > Impossible because I⊥ = ∅
2 I A = ⊥ and I Body = U Impossible because I⊥ = ∅
3 I A = U and I Body = >

Because I A = U we find j ∈ {1, 2} with Ij A = U

Because Ij |= A← Body we find Ij Body ∈ {U,⊥} (∗)
Because I Body = > and I⊥ = ∅ we find
for all L ∈ Body that L is an atom and L ∈ I>

Hence for all L ∈ Body we find L ∈ I>j , j ∈ {1, 2}

Consequently Ij Body = >, j ∈ {1, 2} contradicting (∗) 2
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Model Intersection

I Theorem 12 The model intersection property holds for P
i.e., ∩{I | I |= P} |= P

I Proof Follows immediately from Propositions 10 and 11 2

I Example Consider P = {p ← q}

. The least model of P under Łukasiewicz logic is 〈∅, ∅〉

I Theorem 12 does not hold under Fitting logic (|=F)

. 〈{p, q}, ∅〉 |=F p ← q

. 〈∅, {p, q}〉 |=F p ← q

. However 〈∅, ∅〉 6|=F p ← q

I Theorem 12 does not hold under Kleene logic (|=K)

I What are the least models for the first three programs in the suppression task?
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The Meaning of Weakly Completed Programs

I Theorem 13 The model intersection property holds for wcP as well

I Proof later in the lecture

I MwcP denotes the least model of wcP

I IsMwcP the least model of P?

I Corollary 14 If I |= wcP then I |= P

I Proof F ↔ G ≡ (F → G) ∧ (G → F ) under Łukasiewicz logic 2

I Proposition 14 does not hold under Fitting logic

. 〈∅, ∅〉 |=F wc{p ← q} = {p ↔ q}

. However 〈∅, ∅〉 6|=F {p ← q}
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The Suppression Task – Experiments 1-3

Ex. P wcP MwcP

1 e ← > e ↔ > 〈{e, `}, {abe}〉
` ← e ∧ ¬abe ` ↔ e ∧ ¬abe

abe ← ⊥ abe ↔ ⊥
2 e ← > e ↔ > 〈{e, `}, {abe, abt}〉

` ← e ∧ ¬abe ` ↔ (e ∧ ¬abe) ∨ (t ∧ ¬abt )
` ← t ∧ ¬abt abe ↔ ⊥

abe ← ⊥ abt ↔ ⊥
abt ← ⊥

3 e ← > e ↔ > 〈{e}, {abo}〉
` ← e ∧ ¬abe ` ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo)
` ← o ∧ ¬abo abe ↔ ⊥∨ ¬o

abe ← ⊥ abo ↔ ⊥∨ ¬e
abo ← ⊥
abe ← ¬o
abo ← ¬e
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The Suppression Task – Experiments 4-6

Ex. P wcP MwcP

4 e ← ⊥ e ↔ ⊥ 〈∅, {e, `, abe}〉
` ← e ∧ ¬abe ` ↔ e ∧ ¬abe

abe ← ⊥ abe ↔ ⊥
5 e ← ⊥ e ↔ ⊥ 〈∅, {e, abe, abt}〉

` ← e ∧ ¬abe ` ↔ (e ∧ ¬abe) ∨ (t ∧ ¬abt )
` ← t ∧ ¬abt abe ↔ ⊥

abe ← ⊥ abt ↔ ⊥
abt ← ⊥

6 e ← ⊥ e ↔ ⊥ 〈{abo}, {e, `}〉
` ← e ∧ ¬abe ` ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo)
` ← o ∧ ¬abo abe ↔ ⊥∨ ¬o

abe ← ⊥ abo ↔ ⊥∨ ¬e
abo ← ⊥
abe ← ¬o
abo ← ¬e
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Monotonicity

I Let P and P′ be sets of formulas and G a formula
A logic is monotonic if the following holds:
If P |= G then P ∪ P′ |= G

I Classical logic is monotonic

I A logic based on the weak completion semantics is non-monotonic

. Consider
P = {c ← ⊥}
P′ = {c ← >}

. Then
wcP = {c ↔ ⊥} |= ¬c
wc (P ∪ P′) = {c ↔ ⊥∨>} |= c
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Computing Least Models

I How can we compute the least models of weakly completed programs?

I In classical two-valued logic we obtain

TP I = {A | there exists A← Body ∈ gP with I Body = >}

where P is a definite logic program and I an interpretation

I In three-valued logic programming we obtain ΨP I = 〈J>, J⊥〉 where

J> = {A | there exists A← Body ∈ gP with I Body = >}
J⊥ = {A | for all A← Body ∈ gP we find I Body = ⊥}

. ΨP is monotone on (I,⊆)

. The least model of cP under Fitting logic is the least fixed point of ΨP

. Inadequate for human reasoning  Why?
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The Semantic Operator for Weakly Completed Programs

I Consider the following immediate consequence operator

Φ′
P I = 〈J>, J⊥〉 where

J> = {A | there exists A← Body ∈ gP with I Body = >}
J⊥ = {A | there exists A← Body ∈ gP and

for all A← Body ∈ gP we find I Body = ⊥}

I Φ′
P “without the red condition” is ΨP
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The Semantic Operator for Weakly Completed Programs with Equality

I Let P be a program, E an equational theory, and I an interpretation

I Consider the following immediate consequence operator

ΦP I = 〈J>, J⊥〉 where

J> = {[A] | there exists A← Body ∈ gP with I Body = >}
J⊥ = {[A] | there exists A← Body ∈ gP and

for all A′ ← Body ∈ gP with [A] = [A′] we find I Body = ⊥}

and [A] denotes the finest congruence class defined by E and containing A
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Semantic Operator – Examples

I Iteratively apply ΦP to the following programs starting with 〈∅, ∅〉

. P = {e ← >, `← e ∧ ¬abe, abe ← ⊥} and E = ∅

. P = {q X ← ¬p X , p a ← >} and E = {a ≈ b}

I Do least fixed points of ΦP always exist?

I How long does it take to compute least fixed points of ΦP?

. Recall fixed point theory
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The Complete Partial Order of Interpretations – Example

I Let P = {p X ← q X} and E = {a ≈ b}

I Let I denote the set of all three-valued interpretations

I I = 〈I>, I⊥〉 ⊆ 〈J>, J⊥〉 = J iff I> ⊆ J> and I⊥ ⊆ J⊥

I (I,⊆) is a complete partial order

〈∅, ∅〉

〈{[p a]}, ∅〉 〈{[q b]}, ∅〉 〈∅, {[q b]}〉 〈∅, {[p a]}〉

〈{[p a], [q b]}, ∅〉 〈{[p a]}, {[q b]}〉 〈{[q b]}, {[p a]}〉 〈∅, {[p a], [q b]}〉
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The Complete Partial Order of Interpretations 1

I Let P be a program and E an equational theory

I Let J be a set of interpretations

. J> = {I> | 〈I>, I⊥〉 ∈ J}

. J⊥ = {I⊥ | 〈I>, I⊥〉 ∈ J}

I Proposition 15 Let J be a directed set of interpretations
Then the interpretation I = 〈

⋃
J>,

⋃
J⊥〉 is the least upper bound of J

I Proof Given J we have to show that

(i) I is an interpretation

(ii) I is an upper bound of J  Exercise

(iii) I is the least upper bound of J  Exercise
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Proof of Proposition 15 (i)

I To show I = 〈
⋃
J>,

⋃
J⊥〉 is an interpretation

. By definition
⋃
J> and

⋃
J⊥ are unions of congruence classes

. It remains to show
⋃
J> ∩

⋃
J⊥ = ∅

. Suppose we find [A] ∈
⋃
J> ∩

⋃
J⊥

. Then we find I1, I2 ∈ J with [A] ∈ I>1 and [A] ∈ I⊥2

. Because J is directed, it contains a common upper bound K of I1 and I2

. We find [A] ∈ K> and [A] ∈ K⊥

. Hence, K cannot be an interpretation  contradiction 2
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The Complete Partial Order of Interpretations 2

I Corollary 16
The set of all interpretations I is a complete partial order with respect to⊆

I Proof

. Reflexivity, antisymmetry, and transitivity holds for⊆

. By Proposition 15 every directed subset of I has a least upper bound in I
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Monotonocity of the Semantic Operator

I Proposition 17
For each program P and equational theory E the mapping ΦP is monotonic

I Proof Let I = 〈I>, I⊥〉 ⊆ 〈J>, J⊥〉 = J

. To show ΦP I = I′ = 〈I′>, I′⊥〉 ⊆ 〈J′>, J′⊥〉 = J′ = ΦP J

. I′> ⊆ J′>

II [A] ∈ I′> iff we find A← Body ∈ gP such that I Body = >
II Because I ⊆ J we claim J Body = > prove it!

II Hence, [A] ∈ J′>

. I′⊥ ⊆ J′⊥  Exercise 2
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Non-Continuity of the Semantic Operator 1

I Let E = ∅ and P be
q a ← >

q s X ← q X
p ← ¬ q X

I The least fixed point of ΦP is

〈{[q sk a] | k ∈ N}, {[p]}〉

I It is reached after ω + 1 iterations

I By the Kleene Fixed Point Theorem 4 ΦP is not continuous

I The Herbrand base contains infinitely many equivalence classes

[p], [q a], [q s a], . . .

where each equivalence class has one member
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Non-Continuity of the Semantic Operator 2
I Let P be

q 1 ← >
q (X ◦ a) ← q X

p ← ¬ q X

and E be
X ◦ (Y ◦ Z) ≈ (X ◦ Y ) ◦ Z

X ◦ Y ≈ Y ◦ X
X ◦ 1 ≈ X

I The least fixed point of ΦP is

〈{[q(1 ◦
k︷ ︸︸ ︷

a ◦ . . . ◦ a)] | k ∈ N}, {[p]}〉

I It is reached after ω + 1 iterations

I By Kleene Fixed Point Theorem 4 ΦP is not continuous

I The Herbrand base contains infinitely many equivalence classes

[p], [q 1], [q a], [q(a ◦ a)], . . .

where with the exception of [p] each of these equivalence classes is infinite
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Finite Propositional and Finite Ground Programs

I Proposition 18
For each finite propositional program P the mapping ΦP is continuous

I Proof

. Because P is finite, the set I of interpretations is finite

. By Corollary 16 (I,⊆) is a complete partial order

. By Proposition 17 ΦP is monotonic on I

. By Proposition 7 the mapping ΦP is continuous 2

I Proposition 19
If the Herbrand base for a program P and a set of equations E is finite
then the mapping ΦP is continuous

I Proof

. Define a bijection between the set of ground atoms occurring in P
and an equally large set of propositional atoms

. Replace each ground atom by a propositional atom

. Apply Proposition 18 2
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Least Fixed Points and Models

I Lemma 20 Let J be the least fixed point of ΦP and I a model of wcP

. Then for every ground atom A we find

II If J A = > then I A = >
II If J A = ⊥ then I A = ⊥

I Proof Let J be the least fixed point of ΦP and I a model of wcP

. We start iterating ΦP on 〈∅, ∅〉

. Claim For every ordinal α and every ground atom A we find

II If ΦP ↑ αA = > then I A = >
II If ΦP ↑ αA = ⊥ then I A = ⊥

. Proof of the Claim by transfinite induction  Exercise

. The lemma follows from Propositions 3 and 17 2
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Lemma 20 – Example

I Let P = {q a ← >, q s X ← q X , p ← ¬ q X , r a ← >}

I I = 〈{q sk a | k ∈ N} ∪ {r a, r s2 a}, {p, r s a}〉 is a model of wcP

ΦP ↑ 0 〈∅, ∅〉
ΦP ↑ 1 〈{q a, r a}, ∅〉
ΦP ↑ 2 〈{q a, q s a, r a}, ∅〉

...
...

ΦP ↑ ω 〈{q sk a | k ∈ N} ∪ {r a}, ∅〉
ΦP ↑ (ω + 1) 〈{q sk a | k ∈ N} ∪ {r a}, {p}〉
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Fixed Points are Models

I Lemma 21
If I is a fixed point of ΦP then I is a model of wcP

I Proof to show I(A↔ F ) = > for all A↔ F ∈ wcP

. [A] ∈ I> We find A← Body ∈ P with I Body = >

II Then, F = Body ∨ F ′ and I F = >
II Hence, I A = I F

. [A] ∈ I⊥  Exercise

. [A] 6∈ I> ∪ I⊥  Exercise 2
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Least Fixed Points are Minimal Models

I Proposition 22
If J is the least fixed point of ΦP then J is a minimal model of wcP

I Proof Let J be the least fixed point of ΦP

. By Lemma 21 J is a model of wcP

. By Proposition 20 for every model I of wcP we find
J> ⊆ I> and J⊥ ⊆ I⊥, i.e., J ⊆ I

. Hence, J is a minimal model of wcP 2
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Least Fixed Points and Least Models

I Proposition 23
If I is a minimal model of wcP then I is the least fixed point of ΦP

I Proof Let I be a minimal model of wcP and J be the least fixed point of ΦP

. From Lemma 20 we learn that J> ⊆ I> and J⊥ ⊆ I⊥

. But then I = J as otherwise we have a conflict with the minimality of I 2

I Theorem 13 wcP has a least model

I Proof Follows from Propositions 22 and 23 and the fact that the least fixed
point of ΦP is unique 2

I Theorem 24 I is the least fixed point of ΦP iff I is the least model of wcP

I Proof Follows from Theorem 13 and Propositions 22 and 23 2
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Entailment under the Weak Completion Semantics

I LetMwcP denote the least fixed point of ΦP

. which is equal to the least model of wcP

I P entails F under the weak completion semantics

P |=wcs F iff MwcP F = >
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Two Examples

I Consider the program P = {p ← q, q ← p}

. It has a least model 〈∅, ∅〉

. It can be computed iterating ΦP starting with 〈∅, ∅〉

. But if the iteration would start with 〈{p}, ∅〉 then it will run forever

. Do humans always start with the empty interpretation?

I Consider the program P = {even 0 ← >, even s X ← ¬ even X}

. It has a least model 〈{even sk 0 | k is even}, {even sk 0 | k is odd}〉

. It can be computed iterating ΦP starting with 〈∅, ∅〉

. How many steps do we need?

I We will address both questions using metric methods

Steffen Hölldobler
The Weak Completion Semantics – Theory 56



Semantic Operators as Contraction Mappings

I A level mapping for P is a mapping level from the set of ground atoms to N
such that level A = level B iff [A] = [B]

. It is extended to a mapping from ground literals to N by level ¬A = level A

I Let level be a level mapping for P

. P is acyclic with respect to level iff
for every rule A← L1 ∧ . . . ∧ Ln ∈ gP
we find level A > level Li for all 1 ≤ i ≤ n

. P is acyclic iff it is acyclic with respect to some level mapping

. The problem to determine whether P is acyclic is undecidable
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Acyclic Programs – Examples 1

I Consider the program P
p ← r ∧ q
q ← r ∧ p

. Is P acyclic?

. How many fixed points has ΦP?

. Is ΦP a contraction on a complete metric space?

I Are the followig programs acyclic?

. {q a ← >, q s X ← q X , p ← ¬ q X}

. {even 0 ← >, even s X ← ¬ even X}
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Acyclic Programs – Examples 2

I Consider the program P
p ← q ∧ r
q ← ¬r
r ← >

I Let level r = 0, level q = 1, level p = 2

. P is acyclic with respect to level

. We find

ΦP(〈{q, r}, {p}〉) = 〈{p, r}, {q}〉 ΦP(〈{p}, ∅〉) = 〈{r}, ∅〉
ΦP(〈{p, r}, {q}〉) = 〈{r}, {p, q}〉 ΦP(〈{r}, ∅〉) = 〈{r}, {q}〉

ΦP(〈{r}, {q}〉) = 〈{r}, {p, q}〉

. 〈{r}, {p, q}〉 is the unique fixed point of ΦP

. Is ΦP a contraction? If so, on what metric space?
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Programs and Metric Spaces

I Proposition 25 Let P be a program, E an equational theory,
level a level mapping for P , I the set of interpretations for P , and I, J ∈ I

. The function dlevel : I × I → R defined as

dlevel (I, J) =


1

2n I 6= J and
I A = J A 6= U for all A with level A < n and
I A 6= J A or I A = J A = U for some A with level A = n

0 otherwise

is a metric

I Proof  Exercise
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Programs and Metric Spaces – Example 1

I Consider the program P

even 0 ← >
even s X ← ¬ even X

I Let

I = 〈{even sk 0 | k ∈ {0, 2, . . .}}, {even sk 0 | k ∈ {1, 3, . . .}}〉
J = 〈{even sk 0 | k ∈ {0, 2, . . .}}, ∅〉

and
level even sk 0 = k

I Then

dlevel (I, J) =
1
2

I Note gP is infinite and P is acyclic
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Programs and Metric Spaces – Example 2

I Consider again the program P

even 0 ← >
even s X ← ¬ even X

I Let again level even sk 0 = k

I For all n ∈ N let

In = 〈{even sk 0 | k ≤ n and k even}, {even sk 0 | k ≤ n and k odd}〉

I What is the distance between In and Im?

I Is the sequence (In | n ≥ 0) a Cauchy sequence?

I Does the sequence (In | n ≥ 0) converge?
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Programs and Complete Metric Spaces

I Let level be a level mapping for P , E an equational theory
and I the set of interpretations for P

I Proposition 26 (I, dlevel ) is a complete metric space

I Proof To show Every Cauchy sequence of interpretations converges

. Let (Ik | k ≥ 1) be a Cauchy sequence of interpretations

. I.e., for all ε > 0 there is K ∈ N: for all k1, k2 ≥ K we find dlevel (Ik1 , Ik2 ) ≤ ε

. In particular, for all n ∈ N, there is K ∈ N: for all k1, k2 ≥ K we find

dlevel (Ik1 , Ik2 ) ≤
1

2n+1

. For all n ∈ N let Kn be the least such K

. Hence, if n1 ≤ n2 then 1
2n1+1 ≥ 1

2n2+1 and Kn1 ≤ Kn2

. To show (Ik | k ≥ 1) converges

. i.e., there is I: for every ε > 0, there is a K : for all k ≥ K we find d(I, Ik ) ≤ ε
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Proof of Proposition 26 – Continued

I Let I be such that for each ground atom A we have I A = IK`
A where ` = level A

I We choose ε > 0 and let n ∈ N be such that 1
2n+1 ≤ ε

I Claim dlevel (I, Ik ) ≤ 1
2n+1 ≤ ε for any k ≥ Kn

I Proof of the Claim  Exercise 2
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Programs and Contractions

I Let level be a level mapping for P , E an equational theory
and I the set of interpretations for P

I Theorem 27
If P is acyclic with respect to level then ΦP is a contraction on (I, dlevel )

I Proof we will prove a more general result later in the lecture

I Corollary 28 If P is acyclic then ΦP has a unique fixed point which can be
reached by iterating ΦP up to ω times starting with any interpretation

I Proof Follows from Theorems 27 and 9 2
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Reconsidering Two Examples

I Reconsider the program P = {p ← q, q ← p}

. It is not acyclic

. Model construction must start with the empty interpretation

I Reconsider the program P = {even 0 ← >, even s X ← ¬ even X}

. It is acyclic

. Model construction can start with any interpretation

ΦP I> I⊥

↑ 0 even 0
↑ 1 even 0

even s 0
↑ 2 even 0 even s 0

even s s 0
...

...
...

. The least fixed point will be computed in ω steps
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Abduction – Overview

I Integrity constraints

I Abducibles

I Abductive Frameworks

I Observations

I Credulous versus skeptical reasoning

I Examples
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Abduction

I Charles Sanders Peirce 1932

. given a program and an observation (which is not entailed by the program)

. a consistent set of facts (and assumptions) is infered or abduced

. such that the program and the facts entail the observation

I The set of facts is called explanation for the observation

I Applications

. fault diagnosis

. high level vision

. natural language processing

. planning

. knowledge assimilation

. . . .
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Integrity Constraints

I Integrity constraints are formulas of the form

U← Body (weak IC) or ⊥ ← Body (strong IC)

where Body is a conjunction of literals

I IC denotes a finite set of integrity constraints

I Interpretation I satisfies IC iff I satisfies each constraint occurring in IC

I Integrity constraints eliminate models

I Examples

a U← a ⊥ ← a U← ¬a ⊥ ← ¬a

> U ⊥ > >
U > U > U
⊥ > > U ⊥

I What is the difference between⊥ ← a and a ← ⊥?
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Integrity Constraints – Preferences
I Michael believes that offering Kim a homemade cake or homemade cookies will

make her happy. But he also knows that she does not want both.

happy ← cake ∧ ¬abcake
happy ← cookies ∧ ¬abcookies
abcake ← ⊥

abcookies ← ⊥

cake cookies U← cake ∧ cookies ⊥ ← cake ∧ cookies

> > U ⊥
> U > U
> ⊥ > >

U > > U
U U > U
U ⊥ > >

⊥ > > >
⊥ U > >
⊥ ⊥ > >
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Integrity Constraints and Models

I Suppose IC 6= ∅

I Then P as well as wcP may not have models satisfying IC

I Can you specify an example?
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Abducibles

I Let P be a ground program

I The set of abducibles is

AP = {A← > | A is undefined in P} ∪ {A← ⊥ | A is undefined in P}

I Should defeaters of negative assumptions be added to this set?
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Abductive Frameworks

I Let P be a ground program

I An abductive framework 〈P,AP ,IC, |=wcs〉 consists of

. a program P

. a set of abduciblesAP

. a set IC of integrity constraints

. the entailment relation |=wcs

I In the sequel, we sometimes consider datalog programs

. In this case, the set of abducibles as well as abductive frameworks are
defined with respect to the ground instances of the program
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The Suppression Task – Abducibles

P AP

` ← e ∧ ¬abe e ← >
abe ← ⊥ e ← ⊥
` ← e ∧ ¬abe e ← >
` ← t ∧ ¬abt e ← ⊥

abe ← ⊥ t ← >
abt ← ⊥ t ← ⊥
` ← e ∧ ¬abe e ← >
` ← o ∧ ¬abo e ← ⊥

abe ← ⊥ o ← >
abo ← ⊥ o ← ⊥
abe ← ¬o
abo ← ¬e
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Observations and Explanations

I An observationO is a set of ground literals

I O is explainable in the abductive framework 〈P,AP ,IC, |=wcs〉
iff there exists a non-empty X ⊆ AP called explanation such that

. Mwc(P∪X ) |=wcs L for all L ∈ O

. Mwc(P∪X ) satisfies IC

I Sometimes explanations are required to be minimal

. where X is minimal if there does not exist an explanation X ′ with X ′ ⊆ X

I Is P ∪ X satisfiable?

I Is the empty observation explainable?
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Observations and Explanations – Example

I Let P consist of

happy ← cake ∧ ¬abcake
happy ← cookies ∧ ¬abcookies
abcake ← ⊥

abcookies ← ⊥

I ThenAP consists of

cake ← > cookies ← >
cake ← ⊥ cookies ← ⊥

I Let IC = {U← cake ∧ cookies}

I LetO = {happy}

I {cake ← >} and {cookies ← >} are explanations

I {cake ← >, cookies ← >} is not an explanation
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The Suppression Task – Experiments 7-9

Ex. P AP O X e
7 ` ← e ∧ ¬abe e ← > ` e ← > 0.71

abe ← ⊥ e ← ⊥
8 ` ← e ∧ ¬abe e ← > ` e ← > t ← > 0.13

` ← t ∧ ¬abt e ← ⊥
abe ← ⊥ t ← >
abt ← ⊥ t ← ⊥

9 ` ← e ∧ ¬abe e ← > ` e ← > 0.54
` ← o ∧ ¬abo e ← ⊥ o ← >

abe ← ⊥ o ← >
abo ← ⊥ o ← ⊥
abe ← ¬o
abo ← ¬e
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The Suppression Task – Experiments 10-12

Ex. P AP O X ¬e
10 ` ← e ∧ ¬abe e ← > ¬` e ← ⊥ 0.96

abe ← ⊥ e ← ⊥
11 ` ← e ∧ ¬abe e ← > ¬` e ← ⊥ 0.96

` ← t ∧ ¬abt e ← ⊥ t ← ⊥
abe ← ⊥ t ← >
abt ← ⊥ t ← ⊥

12 ` ← e ∧ ¬abe e ← > ¬` e ← ⊥ o ← ⊥ 0.33
` ← o ∧ ¬ab3 e ← ⊥

abe ← ⊥ o ← >
ab3 ← ⊥ o ← ⊥
abe ← ¬o
ab3 ← ¬e
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Skeptical and Credulous Consequences

I Let 〈P,AP ,IC, |=wcs〉 be an abductive framework,O an observation,
and F a formula

I F follows credulously from P andO
iff there exists an explanation X forO such that P ∪ X |=wcs F

I F follows skeptically from P andO
iff for all explanations X forO we find P ∪ X |=wcs F
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Complementary Pairs

I A pair of clauses of the form c ← > and c ← ⊥ is complementary

I A set of clauses is complementary if it contains a complementary pair

I Proposition 29 Let 〈P,AP ,IC, |=wcs〉 be an abductive framework
O an observation and X ⊆ AP an explanation forO
which contains a complementary pair c ← > and c ← ⊥

. Then, X ′ = X \ {c ← ⊥} is also an explanation forO
andMwc(P∪X ) =Mwc(P∪X ′)

I Proof  Exercise

I Proposition 30 Given n undefined atoms in a ground program P
there are 22n

subsets ofAP and 3n non-complementary subsets ofAP

I Proof  Exercise

I Are humans considering 3n − 1 possible explanations?
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Reasoning to the Best Explanation 1

I If I watered the garden, then the grass is wet
If it was raining, then the grass is wet

I Reasoning towards a program

wet grass ← watered ∧ ¬abwatered
abwatered ← ⊥

wet grass ← rain ∧ ¬abrain
abrain ← ⊥

I Observation The grass is wet

I What are the minimal explanations?
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Reasoning to the Best Explanation 2

I If I watered the garden, then the grass is wet
If it was raining, then the grass is wet
The sky was clear all day

I Reasoning towards a program

wet grass ← watered ∧ ¬abwatered
abwatered ← ⊥

wet grass ← rain ∧ ¬abrain
abrain ← ⊥

clear sky ← >

I Common sense U← clear sky ∧ rain

I Observation The grass is wet

I What is the best minimal explanation?
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The Tweety Scenario 1

I Birds usually fly, but kiwis and penguins do not; Tweety and Jerry are birds

I Reasoning towards a program

fly X ← bird X ∧ ¬abfly X
abfly X ← kiwi X
abfly X ← penguin X

bird tweety ← >
bird jerry ← >

I The least model of its weak completion

〈{bird tweety, bird jerry}, ∅〉

I The set of abducibles

kiwi tweety ← > kiwi tweety ← ⊥
kiwi jerry ← > kiwi jerry ← ⊥

penguin tweety ← > penguin tweety ← ⊥
penguin jerry ← > penguin jerry ← ⊥
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The Tweety Scenario 2

I Birds usually fly, but kiwis and penguins do not; Tweedy and Jerry are birds

I Suppose we observe that Jerry does fly

I The minimal explanation is

X = {kiwi jerry ← ⊥, penguin jerry ← ⊥},

I The observation follows

I Are you happy with this formalization?
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The Tweety Scenario 3

I Birds usually fly; Tweety and Jerry are birds

I Reasoning towards a program

fly X ← bird X ∧ ¬abfly X
abfly X ← ⊥

bird tweety ← >
bird jerry ← >

I The least model of its weak completion

〈{bird tweety, bird jerry, fly tweety, fly jerry}, {abfly tweety, abfly jerry}〉.

I What is the set of abducibles in this case?

I Can the observation that Tweety does not fly be explained?

I Are you happy with this formalization?
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Summary of Chapter 3

I Programs as well as their weak completions admit least models under the
three-valued Łukasiewicz logic

. This does not hold if Kleene or Fitting logic is used

I The least models of weakly completed programs can be computed as least
fixed points of an associated semantic operator

I These computations are bounded by the first limit ordinal in case of finite
propositional programs, finite datalog programs or acyclic programs

I Abduction can be applied to explain observations

. Humans seem to apply skeptical abduction

I The approach adequately models an average human reasoner in the
suppression task

I All results hold in the presence of an equational theory
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