

Master programmes in Artificial Intelligence 4 Careers in Europe

University of Cyprus

MAI649: PRINCIPLES OF ONTOLOGICAL DATABASES

Complexity Theory

Andreas Pieris

Spring 2022-2023

Co-financed by the European Union Connecting Europe Facility

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

A Crash Course on Complexity Theory

we recall some fundamental notions from complexity theory that will be heavily used in the context of MAI649 - further details can be found in the standard textbooks

Deterministic Turing Machine (DTM)

 $M = (S, \Lambda, \Gamma, \delta, s_0, s_{accept}, s_{reject})$

- S is the set of states
- ∧ is the input alphabet, not containing the blank symbol ⊔
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Lambda \subseteq \Gamma$
- $\delta: S \times \Gamma \rightarrow S \times \Gamma \times \{L,R\}$
- s₀ is the initial state
- s_{accept} is the accept state
- s_{reject} is the reject state, where $s_{accept} \neq s_{reject}$

Deterministic Turing Machine (DTM)

 $M = (S, \Lambda, \Gamma, \delta, s_0, s_{accept}, s_{reject})$

 $\delta(s_1, \alpha) = (s_2, \beta, R)$

IF at some time instant τ the machine is in sate s_1 , the cursor points to cell κ , and this cell contains α THEN at instant τ +1 the machine is in state s_2 , cell κ contains β , and the cursor points to cell κ +1

Nondeterministic Turing Machine (NTM)

 $M = (S, \Lambda, \Gamma, \delta, s_0, s_{accept}, s_{reject})$

- S is the set of states
- ∧ is the input alphabet, not containing the blank symbol ⊔
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Lambda \subseteq \Gamma$
- $\delta: S \times \Gamma \rightarrow \text{power set of } S \times \Gamma \times \{L,R\}$
- s₀ is the initial state
- s_{accept} is the accept state
- s_{reject} is the reject state, where $s_{accept} \neq s_{reject}$

Turing Machine Configuration

A perfect description of the machine at a certain point in the computation

is represented as a string: **1011s011**

- Initial configuration on input w₁,...,w_n s₀w₁,...,w_n
- Accepting configuration u₁,...,u_ks_{accept}u_{k+1},...,u_{k+m}
- Rejecting configuration u₁,...,u_ks_{reject}u_{k+1},...,u_{k+m}

Turing Machine Computation

the next configuration is unique

computation tree

Deciding a Problem

(recall that an instance of a decision problem Π is encoded as a word over a certain alphabet Λ - thus, Π is a set of words over Λ , i.e., $\Pi \subseteq \Lambda^*$)

A DTM M = (S, Λ , Γ , δ , s_0 , s_{accept} , s_{reject}) decides a problem Π if, for every $\mathbf{w} \in \Lambda^*$:

- M on input **w** halts in s_{accept} if $w \in \Pi$
- M on input **w** halts in s_{reject} if $w \notin \Pi$

Deciding a Problem

A NTM M = (S, Λ , Γ , δ , s₀, s_{accept}, s_{reject}) decides a problem Π if, for every $\mathbf{w} \in \Lambda^*$:

- The computation tree of M on input **w** is finite
- There exists at least one accepting computation path if $\mathbf{w} \in \Pi$
- There is no accepting computation path if $\mathbf{w} \notin \Pi$

Complexity Classes

Consider a function $f : N \rightarrow N$

TIME(f(n)) = $\{\Pi \mid \Pi \text{ is decided by some DTM in time O(f(n))}\}$

NTIME(f(n)) = $\{\Pi \mid \Pi \text{ is decided by some NTM in time O(f(n))}\}$

SPACE(f(n)) = { $\Pi \mid \Pi$ is decided by some DTM using space O(f(n))}

NSPACE(f(n)) = $\{\Pi \mid \Pi \text{ is decided by some NTM using space O}(f(n))\}$

Complexity Classes

• We can now recall the standard time and space complexity classes:

PTIME	=	U _{k>0} TIME(n ^k)
NP	=	U _{k>0} NTIME(n ^k)
EXPTIME	=	$U_{k>0}$ TIME(2 ^{nk})
NEXPTIME	=	U _{k>0} NTIME(2 ^{nk})
LOGSPACE	=	SPACE(log n)
NLOGSPACE	=	NSPACE(log n)
PSPACE	=	U _{k>0} SPACE(n ^k)
EXPSPACE	=	U _{k>0} SPACE(2 ^{nk})

these definitions are relying on twotape Turing machines with a readonly and a read/write tape

• For every complexity class C we can define its complementary class coC

 $\mathsf{coC} \ = \ \{ \Lambda^* \setminus \Pi \ | \ \Pi \in \mathsf{C} \}$

An Alternative Definition for NP

Theorem: Consider a problem $\Pi \subseteq \Lambda^*$. The following are equivalent:

- Π ∈ NP
- There is a relation $R \subseteq \Lambda^* \times \Lambda^*$ that is *polynomially decidable* such that

Example:

3SAT = { $\phi \mid \phi$ is a 3CNF formula that is satisfiable}

= { $\phi \mid \phi$ is a 3CNF for which there is an assignment α such that $|\alpha| \leq |\phi|$ and $(\phi, \alpha) \in R$ }

where R = {(ϕ, α) | α is a satisfying assignment for ϕ } \in PTIME

Relationship Among Complexity Classes

$LOGSPACE \subseteq NLOGSPACE \subseteq PTIME \subseteq NP, coNP \subseteq$

 $\mathsf{PSPACE} \subseteq \mathsf{EXPTIME} \subseteq \mathsf{NEXPTIME}, \mathsf{coNEXPTIME} \subseteq \cdots$

Some useful notes:

- For a deterministic complexity class C, coC = C
- coNLOGSPACE = NLOGSPACE
- It is generally believed that PTIME \neq NP, but we don't know
- PTIME \subset EXPTIME \Rightarrow at least one containment between them is strict
- PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, etc.
- But, we don't know whether LOGSPACE = NLOGSPACE

Complete Problems

- These are the hardest problems in a complexity class
- A problem that is complete for a class C, it is unlikely to belong in a lower class
- A problem Π is complete for a complexity class C, or simply C-complete, if:
 - Π ∈ C
 - 2. Π is C-hard, i.e., every problem $\Pi' \in C$ can be efficiently reduced to Π

there exists a logspace algorithm that computes a function f such that $\mathbf{w} \in \Pi'$ iff $f(\mathbf{w}) \in \Pi$ - in this case we write $\Pi' \leq_{I} \Pi$

• To show that Π is C-hard it suffices to reduce some C-hard problem Π' to it

Some Complete Problems

- NP-complete
 - SAT (satisfiability of propositional formulas)
 - Many graph-theoretic problems (e.g., 3-colorability)
 - Traveling salesman
 - etc.
- PSPACE-complete
 - Quantified SAT (or simply QSAT)
 - Equivalence of two regular expressions
 - Many games (e.g., Geography)
 - etc.

Master programmes in Artificial Intelligence 4 Careers in Europe

University of Cyprus

MAI649: PRINCIPLES OF ONTOLOGICAL DATABASES

Thank You!

Andreas Pieris

Spring 2022-2023

2.

Co-financed by the European Union Connecting Europe Facility

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

