Human Reasoning and the Weak Completion Semantics

TVCHNISCHE

Applications and Extensions

Steffen Hölldobler
Technische Universität Dresden, Germany
North Caucasus Federal University, Russian Federation

- Conditional Reasoning
- Syllogistic Reasoning
- Disjunctive Reasoning
- Contextual Reasoning
- Spatial Reasoning

- Ethical Decision Problems

Conditional Reasoning

- Conditionals
- The Semantics of Conditionals
- Reasoning with a Conditional
- Reasoning about a Conditional
- The Selection Task

Introduction - Conditionals

- Conditionals are statements of the form if antecedent then consequence
- Claim of membership in a class or category
\triangleright If it is a dog then it is a mammal
\triangleright If the city is Rio then it is in Brasil
- Declarative (indicative) statements of fact or assumed fact
\triangleright If the serial number is less that $\mathbf{1 5 0 0 0 0}$ then it was built before 1995
\triangleright If it is raining then the roofs are wet
\triangleright If the roofs are wet then it is raining
- Promise
\triangleright If you clean your shoes
then Santa Claus will fill them with nuts, fruits, and chocolate
- Threat
\triangleright If you violate the terms of the contract then we will sue

More Conditionals

- Advice
\triangleright If it will be cold then put your sweater on
\triangleright If it is raining then take your umbrella
- Tip
\triangleright If you want to make a good impression then wear a dress or a suit and tie
- Legal rules
\triangleright If you want to drink alcohol in a restaurant then you must be older than 18 years of age
- Command
\triangleright If you find termites then apply the pesticide
- Request
\triangleright If it is convenient for you then please drop the package off on your way to work

Even More Conditionals

- Counterfactual
\triangleright If I had not taken this road today then I would have avoided the accident
- Prediction
\triangleright If I take my umbrella then it will not rain in the afternoon
\triangleright If there is a d on one side of a card then there is a 3 on the other side
- Question
\triangleright If she graduates with 1 will she be promoted to the PhD program of her choice?
- Warning
\triangleright If you park there then your car will be towed
- Nickerson: Conditional Reasoning: 2015

Conditionals in this Lecture

- In the sequel, let if \mathcal{A} then \mathcal{C} be a conditional, where
\triangleright antecedent \mathcal{A} and consequence \mathcal{C} are finite and consistent sets of ground literals
\triangleright If \mathcal{A} or \mathcal{C} is a singleton set, then curly brackets are omitted
- Conditionals are evaluated wrt some background knowledge
\triangleright a finite propositional or datalog program \mathcal{P}
\triangleright an equational theory \mathcal{E}
\triangleright a set of integrity constraints $\mathcal{I C}$
- Let $\mathcal{M}_{w c \mathcal{P}}$ be the least model of the weak completion of \mathcal{P}

The Semantics of Conditionals

- If it rains then the roofs are wet and she takes her umbrella
- Let \mathcal{P} consist of

$$
\begin{aligned}
\text { wet_roofs } & \leftarrow \text { rain } \wedge \neg a b_{w} \\
a b_{w} & \leftarrow \perp \\
\text { umbrella } & \leftarrow \text { rain } \wedge \neg a b_{u} \\
a b_{u} & \leftarrow \perp
\end{aligned}
$$

$-\mathcal{M}_{w c \mathcal{P}}=\left\langle\emptyset,\left\{a b_{w}, a b_{u}\right\}\right\rangle \quad \mathcal{A}_{\mathcal{P}}=\{$ rain $\leftarrow \top$, rain $\leftarrow \perp\}$

- What follows if we additionally observe that
\triangleright the roofs are wet?
\triangleright she took her umbrella?
\triangleright the roofs are not wet?
\triangleright she did not take her umbrella?
- Are you happy with the formalization?

The Semantics of Conditionals - Obligation Conditionals

- A conditional if \mathcal{A} then \mathcal{C} is said to be an obligation conditional iff its consequence \mathcal{C} is obligatory given its antecedent \mathcal{A}
- Byrne: The Rational Imagination: 2005
\triangleright We cannot easily imagine a case where the antecedent is true and the consequence is not
\triangleright The possibility $\mathcal{A} \wedge \neg \mathcal{C}$ is forbidden or unlikely
- Can you name obligation conditionals?
\triangleright If a person is drinking beer then the person must be over 19 years of age
\triangleright If somebody is riding a motorbike then he/she must wear a helmet
\triangleright If a german tourist wants to enter Russia then he needs a visa
\triangleright If somebody's parents are elderly then he/she should look after them
\triangleright If there is no light then plants will not grow
\triangleright If an object is not supported it will drop to the floor
\triangleright If it is raining then the roofs are wet

Obligation Conditionals 2

- Byrne: The Rational Imagination: 2005
- For obligation conditionals there are two initial possibilities people think about
\triangleright the conjunction of antecedent and consequent (permitted)
\rightarrow it rains and the roofs are wet
\triangleright the conjunction of antecedent and negation of consequent (forbidden/unlikely)
\rightarrow it rains and the roofs are not wet
- Exceptions are possible but unlikely

Factual Conditionals

- A conditional if \mathcal{A} then \mathcal{C} is said to be a factual conditional iff its consequent \mathcal{C} is not obligatory given its antecedent \mathcal{A}
- There is no forbidden or unlikely possibility
- Can you name factual conditionals?
\triangleright If the letter d is on one side of a card then the number 3 is on the other side
\triangleright If Nancy rides her motorbike she goes to the mountains
- If Fred was in Paris then Joe was in Lisbon
\triangleright If it raining then she is taking her umbrella
\triangleright If the sun is shining then I will water my garden in the evening

Obligation versus Factual Conditionals - Summary

- Humans may classify conditionals as obligation or factual conditionals
- This is an informal and pragmatic classification
- It depends on
\triangleright the background knowledge and experience of a human as well as on
\triangleright the context in which a conditional is stated

Necessary Antecedents

- The antecedent \mathcal{A} of a conditional if \mathcal{A} then \mathcal{C} is said to be necessary iff its consequent \mathcal{C} cannot be true unless the antecedent is true
\triangleright But the antecedent \mathcal{A} may be true while the consequence \mathcal{C} is not

- Can you name conditionals with necessary antecedent?
\triangleright If the kid is tall enough then it can ride the roller coaster
\triangleright If it is raining then the roofs are wet
\triangleright If there is gas in the gas tank then the engine will start
\triangleright If the switch is toggled then the light will be turned on

Non-Necessary Antecedents

- The antecedent \mathcal{A} of a conditional if \mathcal{A} then \mathcal{C} is said to be non-necessary iff \mathcal{A} is not necessary
- \mathcal{C} may be true without \mathcal{A} being true
- Can you name conditionals with non-necessary antecedent?
\triangleright If Polly is a parrot then Polly is a bird
\triangleright If the number ends with 3 then it is an odd number
\triangleright If the car has no gas then it will not run
\triangleright If it is raining then she is taking her umbrella
\triangleright If a person is drinking beer then the person must be over 19 years of age
\triangleright If the sun is shining then she is going to the swimming pool
\triangleright If I want to meet friends then I will go to my favorite pub
\triangleright If Nancy rides her motorbike she goes to the mountains

Necessary versus Non-Necessary Antecedents - Summary

- Humans may classify antecedents as necessary or non-necessary
- The classification is informal and pragmatic
- It depends on
\triangleright the background knowledge and experience of a human as well as on
\triangleright the context in which a conditional is stated

Representing the Semantics of Conditionals

- Conditional if A then C
- Represented by

$$
\begin{aligned}
& C \leftarrow A \wedge \neg a b \\
& a b \leftarrow \leftarrow
\end{aligned}
$$

- Abducibles are

$$
\mathcal{A}_{\mathcal{P}}=\{\boldsymbol{A} \leftarrow \top, \boldsymbol{A} \leftarrow \perp\}
$$

- We extend the set of abducibles

$$
\mathcal{A}_{\mathcal{P}}^{e}=\mathcal{A}_{\mathcal{P}} \cup \mathcal{A}_{\mathcal{P}}^{n n} \cup \mathcal{A}_{\mathcal{P}}^{f}
$$

where

$$
\begin{aligned}
& \mathcal{A}_{\mathcal{P}}^{n n}=\left\{C \leftarrow \top \left\lvert\, \begin{array}{l}
C \text { is head of a rule in } \mathcal{P} \text { representing } \\
\text { a conditional with non-necessary antecedent }\}
\end{array}\right.\right. \\
& \mathcal{A}_{\mathcal{P}}^{f}=\left\{a b \leftarrow \top \left\lvert\, \begin{array}{l}
\text { ab occurs in the body of a rule in } \mathcal{P} \\
\text { representing a factual conditional }\}
\end{array}\right.\right.
\end{aligned}
$$

Returning to the Initial Example

$\boldsymbol{C} \leftarrow \boldsymbol{A} \wedge \neg \boldsymbol{a b}$	\boldsymbol{A} non-necessary	\boldsymbol{A} necessary
Factual conditional	$\boldsymbol{a b} \leftarrow \top, \boldsymbol{C} \leftarrow \top$	$\boldsymbol{a b} \leftarrow \top$
Obligation conditional	$\boldsymbol{C} \leftarrow \top$	

- If it rains then the roofs are wet
\triangleright Obligation conditional with necessary antecedent
$\triangleright \mathcal{A}_{\mathcal{P}}=\{$ rain $\leftarrow \top$, rain $\leftarrow \perp\}=\mathcal{A}_{\mathcal{P}}^{e}$
- If it rains then she takes her umbrella
\triangleright Factual conditional with non-necessary antecedent
$\triangleright \mathcal{A}_{\mathcal{P}}^{e}=\left\{\right.$ rain $\leftarrow \top$, rain $\leftarrow \perp$, umbrella $\leftarrow \top$, $\left.\boldsymbol{a b}_{u} \leftarrow \top\right\}$
- Are you happier now?

Reasoning with a Conditional

- First premise: conditional sentence if A then C
- Second premise: (possibly negated) atomic sentence
\triangleright affirmation of the antecedent (AA)
\triangleright denial of the antecedent (DA)
\triangleright affirmation of the consequent (AC)
\triangleright denial of the consequent (DC)
- What follows?

Reasoning with a Conditional - Examples

- If it rains then the roofs must be wet

It rains (AA)

- If Pauls rides a motorbike then Paul must wear a helmet Paul does not ride a motorbike (DA)
- If the library is open then Elisa is studying late in the library Elisa is studying late in the library (AC)
- If Nancy rides her motorbike then Nancy goes to the mountains Nancy does not go to the mountains (DC)
- What follows?

Facts, Assumptions, or Observations

- First premise

$$
\begin{aligned}
C & \leftarrow A \wedge \neg a b \\
a b & \leftarrow \perp
\end{aligned}
$$

with set of abducibles

$$
\mathcal{A}=\{\boldsymbol{A} \leftarrow \top, \boldsymbol{A} \leftarrow \perp\}
$$

- Shall the second premise be represented as fact, assumption, or observation?
\triangleright So far, if atom undefined then fact or assumption else observation
\triangleright In this section, always observation

An Experiment

- 56 logically naive participants from mid-Europe including UK
- Proficient speakers in English
- They were given a short story and thereafter
\triangleright a conditional sentence and a (possibly negated) atomic sentence
- What follows?
- 48 problems consisting of 12 conditionals classified by the authors
- Solved all four inference types (AA, DA, AC, DC)
- Participants could answer
\triangleright corresponding atomic sentence which was not presented as second premise
\triangleright corresponding negated atomic sentence
\triangleright nothing (new) follows (nf)
- Participants acted as their own controls

Conditionals used in the Experiment

- Obligation Conditionals with Necessary Antecedent
(1) If it rains then the roofs must be wet
(2) If water in the cooking pot is heated over $99^{\circ} \boldsymbol{C}$ then the water starts boiling
(3) If the wind is strong enough then the sand is blowing over the dunes
- Obligation Conditionals with Non-Necessary Antecedent
(4) If Paul rides a motorbike then Paul must wear a helmet
(5) If Maria is drinking alcoholic beverages in a pub then Maria must be over 19 years of age
(6) If it rains then the lawn must be wet
- Factual Conditionals with Necessary Antecedent
(7) If the library is open then Sabrina is studying late in the library
(8) If the plants get water then they will grow
(9) If my car's start button is pushed then the engine will start running
- Factual Conditionals with Non-Necessary Antecedent
(10) If Nancy rides her motorbike then Nancy goes to the mountains
(11) If Lisa plays on the beach then Lisa will get sunburned
(12) If Ron scores a goal then Ron is happy

Affirmation of the Antecedent (AA)

Class	C	$\neg C$	$n f$	Sum	Mdn C	Mdn $n \boldsymbol{f}$
(1)	55	1	0	56	3343	$n a$
(2)	55	1	0	56	3487	$n a$
(3)	53	3	0	56	3516	$n a$
Obligation+necessary	$163(.97)$	$5(.03)$	0	168	3408	$n a$
(4)	53	1	2	56	3403	3472
(5)	53	2	1	56	3903	3572
(6)	54	1	1	56	3088	6959
Obligation+non-necessary	$160(.95)$	$4(.02)$	$4(.02)$	168	3543	4183
(7)	49	1	6	56	3885	7051
(8)	54	1	1	56	3559	7349
(9)	54	1	1	56	3710	3826
Factual+necessary	$157(.93)$	$3(.02)$	$8(.05)$	168	3615	6926
(10)	51	2	3	56	3929	6647
(11)	54	1	1	56	3777	5073
(12)	55	1	0	56	2977	$n a$
Factual+non-necessary	$160(.95)$	$4(.02)$	$4(.02)$	168	3644	5860
Obligation	323	9	4	336	3516	4183
Factual	317	7	12	336	3640	6575
Necessary	320	8	8	336	3546	6926
Non-necessary	320	8	8	336	3588	4934
Total	$640(.95)$	$16(.02)$	$16(.02)$	672	3570	5925

AA - Details

$\triangleright \mathcal{P}=\{C \leftarrow A \wedge \neg a b, a b \leftarrow \perp\}$

$$
\mathcal{A}_{\mathcal{P}}=\{\boldsymbol{A} \leftarrow \top, \boldsymbol{A} \leftarrow \perp\}
$$

- $\mathcal{O}=\{A\}$ is explained by $\{A \leftarrow T\}$
- Neither $\{C \leftarrow T\}$ nor $\{a b \leftarrow T\}$ can explain \mathcal{O}

if A then C	$\langle\emptyset,\{a b\}\rangle$	
A	abduction $\mathcal{A}_{\mathcal{P}} / \mathcal{A}_{\mathcal{P}}^{e}$ $\langle\{A, C\},\{a b\}\rangle$	C

- Please check an example for each class!

Denial of the Antecedent (DA)

Class	C	$\neg C$	$\boldsymbol{n f}$	Sum	Mdn $\neg \boldsymbol{C}$	Mdn $\boldsymbol{n f}$
(1)	0	45	11	56	2863	4901
(2)	2	54	0	56	3367	$n a$
(3)	2	51	3	56	3647	10477
Obligation+necessary	$4(0.2)$	$150(.89)$	$14(.08)$	168	3356	5115
(4)	1	40	15	56	3722	7189
(5)	3	28	25	56	5735	7814
(6)	4	36	16	56	3602	6240
Obligation+non-necessary	$8(.05)$	$104(.62)$	$56(.33)$	168	4064	7471
(7)	2	51	3	56	3928	7273
(8)	1	47	8	56	3296	5728
(9)	1	52	3	56	3549	8735
Factual+necessary	$4(.02)$	$150(.89)$	$14(.08)$	168	3605	6582
(10)	1	39	16	56	3725	6874
(11)	0	41	15	56	3374	5887
(12)	1	41	14	56	3205	7002
Factual+non-necessary	$2(.01)$	$121(.72)$	$45(.28)$	168	3374	6221
Obligation	12	254	70	336	3583	6613
Factual	6	271	59	336	3518	6221
Necessary	$8(.02)$	$300(.89)$	$28(.08)$	336	3474	5808
Non-necessary	$10(.03)$	$225(.67)$	$101(.30)$	336	3646	6700
Total	$18(.03)$	$525(.78)$	$129(.19)$	672	3558	6450

DA - Details

- $\mathcal{P}=\{C \leftarrow A \wedge \neg a b, a b \leftarrow \perp\}$

$$
\mathcal{A}_{\mathcal{P}}=\{\boldsymbol{A} \leftarrow \top, \boldsymbol{A} \leftarrow \perp\}
$$

- $\mathcal{O}=\{\neg A\}$ is explained by
$\triangleright\{\boldsymbol{A} \leftarrow \perp\}$
$\triangleright\{\boldsymbol{A} \leftarrow \perp, C \leftarrow \top\}$ (in case of a non-necessary antecedent)

if A then C	$\langle\emptyset,\{a b\}\rangle$	
$\neg A$	abduction $\mathcal{A}_{\mathcal{P}}$ $\langle\emptyset,\{A, C, a b\}\rangle$	$\neg C$
	abduction $\mathcal{A}_{\mathcal{P}}^{e}$	$\neg C / n f$

- Please check an example for each class!

Affirmation of the Consequent (AC)

Class	\boldsymbol{A}	$\neg \boldsymbol{A}$	$\boldsymbol{n f}$	Sum	Mdn \boldsymbol{A}	Mdn $\boldsymbol{n f}$
(1)	37	1	18	56	3952	7995
(2)	48	1	7	56	4003	4170
(3)	43	1	12	56	3458	9001
Obligation+necessary	$128(.76)$	$3(.02)$	$37(.22)$	168	3797	8175
(4)	42	1	13	56	3659	8828
(5)	32	1	23	56	4704	6044
(6)	29	1	26	56	3593	4396
Obligation+non-necessary	$103(.61)$	$3(.02)$	$62(.37)$	168	3968	5939
(7)	51	1	4	56	3767	4397
(8)	42	1	13	56	3798	4565
(9)	45	1	10	56	3492	4598
Factual+necessary	$138(.82)$	$3(.02)$	$27(.16)$	168	3699	4565
(10)	34	2	20	56	5224	6289
(11)	29	2	25	56	3218	6205
(12)	33	1	22	56	3483	4992
Factual+non-necessary	$96(.57)$	$5(.03)$	$67(.40)$	168	3885	6116
Obligation	231	6	99	336	3888	6044
Factual	234	8	94	336	3769	5650
Necessary	$266(.79)$	$6(.02)$	$64(.19)$	336	3735	5450
Non-necessary	$199(.59)$	$8(.02)$	$129(.38)$	336	3906	6039
Total	$465(.69)$	$14(.02)$	$193(.29)$	672	3826	5802

AC - Details

- $\mathcal{P}=\{C \leftarrow A \wedge \neg a b, a b \leftarrow \perp\}$

$$
\mathcal{A}_{\mathcal{P}}=\{\boldsymbol{A} \leftarrow \top, \boldsymbol{A} \leftarrow \perp\}
$$

- $\mathcal{O}=\{C\}$ is explained by
$\triangleright\{\boldsymbol{A} \leftarrow T\}$
$\triangleright\{C \leftarrow \top\}$ (in case of a non-necessary antecedent)

if A then \boldsymbol{C}	$\langle\emptyset,\{a b\}\rangle$
\boldsymbol{C}	abduction $\mathcal{A}_{\mathcal{P}}$ $\langle\{\boldsymbol{A}, \boldsymbol{C}\},\{a b\}\rangle$
	\boldsymbol{A}
	abduction $\mathcal{A}_{\mathcal{P}}^{e}$

- Please check an example for each class!

Denial of the Consequent (DC)

Class	\boldsymbol{A}	$\neg \boldsymbol{A}$	$\boldsymbol{n f}$	Sum	Mdn $\neg \boldsymbol{A}$	Mdn $\boldsymbol{n f}$
(1)	1	45	10	56	3449	4758
(2)	0	50	6	56	4058	7922
(3)	2	46	8	56	3796	4517
Obligation+necessary	$3(.02)$	$141(.84)$	$24(.14)$	168	3767	5732
(4)	3	46	7	56	3872	4154
(5)	1	54	1	56	4946	8020
(6)	0	36	20	56	4062	5235
Obligation+non-necessary	$4(.02)$	$136(.81)$	$28(.17)$	168	4293	5803
(7)	1	37	18	56	5974	4744
(8)	3	42	11	56	4367	5013
(9)	0	47	9	56	4208	3966
Factual+necessary	$4(0.2)$	$126(.75)$	$38(.23)$	168	4849	4574
(10)	2	35	19	56	4879	4167
(11)	0	39	17	56	4411	5647
(12)	0	34	22	56	3726	3813
Factual+non-necessary	$2(.01)$	$108(.64)$	$58(.35)$	168	4338	4542
Obligation	$7(.02)$	$277(.82)$	$52(.15)$	336	4053	4790
Factual	$6(.02)$	$234(.70)$	$96(.28)$	336	4459	4345
Necessary	7	267	62	336	4096	4758
Non-necessary	6	244	86	336	4325	4555
Total	$13(.02)$	$511(.76)$	$148(.22)$	672	4311	5162

DC - Details

- $\mathcal{P}=\{C \leftarrow A \wedge \neg a b, a b \leftarrow \perp\}$

$$
\mathcal{A}_{\mathcal{P}}=\{\boldsymbol{A} \leftarrow \top, \boldsymbol{A} \leftarrow \perp\}
$$

- $\mathcal{O}=\{\neg C\}$ is explained by
$\triangleright\{\boldsymbol{A} \leftarrow \perp\}$
$\triangleright\{a b \leftarrow \top\}$ (in case of a factual conditional)

if \boldsymbol{A} then \mathbf{C}	$\langle\emptyset,\{a b\}\rangle$	
$\neg C$	abduction $\mathcal{A}_{\mathcal{P}}$ $\langle\emptyset,\{A, C, a b\}\rangle$	$\neg A$
	abduction $\mathcal{A}_{\mathcal{P}}^{\boldsymbol{e}}$	$\neg A / n f$

- Please check an example for each class!

Reasoning About a Conditional

- Revision
- Minimal Revision Followed by Abduction
- Pam is Well
- The Moon is Not Made out of Cheese
- The Suppression Task Revisited
- The Shooting of Kennedy
- The Firing Squad
- The Forest Fire
- Relevance
- The Selection Task

Experiment - The Firing Squad

- Pearl: Causality: Models, Reasoning, and Inference: 2000
- If the court orders an execution, then the captain will give the signal upon which riflemen A and B will shoot the prisoner
Consequently the prisoner will be dead
- We assume that
\triangleright the court's decision is unknown
\triangleright both riflemen are accurate, alert, and law-abiding
\triangleright the rifles are operating as expected
\triangleright the prisoner is unlikely to die from any other causes
- Evaluate the following conditionals (true, false, unknown)
\triangleright If the prisoner is not dead then the captain did not signal
\triangleright If rifleman A shot then rifleman B shot as well
\triangleright If rifleman A did not shoot then the prisoner is not dead
\triangleright If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

More on Conditionals

- In the sequel, let if \mathcal{A} then \mathcal{C} be a conditional, where
\triangleright antecedent \mathcal{A} and consequence \mathcal{C} are finite and consistent sets of ground literals
- Conditionals are evaluated wrt some background knowledge
\triangleright a finite propositional or datalog program \mathcal{P}
\triangleright an equational theory \mathcal{E}
\triangleright a set of integrity constraints $\mathcal{I C}$ such that $\mathcal{M}_{\boldsymbol{w c \mathcal { P }}}$ satisfies $\mathcal{I C}$
- We distinguish three cases wrt the value of the antecedent under $\mathcal{M}_{w c \mathcal{P}}$

Indicative Conditionals

- Let if \mathcal{A} then \mathcal{C} be a conditional such that $\mathcal{M}_{\text {wc } \mathcal{P}} \mathcal{A}=\top$
\triangleright Such conditionals are often called indicative conditionals
\triangleright Their consequent is asserted to be true if their antecedent is true
\triangleright Check whether $\mathcal{M}_{\boldsymbol{w} \boldsymbol{\mathcal { P }}} \mathcal{C}=\top$ holds

Counterfactuals

- Let if \mathcal{A} then \mathcal{C} be a conditional such that $\mathcal{M}_{w c \mathcal{P}} \mathcal{A}=\perp$
\triangleright Such conditionals are sometimes called counterfactuals
\rightarrow Their antecedent is false
\rightarrow Their consequent may or may not be true
\rightarrow But in the counterfactual circumstance of the antecedent being true the consequence is asserted to be true
\triangleright Counterfactuals are always true because the premise is false Eco: The Name of the Rose: 1988
\rightarrow Humans do not consider counterfactuals this way
m Counterfactuals are very important Byrne: Counterfactuals in XAI: 2019
\rightarrow If the car had detected the pedestrian earlier and braked the passenger would not have been injured
\rightarrow If the car had not swerved and hit the wall the passenger would not have been injured
\triangleright We need to revise the background knowledge

Revision

- Let \mathcal{S} be a finite and consistent set of literals

$$
\operatorname{rev}(\mathcal{P}, \mathcal{S})=(\mathcal{P} \backslash \operatorname{defs}(\mathcal{P}, \mathcal{S})) \cup \mathcal{S}^{\uparrow}
$$

is called the revision of \mathcal{P} with respect to \mathcal{S}

$$
\begin{aligned}
& \operatorname{rev}\left(\left\{e \leftarrow \top, \ell \leftarrow e \wedge \neg a b_{e}, a b_{e} \leftarrow \perp\right\},\{\neg \ell\}\right) \\
& =\left\{e \leftarrow \top, \ell \leftarrow \perp, a b_{e} \leftarrow \perp\right\}
\end{aligned}
$$

- Proposition 31

Let \mathcal{P} be a program, \mathcal{E} an equational theory, and \mathcal{S} a consistent set of literals
$\triangleright r e v$ is nonmonotonic
\triangleright If $\mathcal{M}_{w c \mathcal{P}} L=U$ for all $L \in \mathcal{S}$ then rev is monotonic: $\mathcal{M}_{w c \mathcal{P}} \subseteq \mathcal{M}_{w c r e v(\mathcal{P}, \mathcal{S})}$
$\triangleright \mathcal{M}_{w c r e v(\mathcal{P}, \mathcal{S})} \mathcal{S}=\top$

- Proof \rightsquigarrow Exercise

Unknown Antecedents

- Let if \mathcal{A} then \mathcal{C} be a conditional such that $\mathcal{M}_{w c \mathcal{P}} \mathcal{A}=\mathrm{U}$
\triangleright To the best of my knowledge this case has not been considered so far
\triangleright We believe that humans would like to assign true to the antecedent
\rightarrow Skeptical abduction
m Revision
\triangleright There are scenarios where abduction alone cannot solve the problem
\triangleright We propose to
\rightarrow minimally revise the background knowledge
\rightarrow and to apply skeptical abduction
\rightarrow such that the antecedent becomes true
\triangleright Do humans make an attempt to assign false to the antecedent?

Minimal Revision Followed by Abduction (MRFA)

- Given $\mathcal{P}, \mathcal{E}, \mathcal{I C}$, and the conditional sentence if \mathcal{A} then \mathcal{C}
- If $\mathcal{M}_{w c \mathcal{P}}$ does not satisfy $\mathcal{I C}$, then
\triangleright if $\mathcal{O}=\emptyset$ can be explained by $\mathcal{X} \subseteq \mathcal{A}_{\mathcal{P}}$ then evaluate if \mathcal{A} then \mathcal{C} with respect to $\mathcal{M}_{\text {wc }(\mathcal{P} \cup \mathcal{X})}$ else nothing follows
- If $\mathcal{M}_{w c \mathcal{P}} \mathcal{A}=\top$, then the value of if \mathcal{A} then \mathcal{C} is $\mathcal{M}_{w c \mathcal{P}} \mathcal{C}$
- If $\mathcal{M}_{w c \mathcal{P}} \mathcal{A}=\perp$, then evaluate if \mathcal{A} then \mathcal{C} wrt $\mathcal{M}_{w c \operatorname{rev}(\mathcal{P}, \mathcal{S})}$, where
$\triangleright \mathcal{S}=\left\{L \in \mathcal{A} \mid \mathcal{M}_{w c \mathcal{P}} L=\perp\right\}$
- If $\mathcal{M}_{w c \mathcal{P}} \mathcal{A}=\mathrm{U}$, then evaluate if \mathcal{A} then \mathcal{C} wrt $\mathcal{M}_{w c \mathcal{P}^{\prime}}$, where
$\triangleright \mathcal{P}^{\prime}=\operatorname{rev}(\mathcal{P}, \mathcal{S}) \cup \mathcal{X}$,
$\triangleright \mathcal{S}$ is a minimal subset of \mathcal{A},
$\triangleright \mathcal{X} \subseteq \mathcal{A}_{\operatorname{rev}(\mathcal{P}, \mathcal{S})}$ is an explanation for $\mathcal{A} \backslash \mathcal{S}$
\triangleright such that $\mathcal{P}^{\prime} \models_{\text {wcs }} \mathcal{A}$ and $\mathcal{M}_{\text {wc }}$, satisfies $\mathcal{I C}$
- Abduction has to be applied skeptically

Pam is well

- $\mathcal{P}=\{$ well $\leftarrow \top\}$
- $\mathcal{M}_{w c \mathcal{P}}=\langle\{w e l l\}, \emptyset\rangle$
- Evaluate if Pam is not well, then she has the flu
- $\operatorname{rev}(\mathcal{P}, \neg$ well $)=\{$ well $\leftarrow \perp\}$
$-\mathcal{M}_{w c \operatorname{rev}(\mathcal{P}, \neg w e l l)}=\langle\emptyset,\{$ well $\}\rangle$
- Hence, the value of the conditional is unknown
- The conditional is not treated as an implication

The Moon is Not Made out of Cheese

- IC $=\{\perp \leftarrow$ cheese $\}$
- $\mathcal{P}=\emptyset$
- $\mathcal{M}_{w c \mathcal{P}}=\langle\emptyset, \emptyset\rangle$
- $\mathcal{X}=\{$ Cheese $\leftarrow \perp\}$ explains $\mathcal{O}=\emptyset$
- $\mathcal{M}_{w c(\mathcal{P} \cup \mathcal{X})}=\langle\emptyset,\{$ cheese $\}\rangle$
- Evaluate if the moon is made out of cheese, then life exists on other planets
$\checkmark \operatorname{rev}(\mathcal{P} \cup \mathcal{X}$, cheese $)=\{$ cheese $\leftarrow \top\}$
- $\mathcal{A}_{\{\text {cheese } \leftarrow \top\}}=\emptyset$
- nothing follows

The Suppression Task Revisited Again - Background Knowledge

- In the remainder of this section $\mathcal{E}=\mathcal{I C}=\emptyset$
- Group 1
\triangleright If she has an essay to write then she will study late in the library
- Group 2
\triangleright If she has an essay to write then she will study late in the library
\triangleright If she has some textbooks to read then she will study late in the library
- Group 3
\triangleright If she has an essay to write then she will study late in the library
\triangleright If the library stays open then she will study late in the library

The Suppression Task Revisited Again - Conditionals

- The groups are asked to evaluate the following conditionals
\triangleright If she has an essay to write then she will study late in the library
$\mapsto \mathcal{S}=\emptyset, \mathcal{X}=\{e \leftarrow \top\}$
\triangleright If she does not have an essay to write then she will not study late in the library
$\mapsto \mathcal{S}=\emptyset, \mathcal{X}=\{e \leftarrow \perp\}$
\triangleright If she will study late in the library then she has an essay to write \rightarrow Exercise
\triangleright If she will not study late in the library then she does not have an essay to write
- Exercise
- Applying MRFA yields the same results as before
\triangleright Skeptical reasoning is required
\triangleright It should be experimentally verified

The Shooting of Kennedy

- Adams: Subjunctive and indicative conditionals: 1970
- Background knowledge
\triangleright If Oswald shot then the president was killed
\triangleright If somebody else shot then the president was killed
\triangleright Oswald shot
- Reasoning towards a program \mathcal{P}

$$
\begin{array}{lllllll}
\boldsymbol{k} \leftarrow & \leftarrow \text { os } \wedge \neg a b_{\text {os }} & a b_{\text {os }} & \leftarrow & \perp & \text { os } & \leftarrow \\
\boldsymbol{k} & \leftarrow & \text { ses } \wedge \neg a b_{\text {ses }} & a b_{\text {ses }} & \leftarrow & \perp &
\end{array}
$$

- Weakly completing \mathcal{P} and computing $\mathcal{M}_{w c \mathcal{P}}$

$$
\left\langle\{o s, k\},\left\{a b_{o s}, a b_{s e s}\right\}\right\rangle
$$

- Evaluate
\triangleright If Oswald did not shoot Kennedy in Dallas then no one else would have
\triangleright If Kennedy was killed in Dallas and Oswald did not shoot then no one else would have

The Shooting of Kennedy - The Set of Abducibles

- Recall

\boldsymbol{k}	\leftarrow os $\wedge \neg a b_{\text {os }}$	$a b_{\text {os }}$	\leftarrow	\perp
\boldsymbol{k}	$\leftarrow \operatorname{ses} \wedge \neg a b_{\text {ses }}$	$a b_{\text {ses }}$	\leftarrow	\perp

- How would you classify the two conditionals of the background knowledge?
\triangleright Factual conditionals with non-necessary antecedent
- Now consider
if Oswald shot or somebody else shot, then the president was killed
\triangleright Factual (generalized) conditional with necessary antecedent
- The set of abducibles

$$
\left\{\text { ses } \leftarrow \top, \text { ses } \leftarrow \perp, \text { ab } b_{\text {os }} \leftarrow \top, \text { ab ses } \leftarrow \top\right\}
$$

$\triangleright k \leftarrow \top$ is not added

The Shooting of Kennedy - First Conditional

- If Oswald did not shoot Kennedy in Dallas then no one else would have

$$
\text { if } \neg \text { os then } \neg \text { ses }
$$

- $\operatorname{rev}(\mathcal{P},\{\neg o s\})$

$$
\begin{array}{lllllll}
\boldsymbol{k} \leftarrow & \leftarrow \text { os } \wedge \neg a b_{\text {os }} & a b_{o s} & \leftarrow & \perp & \text { os } \quad \leftarrow & \perp \\
\boldsymbol{k} & \leftarrow \text { ses } \wedge \neg a b_{\text {ses }} & a b_{\text {ses }} & \leftarrow & \perp & &
\end{array}
$$

- $\mathcal{M}_{w c} \operatorname{rev}(\mathcal{P},\{\neg \boldsymbol{o s}\})$

$$
\left\langle\emptyset,\left\{o s, a b_{o s}, a b_{\text {ses }}\right\}\right\rangle
$$

- The counterfactual is unknown

The Shooting of Kennedy - Second Conditional

- If Kennedy was killed and Oswald did not shoot then no one else did

$$
\text { if }\{k, \neg o s\} \text { then } \neg \text { ses }
$$

- $\operatorname{rev}(\mathcal{P},\{\neg o s\})$

$$
\begin{array}{llrllll}
\boldsymbol{k} \leftarrow \text { os } \wedge \neg a b_{\text {os }} & a b_{\text {os }} & \leftarrow & \perp & \text { os } \quad \leftarrow & \perp \\
k & \leftarrow \text { ses } \wedge \neg a b_{\text {ses }} & a b_{\text {ses }} & \leftarrow & \perp & &
\end{array}
$$

- $\mathcal{M}_{w c} \operatorname{rev}(\mathcal{P},\{\neg o s\})$

$$
\left\langle\emptyset,\left\{o s, a b_{o s}, a b_{\text {ses }}\right\}\right\rangle
$$

- $\mathcal{A}_{\text {rev(} \mathcal{P},\{\neg o s\})}^{e}$

$$
\left\{\text { ses } \leftarrow \top, \text { ses } \leftarrow \perp, a b_{o s} \leftarrow \top, \text { abses } \leftarrow \top\right\}
$$

- $\mathcal{M}_{w c(r e v(\mathcal{P},\{\neg o s\}) \cup\{s e s \leftarrow \top\})}$

〈\{ses, $\left.k\},\left\{o s, a b_{o s}, a b_{\text {ses }}\right\}\right\rangle$

- The counterfactual is false

Modeling the Firing Squad

- Reasoning towards a program \mathcal{P}

signal	\leftarrow	execution $\wedge \neg a b_{1}$	$a b_{1}$	\leftarrow	\perp
rifleman $_{\text {A }}$	\leftarrow	signal $\wedge \neg a b_{2}$	$a b_{2}$	\leftarrow	\perp
rifleman $_{\text {B }}$	\leftarrow	signal $\wedge \neg a b_{3}$	$a b_{3}$	\leftarrow	-
dead	\leftarrow	rifleman $_{A} \wedge \neg a b_{4}$	$a b_{4}$	\leftarrow	\perp
dead	\leftarrow	rifleman $_{B} \wedge \neg a b_{5}$	$a b_{5}$	\leftarrow	\perp
alive	\leftarrow	\neg dead $\wedge \neg a b_{6}$	$a b_{6}$	\leftarrow	\perp

- Weakly completing the program and computing $\mathcal{M}_{w c \mathcal{P}}$

$$
\left\langle\emptyset,\left\{a b_{1}, a b_{2}, a b_{3}, a b_{4}, a b_{5}, a b_{6}\right\}\right\rangle
$$

- The set of abducibles $\mathcal{A}_{\mathcal{P}}$

$$
\{\text { execution } \leftarrow \top, \text { execution } \leftarrow \perp\}
$$

$\triangleright \mathcal{X}_{\top}=\{$ execution $\leftarrow \top\}$
explains $\left\{\right.$ signal, rifleman ${ }_{A}$, rifleman $_{B}$, dead, \neg alive $\}$
$\triangleright \mathcal{X}_{\perp}=\{$ execution $\leftarrow \perp$ \} explains $\left\{\neg\right.$ signal,\neg rifleman $_{A}, \neg$ rifleman $_{B}, \neg$ dead, alive $\}$
$\triangleright\left\{\neg\right.$ signal, rifleman $\left.{ }_{A}\right\}$ cannot be explained

The Firing Squad - Conditionals

- Recall
$\triangleright \mathcal{X}_{\top}=\{$ execution $\leftarrow \top\}$ explains $\left\{\right.$ signal, rifleman $_{A}$, rifleman $_{B}$, dead, \neg alive $\}$
$\triangleright \mathcal{X}_{\perp}=$ \{execution $\leftarrow \perp$ \} explains $\left\{\neg\right.$ signal,\neg rifleman $_{A}, \neg$ rifleman ${ }_{B}, \neg$ dead, alive $\}$
$\triangleright\left\{\neg\right.$ signal, rifleman $\left._{A}\right\}$ cannot be explained
- If the prisoner is alive then the captain did not signal

$$
\text { if alive then } \neg \text { signal }: \mathcal{P} \mapsto \mathcal{P} \cup \mathcal{X}_{\perp} \mapsto \top
$$

- If rifleman A shot then rifleman B shot as well

$$
\text { if rifleman }{ }_{A} \text { then rifleman }{ }_{B}: \mathcal{P} \mapsto \mathcal{P} \cup \mathcal{X}_{\top} \mapsto \top
$$

- If the captain gave no signal and rifleman A decides to shoot then the court did not order an execution
if $\left\{\neg\right.$ signal, rifleman $\left._{A}\right\}$ then \neg execution $: \mathcal{P} \mapsto \operatorname{rev}\left(\mathcal{P},\left\{\right.\right.$ rifleman $\left.\left._{A}\right\}\right) \cup \mathcal{X}_{\perp} \mapsto \top$

The Firing Squad - Last Conditional Revisited

- If the captain gave no signal and rifleman A decides to shoot then the court did not order an execution

$$
\mathcal{P} \mapsto \operatorname{rev}\left(\mathcal{P},\left\{\text { rifleman }_{A}\right\}\right) \cup \mathcal{X}_{\perp} \mapsto \top
$$

- Consider the dependency graphs (ignoring abnormalities)

rifleman ${ }_{B}$

rifleman $_{B}$
rifleman $_{A}$

rifleman $_{B}$
- unknown o true - false

The Forest Fire Example

- Byrne: The Rational Imagination: 2005
- Suppose lightning hits a forest and a devastating forest fire breaks out The forest was dry after a long hot summer and many acres were destroyed
- Causal relationships lightning caused the forest fire
- Enabling relationships dry leaves made it possible for the fire to occur
- An enabler is usually not considered to be the cause for an event
- A missing enabler can prevent an event

Encoding the Forest Fire Example

－Lightning may cause a forest fire Lightning happened Dry leaves are present
－If there had not been so many dry leaves on the forest floor then the forest fire would not have occurred

	$\Phi_{\mathcal{P}}$	$\Phi_{\operatorname{rev}(\mathcal{P},\{\neg \text { dryleaves }\})}$
$\uparrow 0$	$\langle\emptyset, \emptyset\rangle$	$\langle\emptyset, \emptyset\rangle$
$\uparrow 1$	＜\｛dryleaves，lightning\}, $\emptyset\rangle$	〈\｛lightning\}, \{dryleaves\}>
$\uparrow 2$	〈\｛dryleaves，lightning\}, $\left\{a b_{\ell}\right\}$ 〉	〈\｛lightning， ab_{ℓ} \}, \{dryleaves\}〉
$\uparrow 3$	〈\｛dryleaves，lightning，ff \}, $\left.\left\{\boldsymbol{a b}_{\ell}\right\}\right\rangle$	〈\｛lightning， $\left.\mathrm{ab}_{\ell}\right\}$ ，\｛dryleaves，ff \} ${ }^{\text {，}}$

－The counterfactual is true

The Extended Forest Fire Example 1

- Pereira, Dietz, H.: Contextual Abductive Reasoning with Side-Effects: 2014
- Add to the previous example Arson may cause a forest fire
- If there had not been so many dry leaves on the forest floor then the forest fire would not have occurred

$$
\begin{aligned}
\mathcal{P}=\quad & \left\{\text { ff } \leftarrow \text { lightning } \wedge \neg a b_{\ell}, \text { ff } \leftarrow \text { arson } \wedge \neg a b_{a},\right. \\
& \text { lightning } \leftarrow \top, a b_{\ell} \leftarrow \neg \text { dryleaves }, \\
& \text { dryleaves } \left.\leftarrow \top, a b_{a} \leftarrow \perp\right\} \\
\mathcal{M}_{w c \mathcal{P}}=\quad & \left\langle\{\text { dryleaves, lightning, ff }\},\left\{a b_{\ell}, a b_{a}\right\}\right\rangle \\
\operatorname{rev}(\mathcal{P},\{\neg \text { dryleaves }\})=\quad & \left\{\text { ff } \leftarrow \text { lightning } \wedge \neg a b_{\ell}, \text { ff } \leftarrow \text { arson } \wedge \neg a b_{a},\right. \\
& \text { lightning } \leftarrow \top, a b_{\ell} \leftarrow \neg \text { dryleaves }, \\
& \text { dryleaves } \left.\leftarrow \perp, a b_{a} \leftarrow \perp\right\} \\
\mathcal{M}_{w c} \operatorname{rev}(\mathcal{P},\{\neg \text { dryleaves }\})= & \left\langle\left\{\text { lightning }, a b_{\ell}\right\},\left\{\text { dryleaves }, \text { ab } b_{a}\right\}\right\rangle
\end{aligned}
$$

- The counterfactual is unknown

TECHNISCHE

The Extended Forest Fire Example 2

- If there had not been so many dry leaves on the forest floor and there was no arson then the forest fire would not have occurred
- What will happen?

The Selection Task - The Abstract Case

- Wason: Reasoning About a Rule: 1968
- If the letter dis on one side of a card then the number 3 is on the other side

- Which cards must be turned to show that the rule holds?
- Humans typically turn the cards showing d and 3

An Analysis of the Abstract Case

- Stenning, van Lambalgen: Human Reasoning and Cognitive Science: 2008
\triangleright With respect to classical two-valued logic!
- Almost everyone (89\%) correctly selects d
\triangleright Corresponds to modus ponens in classical logic
- Almost everyone (84\%) correctly does not select \boldsymbol{f}
\triangleright Because the condition does not mention f
- Many (62\%) incorrectly select 3
\triangleright If there is a 3 on one side then there is a d on the other side
\triangleright Converse of the given conditional
- Only a small percentage of participants (25\%) correctly selects 7
\triangleright If the number on one side is not 3 then the letter on the other side is not d
\triangleright Contrapositive of the given conditional

The Selection Task - The Social Case

- Griggs, Cox: The Elusive Thematic Materials Effect in the Wason Selection Task: 1982
- If a person is drinking beer then the person must be over 19 years of age
beer

- Which cards must be turned to show that the rule holds?
- Humans typically turn the cards showing beer and 16yrs

The Selection Task - Alternative Conditional 1

- If Nancy rides her motorbike she goes to the mountains

- Which cards must be turned to show that the rule holds?

The Selection Task - Alternative Conditional 2

- If it rains then the roofs are wet

Which cards must be turned to show that the rule holds?

The Selection Task

- The Abstract Case
\triangleright If there is the letter d on one side of the card then the number 3 is on the other side
\rightarrow Factual conditional with necessary antecedent
- The Social Case
\triangleright If a person is drinking beer then the person must be over 19 years of age
\Perp Obligational conditional with non-necessary antecedent

$\boldsymbol{C} \leftarrow \boldsymbol{A} \wedge \neg a b$	non-necessary	necessary
factual obligational	$\boldsymbol{a b} \leftarrow \top, \boldsymbol{C} \leftarrow \top$	$a b \leftarrow \top$

The Abstract Case: Factual Conditional with Necessary Antecedent

- If the letter d is on one side of a card then there is the letter 3 on the other side
- Reasoning towards a program yields

$$
\begin{array}{r}
\mathcal{P}=\left\{3 \leftarrow d \wedge \neg a b_{a}, a b_{a} \leftarrow \perp\right\} \\
\mathcal{A}_{\mathcal{P}}^{e}=\left\{d \leftarrow \top, d \leftarrow \perp, a b_{a} \leftarrow \top\right\}
\end{array}
$$

- Observations, least models, and decisions
$\boldsymbol{d} \quad \neg \boldsymbol{d}$

| true false |
| :---: | :---: | :---: | :---: | :---: |
| d $a b_{a}$ | d | d $\quad a b_{a}$ | d | $a b_{a}$ |
| 3 | $a b_{a}$ | 3 | $a b_{a}$ | 3 |
| | 3 | | 3 | |
| turn | no turn | turn | | |
| 0.89 | 0.16 | 0.62 | | |

3
turn
0.62
$\neg 3$

The Social Case: Obligation with Non-Necessary Antecedent

- If a person is drinking beer then the person must be over 19 years of age
- Reasoning towards a program yields

$$
\begin{array}{r}
\mathcal{P}=\left\{o \leftarrow b \wedge \neg a b_{s}, a b_{s} \leftarrow \perp\right\} \\
\mathcal{A}_{\mathcal{P}}^{e}=\{b \leftarrow \top, b \leftarrow \perp, o \leftarrow \top\}
\end{array}
$$

- Its set of abducibles is
- Observations, least models, and decisions

true	false								
b	$a b_{s}$	b$a b_{s}$		0	$a b_{s}$	b	$a b_{s}$		b
0						0			$a b_{s}$
		0							0
turn		no turn		no turn				turn0.80	
0.95		0.025		0.025					

The Selection Task - Summary

- We obtain adequate answers if
\triangleright the abstract case is interpreted as a factual conditional with necessary antecedent
\triangleright the social case is interpreted as an obligational conditional with non-necessary antecedent
\triangleright reasoning skeptically

Syllogisms

- Introduction
- A Meta-Study
- Seven Reasoning Principles
- The Representation of Quantified Statements
- Entailment
- Future Work

Introduction

- Consider the following inference

In some cases when I go out, I am not in company
Every time I am very happy I am in company
Therefore, in some cases when I go out, I am not very happy

- It is valid
\triangleright the conclusion is true in every case in which both premises are true
- Aristotle was the first to analyze syllogisms
- Syllogisms were central to logic until the second half of the 19th century
- Psychological studies of reasoning with determiners, such as some and all, have almost all concerned syllogistic reasoning

Reasoning

- The ability to reason is at the core of human mentality
- Many contexts in daily life call for inferences
\triangleright decisions about goals and actions
\triangleright evaluation of conjectures and hypothesis
\triangleright the pursuit of arguments and negotiations
\triangleright the assessment of evidence and data
\triangleright science, technology, and culture
- Examples
\triangleright Any experiment containing a confound is open to misinterpretation
\triangleright No current word processor spontaneously corrects a user's grammar
\triangleright Every chord containing three adjacent semitones is highly dissonant

Common Sense Reasoning

- In daily life, individuals reason in a variety of contexts, and often so rapidly that they are unaware of having made an inference
- Example
\triangleright Belinda: If you drop this cup it'll break
\triangleright Jeffrey: It looks pretty solid to me
\triangleright Belinda: Yes, but it's made from porcelain

An Example

- Try to determine, as quickly as you can, whether the following syllogism is valid

All roses are flowers
Some flowers fade quickly
Therefore, some roses fade quickly

- Now, take your time and think about it again

Another Example

- What follows necessarily from the following premises?

> some a are b
> no b are c

Aac all a are c
lac some a are c
Eac no a are ce answer by humans
Oac some a are not c answer by humans the only correct answer wrt FOL
Aca all care a
Ica some care a
Eca no care a
Oca some care not a
NVC no valid conclusion

Syllogisms

- 4 moods

mood (AFFIRMO NEGO)	natural language	FOL	short
affirmative universal (A)	all a are b	$(\forall X)(a X \rightarrow b X)$	Aab
affirmative existential (I)	some a are b	$(\exists X)(a X \wedge b X)$	lab
negative universal (E)	no a are b	$(\forall X)(a X \rightarrow \neg b X)$	Eab
negative existential (O)	some a are not b	$(\exists X)(a X \wedge \neg b X)$	Oab

- 4 figures

	figure 1	figure 2	figure 3	figure 4
premise 1	$\mathbf{a}-\mathbf{b}$	$\mathbf{b}-\mathbf{a}$	$\mathbf{a}-\mathbf{b}$	$\mathbf{b - a}$
premise 2	$\mathbf{b}-\mathbf{c}$	$\mathbf{c - b}$	$\mathbf{c - b}$	$\mathbf{b - c}$

- 64 pairs of premises
\triangleright abbreviated by the first and the second mood and the figure (e.g., IE1)
- 512 syllogisms
\triangleright possible conclusions are the 4 moods instantiated by a-c and c-a

A Meta-Study

- Khemlani, Johnson-Laird 2012
- Data from 6 studies
\triangleright Humans deviate from FOL reasoning
- 12 cognitive theories
\triangleright None of the $\mathbf{1 2}$ theories models human reasoning adequately
- The existence of 12 theories of any scientific domain is a small desaster
- If psychologists could agree on an adequate theory of syllogistic reasoning, then progress towards a more general theory of reasoning would seem to be feasible
- If researchers were unable to account for syllogistic reasoning, then they would have little hope of making sense of reasoning in general

Three Examples

- OA4: some bare not a all bare c
- IE4: some bare a no bare c
- IA2: some b are a all c are b

	participants	FOL	PSYCOP	mental models	verbal models
OA4	Oca	Oca	Oca	Oca	Oca
			Ica lac	Oac NVC	NVC
matching percentage		1.0	0.78	0.78	0.89
IE4	Oac NVC	Oac	Oac	Oac NVC	Oac NVC
			lac Ica	Eac Eca Oca	
matching percentage		0.89	0.67	0.67	1.00
IA2	Ica lac			Ica Ica	Ica
		NVC	NVC	NVC	NVC
matching percentage		0.67	0.67	0.89	0.78
accuracy			0.77	0.83	0.84

Significance and Accuracy

- Significance of an Answer
\triangleright Given 9 possible answers, the chance that a conclusion has been chosen randomly is $1 / 9=0.11$
\triangleright A binomial test shows that if a conclusion is drawn more than 0.16 it is unlikely to be a random guess
- Accuracy of the Predication
\triangleright For each syllogism
\rightarrow Order the nine possible conclusions (Aac, Eac, ..., Oca, NVC)
\rightarrow Consider the list of the participant's conclusions ($0,1, \ldots, 1,0$)
\rightarrow Compute the list of conclusions predicted by a theory (1, $, \ldots, 1,1$)
\rightarrow Compute comp $i= \begin{cases}1 & \text { if both lists have the same value for the ith element } \\ 0 & \text { otherwise }\end{cases}$
\Rightarrow The matching percentage of the syllogism is $\sum_{i=1}^{9}$ comp $i / 9$
\triangleright The accuracy is the average of the matching percentage of all syllogisms

First Principle: Licenses for Inferences (licences)

- Stenning, van Lambalgen 2008
- Formalize conditionals by licences for inferences

$$
\begin{gathered}
\text { for all } X, \text { if } q X \text { then } p X \\
\Downarrow \\
p X \leftarrow q X \wedge \neg a b X \\
a b X \leftarrow \perp
\end{gathered}
$$

Second Principle: Existential Import or Gricean Implicature (import)

- Humans normally do not quantify over things that do not exist
\triangleright Gricean implicature Grice 1975
\triangleright Consequently, for all implies there exists
- Likewise, humans seem to require existential import for a conditional to be true
- Furthermore, some a are boften implies some a are not b

Third Principle: Unknown Generalization (unknownGen)

- Humans seem to distinquish between some a are b and all a are b
- If we learn that some \boldsymbol{a} are \boldsymbol{b} then
\triangleright there must be an object o_{1} belonging to a and b (existential import)
\triangleright there must be another object o_{2} belonging to a and for which it is unknown whether it belongs to b
- This is a new principle!

Fourth Principle: Converse Interpretation (converse)

- Some humans seem to distinguish between some a are band some bare a
- But in FOL $\exists X(a X \wedge b X) \equiv \exists X(b X \wedge a X)$
- Nevertheless, we propose that lab implies Iba and vice versa

Fifth Principle: Search Alternative Conclusions to NVC (abduction)

- Suppose, NVC is derived
\triangleright Humans may not want to accept this conclusion
\triangleright They proceed to check whether there exists unknown relevant information
\triangleright This information may be explanations for facts
\triangleright The facts will come from existential import
- Skeptical abduction

Sixth Principle: Negation by Transformation (transformation)

- Logic programs do not allow negative literals as heads of clauses
- Replace a negative conclusion $\neg p X$ by $p^{\prime} X$ and add the clause

$$
p X \leftarrow \neg p^{\prime} X
$$

as well as the weak integrity constraint

$$
\mathrm{U} \leftarrow p X \wedge p^{\prime} X
$$

- Combined with the principle of licences for inferences we obtain

$$
\begin{aligned}
p X & \leftarrow \neg p^{\prime} X \wedge \neg a b X \\
a b X & \leftarrow \perp \\
U & \leftarrow p X \wedge p^{\prime} X
\end{aligned}
$$

Seventh Principle: Blocking by Double Negatives (blocking)

- What conclusions can be drawn from double negatives?
- This appears to be a quite difficult reasoning task for humans
- They seem to avoid drawing conlusions through double negatives
- Example
\triangleright If not \boldsymbol{a} then b If not b then c a is true
\triangleright We obtain

$$
\begin{aligned}
\boldsymbol{b} & \leftarrow \neg \boldsymbol{a} \wedge \neg a b_{n a b} \\
a b_{n a b} & \leftarrow \perp \\
\boldsymbol{c} & \leftarrow \neg \boldsymbol{b} \wedge \neg a b_{n b c} \\
a b_{n b c} & \leftarrow \perp \\
a & \leftarrow \top
\end{aligned}
$$

\triangleright The least model of its weak completion is

$$
\left\langle\{a, c\},\left\{b, a b_{n a b}, a b_{n b c}\right\}\right\rangle
$$

$\triangleright c$ can be blocked by removing $a b_{n b c} \leftarrow \perp$

Ayz: All y are z

$$
\therefore \mathcal{P}_{A y z} \quad \begin{aligned}
z X & \leftarrow y X \wedge \neg a b_{y z} X \\
a b_{y z} X & \leftarrow \perp \\
y o & \leftarrow \top
\end{aligned}
$$

- Computing the least model of its weak completion

$$
\begin{aligned}
& \Phi_{\mathcal{P}_{A y z}} \uparrow 0=\langle\emptyset, \emptyset\rangle \\
& \Phi_{\mathcal{P}_{A y z}} \uparrow 1=\left\langle\{y o\},\left\{a b_{y z} o\right\}\right\rangle \\
& \Phi_{\mathcal{P}_{A y z}} \uparrow \mathbf{2}=\left\langle\{y \circ, z o\},\left\{a b_{y z} o\right\}\right\rangle=\mathcal{M}_{w c \mathcal{P}_{A y z}}
\end{aligned}
$$

Eyz: No y are z

- $\mathcal{P}_{\text {Eyz }}$

$$
\begin{aligned}
z^{\prime} X & \leftarrow y X \wedge \neg a b_{y n z} X \\
a b_{y n z} X & \leftarrow \perp \\
y 0 & \leftarrow \top \\
z X & \leftarrow \neg z^{\prime} X \wedge \neg a b_{n z z} X \\
a b_{n z z} 0 & \leftarrow \perp \\
U & \leftarrow z X \wedge z^{\prime} X
\end{aligned}
$$

transformation\&licenses

- Computing the least model of its weak completion

$$
\begin{aligned}
& \Phi_{\mathcal{P}_{E y z} \uparrow 0} 0\langle\emptyset, \emptyset\rangle \\
& \Phi_{\mathcal{P}_{E y z}} \uparrow 1=\left\langle\{y o\},\left\{a b_{y n z} o, a b_{n z z} o\right\}\right\rangle \\
& \left.\Phi_{\mathcal{P}_{E y z}} \uparrow \mathbf{2}=\left\langle\left\{\begin{array}{l}
y \\
0
\end{array}\right) z^{\prime} o\right\},\left\{a b_{y n z} o, a b_{n z z} o\right\}\right\rangle \\
& \Phi_{\mathcal{P}_{E y z}} \uparrow 3=\left\langle\left\{y o, z^{\prime} o\right\},\left\{a b_{y n z} o, a b_{n z z} o, z o\right\}\right\rangle=\mathcal{M}_{w c \mathcal{P}_{E y z}}
\end{aligned}
$$

lyz: Some y are z

$$
\begin{array}{rll}
\quad \mathcal{P}_{l y z} X & \leftarrow y X \wedge \neg a b_{y z} X \\
a b_{y z} o_{1} & \leftarrow \perp \\
y o_{1} & \leftarrow \top \\
y o_{2} & \leftarrow \top \\
y X & \leftarrow z X \wedge \neg a b_{z y} X \\
a b_{z y} o_{3} & \leftarrow \perp \\
z o_{3} & \leftarrow \top \\
z o_{4} & \leftarrow \top
\end{array}
$$

licenses\&unknownGen
import
unknownGen converse\&licenses
converse\&licenses\&unknownGen
converse\&import
converse\&unknownGen

- Computing the least model of its weak completion

$$
\begin{aligned}
\Phi_{\mathcal{P}_{l y z} \uparrow 0} & =\langle\emptyset, \emptyset\rangle \\
\Phi_{\mathcal{P}_{l y z} \uparrow 1} & =\left\langle\left\{y o_{1}, y o_{2}, z o_{3}, z o_{4}\right\},\left\{a b_{y z} o_{1}, a b_{z y} o_{3}\right\}\right\rangle \\
\Phi_{\mathcal{P}_{l y z} \uparrow \mathbf{2}} & =\left\langle\left\{y o_{1}, y o_{2}, z o_{3}, z o_{4}, z o_{1}, y o_{3}\right\},\left\{a b_{y z} o_{1}, a b_{z y} o_{3}\right\}\right\rangle \\
& =\mathcal{M}_{w c \mathcal{P}_{l y z}}
\end{aligned}
$$

Oyz: Some y are not z

- $\mathcal{P}_{\text {Oyz }}$

$$
\begin{aligned}
z^{\prime} X & \leftarrow y X \wedge \neg a b_{y n z} X \\
a b_{y n z} o_{1} & \leftarrow \perp \\
y o_{1} & \leftarrow \top \\
y o_{2} & \leftarrow \top \\
z X & \leftarrow \neg z^{\prime} X \wedge \neg a b_{n z z} X \\
a b_{n z z} o_{1} & \leftarrow \perp \\
a b_{n z z} o_{2} & \leftarrow \perp
\end{aligned}
$$

$$
\mathrm{U} \leftarrow z X \wedge z^{\prime} X
$$

transformation\&licenses
licenses\&unknownGen
import
unknownGen
transformation\&licenses
licenses\&blocking
licenses\&blocking
transformation

- Computing the least model of its weak completion

$$
\begin{aligned}
\Phi_{\mathcal{P}_{o y z}} \uparrow 0 & =\langle\emptyset, \emptyset\rangle \\
\Phi_{\mathcal{P}_{o y z}} \uparrow \mathbf{1} & =\left\langle\left\{y o_{1}, y o_{2}\right\},\left\{a b_{y n z} o_{1}, a b_{n z z} o_{1}, a b_{n z z} o_{2}\right\}\right\rangle \\
\Phi_{\mathcal{P}_{o y z}} \uparrow \mathbf{2} & =\left\langle\left\{y o_{1}, y o_{2}, z^{\prime} o_{1}\right\},\left\{a b_{y n z} o_{1}, a b_{n z z} o_{1}, a b_{n z z} o_{2}\right\}\right\rangle \\
\Phi_{\mathcal{P}_{o y z}} \uparrow \mathbf{3} & =\left\langle\left\{y o_{1}, y o_{2}, z^{\prime} o_{1}\right\},\left\{a b_{y n z} o_{1}, a b_{n z z} o_{1}, a b_{n z z} o_{2}, z o_{1}\right\}\right\rangle \\
& =\mathcal{M}_{w c \mathcal{P}_{o y z}}
\end{aligned}
$$

Entailment of Syllogisms

- Khemlani, Johnson-Laird 2012 appear to use entailment as defined in FOL
- \mathcal{P} entails Ayz (all y are z)
iff $\exists \boldsymbol{X}\left(\mathcal{P} \models_{w_{c s}}^{\boldsymbol{y} \boldsymbol{X})} \wedge \forall \boldsymbol{X}\left(\mathcal{P} \models_{\text {wcs }} \boldsymbol{y} \boldsymbol{X} \rightarrow \mathcal{P} \models_{w_{c s}} \boldsymbol{z} \boldsymbol{X}\right)\right.$
- \mathcal{P} entails Eyz (no y are z)
iff $\exists \boldsymbol{X}\left(\mathcal{P} \vDash{ }_{\text {wcs }} \boldsymbol{y} \boldsymbol{X}\right) \wedge \forall \boldsymbol{X}\left(\mathcal{P} \vDash{ }_{\text {wcs }} \boldsymbol{y} \boldsymbol{X} \rightarrow \mathcal{P} \vDash{ }_{\text {wcs }} \neg \boldsymbol{Z} \boldsymbol{X}\right)$
- \mathcal{P} entails $\boldsymbol{l y z}$ (some y are z)

$$
\text { iff } \begin{gathered}
\exists X_{1}\left(\mathcal{P} \models_{w c s} y X_{1} \wedge z X_{1}\right) \wedge \exists X_{2}\left(\mathcal{P} \models_{w c s} y X_{2} \wedge \mathcal{P} \not \models_{w c s} z X_{2}\right) \\
\wedge \exists X_{3}\left(\mathcal{P} \models_{w c s} \boldsymbol{z} X_{3} \wedge \mathcal{P} \not \models_{w c s} y X_{3}\right)
\end{gathered}
$$

- \mathcal{P} entails $\mathbf{O y z}$ (some y are not z)
iff $\exists X_{1}\left(\mathcal{P} \models_{w c s} y X_{1} \wedge \neg z X_{1}\right) \wedge \exists X_{2}\left(\mathcal{P} \vDash{ }_{w c s} y X_{2} \wedge \mathcal{P} \not \vDash_{w c s} \neg z X_{2}\right)$
- \mathcal{P} entails NVC
iff none of the above is entailed where either $y z=a c$ or $y z=c a$

Syllogism OA4

- The premises are Oba (some b are not a) and Abc (all bare c)
- The participants concluded Oca (some c are not a)
- $\mathcal{P}_{\text {OA4 }}$:

$b 0_{1}$		T
$b \mathrm{O}_{2}$	\leftarrow	T
$a^{\prime} X$	\leftarrow	$b \boldsymbol{b} \boldsymbol{X} \wedge \sim b_{\text {bna }} X$
$a b_{\text {bna }} \mathrm{O}_{1}$	\leftarrow	\perp
a X	\leftarrow	$\neg a^{\prime} X \wedge \neg a b_{\text {naa }} X$
$a b_{\text {naa }} \mathrm{O}_{1}$	\leftarrow	\perp
$a b_{\text {naa }} \mathrm{O}_{2}$	\leftarrow	\perp
$c X$	\leftarrow	$b X \wedge \neg a b_{b c} X$
$a b_{b c} X$	\leftarrow	\perp
$b^{\text {O }}$ 3	\leftarrow	T

$$
\mathrm{U} \leftarrow a X \wedge a^{\prime} X
$$

import
unknownGen transformation\&licenses unknownGen\&licenses
transformation\&licenses
blocking\&licenses
blocking\&licenses
licenses
licenses
import
transformation
$-\mathcal{M}_{w c \mathcal{P}_{O A}}=\left\langle\left\{\boldsymbol{b} o_{1}, \boldsymbol{b} o_{2}, \boldsymbol{b} o_{3}, \boldsymbol{a}^{\prime} o_{1}, c o_{1}, c o_{2}, c o_{3}\right\}\right.$,

$$
\left.\left\{a b_{b n a} o_{1}, a b_{\text {naa }} o_{1}, a b_{\text {naa }} o_{2}, a b_{b c} o_{1}, a b_{b c} o_{2}, a b_{b c} o_{3}, a o_{1}\right\}\right\rangle
$$

$-\mathcal{P}_{\text {OA4 }}$ entails Oca and nothing else \rightsquigarrow perfect match 1.0

Syllogism IE4

- The premises are lba (some bare a) and Ebc (no bare c)
- The participants concluded Oac (some a are not c) and NVC
- $\mathcal{P}_{\text {IE }}$:

$b 0_{1}$		T
$b \mathrm{O}_{2}$	\leftarrow	T
a X	\leftarrow	$b X \wedge \neg a b_{b a} X$
$a b_{b a} O_{1}$	\leftarrow	\perp
$b X$	\leftarrow	$a X \wedge \neg a b_{a b} X$
$a b_{a b} O_{3}$	\leftarrow	\perp
a 0_{3}	\leftarrow	T
aO_{4}	\leftarrow	T
$c^{\prime} X$	\leftarrow	$b \boldsymbol{C} \wedge \wedge \neg b_{b n c} \boldsymbol{X}$
$a b_{\text {bnc }} X$	\leftarrow	\perp
c X	\leftarrow	$\neg c^{\prime} X \wedge \neg a b_{n c c} X$
b_{5}	\leftarrow	T
$a b_{n c c} X$	\leftarrow	\perp
U	\leftarrow	$c X \wedge c^{\prime} X$

import
unknownGen
licenses
licenses\&unknownGen
converse\&licenses
converse\&licenses\&unknownGen
converse\&import converse\&unknownGen transformation\&licenses
licenses
transformation\&licenses
import
licenses
transformation

- $\mathcal{P}_{\text {IE4 }}$ entails Oac and nothing else \rightsquigarrow partial match 0.89

Syllogism IA2

- The premises are lba (some b are a) and Acb (all care b)
- The participants concluded lac and Ica
$\rightarrow \mathcal{P}_{I A 2}: \quad a X \leftarrow b X \wedge \neg a b_{b a} X$

$a b_{b a} o_{1}$	$\leftarrow \perp$
$b o_{1}$	$\leftarrow \subset$
$b o_{2}$	$\leftarrow \top$
$b X$	$\leftarrow a X \wedge \neg a b_{a b} X$

$\begin{aligned} a b_{a b} O_{3} & \leftarrow \perp \\ a o_{3} & \leftarrow \top \\ a o_{4} & \leftarrow \top \\ b X & \leftarrow c X \wedge \neg a b_{c b} X\end{aligned}$
$a b_{c b} X \leftarrow \perp$
licenses
licenses\&unknownGen
import
unknownGen
converse\&licenses
converse\&licenses\&unknownGen
converse\&import
converse\&unknownGen
licenses
licenses
import
$-\mathcal{M}_{w c \mathcal{P}_{I A 2}}=\left\langle\left\{a o_{1}, a o_{3}, a o_{4}, b o_{1}, b o_{2}, b o_{3}, b o_{5}, c o_{5}\right\}\right.$

$$
\left.\left\{a b_{b a} o_{1}, a b_{a b} o_{3}, a b_{c b} o_{1}, a b_{c b} o_{2}, a b_{c b} o_{3}, a b_{c b} o_{4}, a b_{c b} o_{5}\right\}\right\rangle
$$

- $\mathcal{P}_{I A 2}$ entails NVC
- Search for alternatives skeptical abduction

Syllogism IA2 Continued

- Idea the heads of existential imports are considered as observation

$$
\mathcal{O}=\left\{b o_{1}, a o_{3}, c o_{5}\right\}
$$

- The corresponding facts are removed

$$
\mathcal{P}_{I A 2}^{-}=\mathcal{P}_{I A 2} \backslash\left\{b o_{1} \leftarrow \top, a o_{3} \leftarrow \top, c o_{5} \leftarrow \top\right\}
$$

- The minimal and skeptical explanation for \mathcal{O} is

$$
\mathcal{X}=\left\{c o_{5} \leftarrow \top, c o_{1} \leftarrow \top, c o_{3} \leftarrow \top, a b_{b a} o_{3} \leftarrow \perp\right\}
$$

Let $\mathcal{P}_{\text {IA } 2}^{\prime}=\mathcal{P}_{\text {IA } 2}^{-} \cup \mathcal{X}$ and we obtain $\mathcal{M}_{w c \mathcal{P}_{\text {IA } 2}^{\prime}}=$

$$
\begin{aligned}
& \left\langle\left\{a o_{1}, a o_{3}, a o_{4}, b o_{1}, b o_{2}, b o_{3}, b o_{5}, c o_{1}, c o_{3}, c o_{5}\right\}\right. \\
& \left.\left\{a b_{b a} o_{1}, a b_{b a} o_{3}, a b_{a b} o_{3}, a b_{c b} o_{1}, a b_{c b} o_{2}, a b_{c b} o_{3}, a b_{c b} o_{4}, a b_{c b} o_{5}\right\}\right\rangle
\end{aligned}
$$

$-\mathcal{P}_{\text {IA } 2}^{\prime}$ entails lac and Ica and nothing else \rightsquigarrow perfect match 1.0

The Examples Revisited

- OA4: some bare not $a \quad a l l b$ are c
- IE3: some b are not a no bare c
- IA2: some bare a all c are b

	participants	FOL	PSYCOP	mental models	verbal models	WCS
OA4	Oca	Oca	Oca	Oca	Oca	Oca
			Ica lac	Oac NVC	NVC	
		1.0	0.78	0.78	0.89	1.00
IE4	Oac NVC	Oac	Oac	Oac NVC	Oac NVC	Oac
			lac Ica	Eac Eca Oca		
		0.89	0.67	0.67	1.00	0.89
IA2	Ica lac		NVC	NVC	Ica Iac	NVC
		0.67	0.67	0.89	NVC	Ica lac
			0.77	0.83	0.78	1.00
accuracy						0.84

Discussion

- The best possible value achievable by WCS is .925
\triangleright because NVC is entailed only if nothing else is entailed
- WCS is better than any other cognitive theory that I am aware of!
- Open Questions
\triangleright How can we model clusters of reasoners?
\triangleright How shall we define entailment?
\triangleright What exactly is the role of the abnormalities?
\triangleright How important is the sequence in which the premises are presented?
\triangleright Is there a difference between abstract and social syllogisms?

TECHNISCHE

Contextual Reasoning

- The Context Operator
- Contextual Programs
- Properties
- Examples

The Context Operator

- A new truth-functional operator

\boldsymbol{L}	$\boldsymbol{c t \boldsymbol { x } \boldsymbol { t } \boldsymbol { L }}$
\top	\top
\perp	\perp
\cup	\perp

- Captures locally negation by failure

$$
\begin{array}{lllll}
p & \leftarrow & p & p & c t x t q \\
p & \leftarrow & p & \leftarrow & \perp
\end{array}
$$

- Their weak completions have the following minimal models

$$
\langle\emptyset, \emptyset\rangle \quad\langle\emptyset,\{p\}\rangle
$$

Another Example

- Let $\quad \mathcal{P}_{1}=\{p a \leftarrow \top, q b \leftarrow r b\}$ with $\mathcal{M}_{w c \mathcal{P}_{1}}=\langle\{p a\}, \emptyset\rangle$
\triangleright How is $c \mathcal{P}_{1}$ defined?

$$
\boldsymbol{c} \mathcal{P}_{1}=\{p a \leftrightarrow \top, p b \leftrightarrow \perp, q a \leftrightarrow \perp, q b \leftrightarrow r b, r a \leftrightarrow \perp, r b \leftrightarrow \perp\}
$$

- Now consider $\mathcal{P}_{\mathbf{2}}$

$$
\begin{aligned}
p X & \leftarrow X \approx a \\
q X & \leftarrow X \approx b \wedge r b \\
X \approx X & \leftarrow \top
\end{aligned}
$$

\triangleright What is the least model of wc \mathcal{P}_{2} ?

$$
\mathcal{M}_{w c \mathcal{P}_{2}}=\langle\{a \approx a, b \approx b, p a\}, \emptyset\rangle
$$

\triangleright What happens if $\mathcal{P}_{3}=\mathcal{P}_{2} \cup\{a \approx b \leftarrow \perp, b \approx a \leftarrow \perp\} ?$

$$
\mathcal{M}_{w c \mathcal{P}_{3}}=\langle\{a \approx a, b \approx b, p a\},\{a \approx b, b \approx a, p b, q a\}\rangle
$$

\triangleright Is there a problem with \mathcal{P}_{3} ?

Another Example - Continued

- Let \mathcal{P}_{4}

$$
\begin{aligned}
p X & \leftarrow c t x t X \approx a \\
q X & \leftarrow c t x t X \approx b \wedge r b \\
X \approx X & \leftarrow \quad \top
\end{aligned}
$$

\triangleright Can you specify a model of wc \mathcal{P}_{4} ?

$$
\langle\{a \approx a, b \approx b, p a\},\{p b, q a\}\rangle
$$

\triangleright Compare

$$
\mathcal{M}_{w c \mathcal{P}_{3}}=\langle\{a \approx a, b \approx b, p a\},\{a \approx b, b \approx a, p b, q a\}\rangle
$$

\triangleright This is a local version of negation by failure!

Contextual Programs

- Literals are atoms or negated atoms
- Let L be a literal
- A contextual literal is of the form ctxt L or $\neg \boldsymbol{c t x t} L$
- A contextual rule is of the form $A \leftarrow \operatorname{Body}$, where A is an atom and Body is a finite conjunction of literals and contextual literals containing at least one contextual literal
- A contextual program is a set of rules, contextual rules, facts, and assumptions containing at least one contextual rule
- Note a program is not a contextual program

Contextual Programs and Models

- \mathcal{P}

$$
\begin{array}{lll}
p & \leftarrow & \text { ctxt } q \\
p & \leftarrow & \perp
\end{array}
$$

- $w c \mathcal{P}$

$$
p \quad \leftrightarrow \quad \text { ctxt } q \vee \perp
$$

- How many minimal models has wcP?
- What is

$$
\begin{aligned}
\langle\emptyset, \emptyset\rangle(w c \mathcal{P}) & =? \\
\langle\emptyset,\{p\}\rangle(w c \mathcal{P}) & =? \\
\langle\{p, q\}, \emptyset\rangle(w c \mathcal{P}) & =? \\
\langle\{p\}, \emptyset\rangle(w c \mathcal{P}) & =? \\
\langle\{q\}, \emptyset\rangle(w c \mathcal{P}) & =?
\end{aligned}
$$

- Does there exist a least model?

Contextual Programs and Supported Models

- Let \mathcal{P} consist of

p	\leftarrow	ctxt q
p	\leftarrow	\perp

- wcP has two minimal models $\langle\emptyset,\{p\}\rangle$ and $\langle\{p, q\}, \emptyset\rangle$
- Let's apply the semantic operator

$\Phi_{\mathcal{P}}$	I^{\top}	I^{\perp}	I^{\top}	I^{\perp}
$\uparrow \mathbf{0}$			p	
			q	
$\uparrow \mathbf{1}$		p	p	
$\uparrow \mathbf{2}$		p		p

- Only $\langle\emptyset,\{p\}\rangle$ is a fixed point
\triangleright It will turn out that it is the only fixed point
\triangleright It will be called supported model

Contextual Programs and Monotonicity

Let \mathcal{P} consist of

$$
p \leftarrow c t x t \neg p
$$

- We find

$\Phi_{\mathcal{P}}$	I^{\top}	I^{\perp}
$\uparrow 0$		
$\uparrow 1$		p
$\uparrow 2$	p	
$\uparrow 3$		p
\vdots	\vdots	\vdots

- The semantic operator is no longer monotonic
- wcP $=\{p \leftrightarrow c t x t \neg p\}$ is unsatisfiable

Acyclic Contextual Programs

- Let L be a literal

$$
|v| c t x t L=I v \mid \neg c t x t L=I v I L
$$

- A contextual program \mathcal{P} is acyclic with respect to the level mapping $/ \mathbf{v} /$ if and only if for each rule $\boldsymbol{A} \leftarrow$ Body occurring in \mathcal{P} and each (normal or contextual) literal L occurring in Body we find IvI A>IvIL
- A contextual program \mathcal{P} is acyclic if and only if it is acyclic with respect to some level mapping
- Recall

$$
d_{I v I}(I, J)= \begin{cases}\frac{1}{2^{n}} & I \neq J \text { and } \\ & I A=J A \neq U \text { for all } A \text { with } I v I A<n \text { and } \\ & I A \neq J A \text { or } I A=J A=U \text { for some } A \text { with } I v I A=n \\ 0 & \text { otherwise }\end{cases}
$$

- Proposition 25 still applies: $d_{l v /}$ is a metric
- Proposition 26 still applies: ($\mathcal{I}, d_{/ v I}$) is a complete metric space

Contextual Programs and Fixed Points 1

- In the sequel, let \mathcal{P} be a contextual program, \mathcal{E} and equational theory $I v I$ a level mapping for \mathcal{P} and \mathcal{I} the set of interpretations for \mathcal{P}
- Theorem 32 If \mathcal{P} is acyclic with respect to $\mathbf{I v}$ then $\Phi_{\mathcal{P}}$ is a contraction on the metric space ($\left.\mathcal{I}, d_{/ v l}\right)$
- Proof Let I and J be interpretations, $\Phi=\Phi_{\mathcal{P}}$, and $d=d_{/ v /}$
\triangleright We will show $\quad d(\Phi I, \Phi J) \leq \frac{1}{2} d(I, J)$
\triangleright If $I=J$ then $\Phi I=\Phi J$ and $d(\Phi I, \Phi J)=d(I, J)=0$
\triangleright If $I \neq J$ then we find $n \in \mathbb{N}$ such that $d(I, J) \leq \frac{1}{2^{n}}$
\rightarrow We will show $\quad d(\Phi I, \Phi J) \leq \frac{1}{2^{n+1}}$
\rightarrow i.e. for all ground atoms A with $I v I A<n+1$ we find $\Phi(I)(A)=\Phi(J)(A) \neq U$
\rightarrow Let's take some A with $I v I A<n+1$
\mapsto Because \mathcal{P} is acyclic, for any $A \leftarrow L_{1} \wedge \ldots \wedge L_{m} \in g \mathcal{P}$ we find $I v I L_{i}<I v I A<n+1$ for all $1 \leq i \leq m$
\rightarrow Because $d(I, J) \leq \frac{1}{2^{n}}$ we find $I L_{i}=J L_{i} \neq U$ for all $1 \leq i \leq m$
\rightarrow Hence, $\Phi(I)(A)=\Phi(J)(A) \neq U$

Contextual Programs and Fixed Points 2

- Proof of Theorem 27 If program \mathcal{P} is acyclic with respect to IvI then $\Phi_{\mathcal{P}}$ is a contraction on the metric space ($\left.\mathcal{I}, d_{/ v 1}\right)$
\triangleright can be proven as before
\triangleright by considering non-contextual programs
- Corollary 33 If \mathcal{P} is acyclic then $\Phi_{\mathcal{P}}$ has a unique fixed point which can be computed by iterating $\Phi_{\mathcal{P}}$ up to ω times starting with any interpretation
\triangleright Follows from Theorems 32 and 9 (Banach Contraction Mapping Theorem)

Contextual Programs and Fixed Points 3

- Proposition 34

If \mathcal{P} is acyclic then the unique fixed point of $\Phi_{\mathcal{P}}$ is a model of wcP

- Proof Let $I=\left\langle I^{\top}, I^{\perp}\right\rangle$ be the unique fixed point of $\Phi=\Phi_{\mathcal{P}}$ and $\boldsymbol{A} \leftrightarrow F \in \boldsymbol{w c} \mathcal{P}$
$\triangleright I A=\top$ We find $A \leftarrow$ Body $\in \boldsymbol{g} \mathcal{P}$ such that I Body $=\top$
\rightarrow Hence, $I F=I(A \leftrightarrow F)=\top$
$\triangleright I A=\perp$ We find a clause $A \leftarrow \operatorname{Body} \in g \mathcal{P}$ and for all clauses $A \leftarrow \operatorname{Bod} y \in g \mathcal{P}$ we find I Body $=\perp$
\rightarrow Hence, $I F=\perp$ and $I(A \leftrightarrow F)=\top$
$\triangleright I A=U \rightsquigarrow$ Exercise
- Conjecture the unique fixed point of $\Phi_{\mathcal{P}}$ a minimal model of wcP

Supported Models

- The unique fixed point of $\Phi_{\mathcal{P}}$ is called supported model of $\boldsymbol{w c \mathcal { P }}$
- It will be denoted by $\mathcal{M}_{w c \mathcal{P}}$
- Formula \boldsymbol{F} follows from an acyclic contextual program \mathcal{P} under WCS in symbols $\mathcal{P} \models_{\text {wcs }} F$ iff $\mathcal{M}_{\boldsymbol{w c \mathcal { P }}}$ maps F to true
- Reconsider \mathcal{P}

$$
\begin{array}{lll}
p & \leftarrow & c t x t q \\
p & \leftarrow & \perp
\end{array}
$$

$\triangleright \mathcal{M}_{w c \mathcal{P}}=\langle\emptyset,\{p\}\rangle$
$\triangleright \mathcal{P} \vDash{ }_{w c s} \neg p \wedge \neg(p \wedge q)$

The Tweety Scenario Revisited

- Let \mathcal{P} consist of the following clauses:

fly X	\leftarrow bird $X \wedge \neg a_{\text {fly }} X$
ab $_{\text {fly }} X$	\leftarrow ctxt kiwi X
ab $b_{\text {fly }} X$	\leftarrow ctxt penguin X
bird tweety	$\leftarrow \top$
bird jerry	$\leftarrow \top$

- Iterating the semantic operator yields

$\Phi_{\mathcal{P}}$	I^{\top}	I^{\perp}
$\uparrow 0$		
$\uparrow 1$	bird tweety bird jerry	$a b_{\text {fly }}$ tweety $a b_{\text {fly }}$ jerry
$\uparrow \mathbf{2}$	bird tweety bird jerry fly tweety fly jerry	$a b_{\text {fly }}$ tweety $a b_{\text {fly }}$ jerry

Tweety is a Penguin

- Suppose we learn that Tweety is a penguin
- Let \mathcal{P}^{\prime} be

```
                    fly \(X \quad \leftarrow \quad\) bird \(X \wedge \neg a b_{f l y} X\)
                    \(a b_{\text {fly }} X \quad \leftarrow \quad\) ctxt kiwi \(X\)
                    \(a b_{\text {fly }} X \quad \leftarrow \quad\) ctxt penguin \(X\)
                        bird tweety \(\leftarrow \top\)
    bird jerry \(\leftarrow \quad \top\)
penguin tweety \(\leftarrow \top\)
```


Computing the Supported Model

- Iterating the semantic operator yields

$\Phi_{\mathcal{P}^{\prime}}$	I^{\top}	I^{\perp}
$\uparrow 0$		
$\uparrow 1$	bird tweety bird jerry penguin tweety	ab fly tweety $a b_{\text {fly }}$ jerry
个2	bird tweety bird jerry penguin tweety ab fly tweety fly tweety fly jerry	ab fly jerry
$\uparrow 3$	bird tweety bird jerry penguin tweety ab fly tweety fly jerry	$a b_{\text {fly }}$ jerry fly tweety

The Drowning Problem

- Drowning Problem if an object belonging to a particular class and being exceptional with respect to some property of the class, becomes exceptional with respect to other or all properties of the class
- Example

$$
\begin{aligned}
& \text { fly } X \leftarrow \text { bird } X \wedge \neg a b_{\text {fly }} X \\
& \text { ab } b_{\text {fly }} X \leftarrow \text { ctxt penguin } X \\
& \text { ab fly } X \leftarrow \text { ctxt moa } X \\
& \text { wings } X \leftarrow \text { bird } X \wedge \neg a b_{\text {wings }} X \\
& \text { ab } \begin{aligned}
& \text { wings } X \leftarrow \\
& \text { bird } t \leftarrow \\
& \text { penguin } t \leftarrow \\
& \text { penoa } X
\end{aligned}
\end{aligned}
$$

- Least model of the weak completion
$\left\langle\left\{\right.\right.$ bird t, penguin $t, a b_{\text {fly }} t$, wings $\left.t\right\},\left\{\right.$ fly $\left.\left.t, a b_{\text {wings }} t\right\}\right\rangle$
- The Weak Completion Semantics does not suffer from the drowning problem

MALCAREU

