
This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial
Intelligence 4 Careers in Europe

                              Human Reasoning 

           and the Weak Completion Semantics



I Human Reasoning

I Some History

I Subareas

I Table of Contents

I Working Material

Steffen Hölldobler
Human Reasoning and the Weak Completion Semantics 1

Human Reasoning and the Weak Completion Semantics

Steffen Hölldobler
Technische Universität Dresden, Germany
North Caucasus Federal University, Russian Federation



Human Reasoning

I Instructions on the boarding card distributed at Amsterdam Schiphol Airport

. If it’s thirty minutes before your flight departure, make your way to the gate
As soon as the gate number is confirmed, make your way to the gate

I Notice in the London Underground

. If there is an emergency, then you press the alarm signal bottom
The driver will stop, if any part of the train is in a station

I Observations

. Intended meaning differs from literal meaning

. Rigid adherence to classical logic is no help in modeling the examples

. There seems to be a reasoning process towards more plausible meanings

II The driver will stop the train in a station, if the driver is alerted to an
emergency and any part of the train is in the station
Kowalski: Computational Logic and Human Life 2011
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Human Reasoning – More Examples

I What follows from the following sentences?

. If I solve all exercises, then I will pass the exam
I solve all exercises

. If I do not water my plants, then they will die
I water my plants

. In some cases when I go out, I am not in company
Every time I am very happy, I am in company

I What are adequate models of human reasoning?

I Can logics adequately model human reasoning?

I Are models formal, computational, and cognitive?
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Some History from a Personal View

I Logic programming and logic based knowledge representation and reasoning

. Least models

I Neural-symbolic integration

. Connectionist model generation

I Models versus mental models

I Errors in Stenning, van Lambalgen: Human Reasoning and Cognitive Science 2008

. Łukasiewicz: O logice trójwartościowey 1920

. H., Kencana Ramli:
Logic Programs under Three-Valued Łukasiewicz’s Semantics 2009

. Weak Completion Semantics (WCS)

I Khemlani, Johnson-Laird: Theories of Syllogisms: A Meta Analysis 2012

. WCS outperformed 12 cognitive theories
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Subareas

Logic

Logic Programming

Multi-Valued

Nonmonotonicity

Abduction

Cognitive Science

Human Reasoning

Experiments

Mental Models

Fixpoint Theory

Knaster-Tarski
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Systems

Feed Forward
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Integration
Neural-Symbolic

WCS

Steffen Hölldobler
Human Reasoning and the Weak Completion Semantics 5



Table of Contents

I Introduction

I Foundations

I Theory

I Applications and Extensions

I A Connectionist Realization

I Outlook

Steffen Hölldobler
Human Reasoning and the Weak Completion Semantics 6



Working Material

I A manuscript will be available

I All references are given in the manuscript
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Human Reasoning and Deduction

I Johnson-Laird, Byrne: Deduction 1991

You need to make deductions to formulate plans and to evaluate actions;
to determine the consequences of assumptions and hypotheses;
to interpret and to formulate instructions, rules, and general principles;
to pursue arguments and negotiations;
to weigh evidence and to assess data;
to decide between competing theories;
and to solve problems.
A world without deduction would be a world without science, technology,
laws, social conventions, and culture.

I Johnson-Laird: Models of Deduction 1984

Are there any general ways of thinking that humans follow when they
make deductions?
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The Goal

I The development of a cognitive theory for adequately modelling human
reasoning tasks

. computational

. comprehensive

. a connectionist realization

I Background

. logic programming

. logic-based knowledge representation and reasoning
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The Suppression Task

I 12 experiments carried out by Ruth Byrne in the 1980s

I Repeated several times leading to similar results

I Showing that humans suppress previously drawn inferences

. valid inferences

. invalid inferences

. with respect to classical two-valued logic

Byrne: Suppressing Valid Inferences with Conditionals 1989
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Affirmation of the Antecedent

I She has an essay to write
If she has an essay to write, then she will study late in the library
Will she study late in the library?

. 96% yes

I She has an essay to write
If she has an essay to write, then she will study late in the library
If she has textbooks to read, then she will study late in the library
Will she study late in the library?

. 96% yes

I She has an essay to write
If she has an essay to write, then she will study late in the library
If the library stays open, then she will study late in the library
Will she study late in the library?

. 38% yes
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Naive Two-Valued Classical Logic

I {e, e → `} |= `

. ok 96%

. Modus ponens

I {e, e → `, t → `} |= `

. ok 96%

. Two-valued classical logic is monotonic

I {e, e → `, o → `} |= `

. Upps only 38% of the participants were doing this

. Human reasoning appears to be nonmonotonic
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Adequateness

I Two-valued classical logic is universal

. If human reasoning can be computed, then we should be able to model the
three experiments in two-valued classical logic How?

I Bibel: Perspectives on Automated Deduction 1991

There is an adequate general proof method that can automatically
discover any proof done by humans provided the problem (including all
required knowledge) is stated in appropriately formalized terms

Adequateness is understood as the property of a theorem proving method that

for any given knowledge base, the method solves simpler problems faster
than more difficult ones

Simplicity is measured under consideration of all (general) formalisms
available to capture the problem and intrinsic in this assumption is a belief
in the existence of an algorithm that is feasible (from a complexity point of
view) for the set of problems humans can solve
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Towards a Simple Formalism to Capture the Suppression Task

I We need to answer the following questions

. If the participants in the third experiment did not use two-valued classical
logic what else did they use?

. How did they come up with their answers?

. Can we formally specify a system in which the three experiments can be
uniformly modeled such that the answers given by the majority of the
participants can be computed?

I My proposal

. Take a nonmonotonic and multi-valued logic

. Take the Weak Completion Semantics
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The Weak Completion Semantics in a Nutshell

I Inspired by
Stenning, van Lambalgen: Human Reasoning and Cognitive Science 2008

I The six stages of reasoning according to the Weak Completion Semantics

. Reasoning towards a (logic) program

. Weakly completing the program

. Computing its least model

. Reasoning with respect to the least model

. If necessary, applying skeptical abduction

. If possible, searching for counterexamples
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Affirmation of the Antecedent

I She has an essay to write
If she has an essay to write, then she will go to the library

I Program P
e ← > fact definition of e
` ← e ∧ ¬abe rule definition of `

abe ← ⊥ assumption abe is assumed to be false

I Weakly completed program & Generation of least model

e ↔ > true false ΦP
` ↔ e ∧ ¬abe e abe 1

abe ↔ ⊥ ` 2

I Computing logical consequences with respect to the least model

. She will go to the library
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Łukasiewicz Three-Valued Logic

I Łukasiewicz: O logice trójwartościowey 1920

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U > >
⊥ ⊥ U >

↔ > U ⊥
> > U ⊥
U U > U
⊥ ⊥ U >
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Affirmation of the Antecedent and Alternative Arguments

I She has an essay to write
If she has an essay to write, then she will go to the library
If she has textbooks to read, then she will go to the library

I Program P
e ← > fact definition of e
` ← e ∧ ¬abe rule definition of `

abe ← ⊥ assumption abe is assumed to be false
` ← t ∧ ¬abt rule definition of `

abt ← ⊥ assumption abt is assumed to be false

I Weakly completed program & Generation of least model

e ↔ > true false ΦP
` ↔ (e ∧ ¬abe) ∨ (t ∧ ¬abt ) e abe 1

abe ↔ ⊥ abt
abt ↔ ⊥ ` 2

I Computing logical consequences with respect to the least model

. She will go to the library
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Reasoning Towards an Appropriate Logical Form

I If she has an essay to write, then she will go to the library
If the library stays open, then she will go to the library

I Kowalski: Computational Logic and Human Thinking 2011

I Context independent rules

. If she has an essay to write and the library stays open,
then she will study late in the library
If the library stays open and she has a reason for studying in the library,
then she will study late in the library

I Context dependent rule plus exception

. If she has an essay to write, then she will study late in the library
However, if the library does not stay open, then she will not study late in the
library

. The last statement is the contrapositive of the converse of the original
sentence!
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Affirmation of the Antecedent and Additional Arguments
I She has an essay to write

If she has an essay to write, then she will go to the library
If the library stays open, then she will go to the library

I Programs P
e ← > fact definition of e
` ← e ∧ ¬abe rule definition of `

abe ← ⊥ assumption abe is assumed to be false
` ← o ∧ ¬abo rule definition of `

abo ← ⊥ assumption abo is assumed to be false
abe ← ¬o rule definition of abe
abo ← ¬e rule definition of abo

I Weakly completed program & Generation of least model

e ↔ > true false ΦP
` ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo) e 1

abe ↔ ⊥∨ ¬o abo 2
abo ↔ ⊥∨ ¬e

I Computing logical consequences with respect to the least model

. We can neither conclude that she will go nor that she will not go to the library
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Denial of the Antecedent

I She does not have an essay to write
If she has an essay to write, then she will study late in the library
Will she not study late in the library?

. 46% yes

I She does not have an essay to write
If she has an essay to write, then she will study late in the library
If she has textbooks to read, then she will study late in the library
Will she not study late in the library?

. 4% yes

I She does not have an essay to write
If she has an essay to write, then she will study late in the library
If the library stays open, then she will study late in the library
Will she not study late in the library?

. 63% yes
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Denial of the Antecedent

I She does not have an essay to write
If she has an essay to write, then she will go to the library

I Program P
e ← ⊥ assumption
` ← e ∧ ¬abe rule

abe ← ⊥ assumption

I Weakly completed program & Generation of least model

e ↔ ⊥ true false ΦP
` ↔ e ∧ ¬abe e 1

abe ↔ ⊥ abe
` 2

I Computing logical consequences with respect to the least model

. She will not go to the library
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Denial of the Antecedent and Alternative Arguments

I She does not have an essay to write
If she has an essay to write, then she will go to the library
If she has textbooks to read, then she will go to the library

I Program P
e ← ⊥ assumption
` ← e ∧ ¬abe rule

abe ← ⊥ assumption
` ← t ∧ ¬abt rule

abt ← ⊥ assumption

I Weakly completed program & Generation of least model

e ↔ ⊥ true false ΦP
` ↔ (e ∧ ¬abe) ∨ (t ∧ ¬abt ) e 1

abe ↔ ⊥ abe
abt ↔ ⊥ abt

I Computing logical consequences with respect to the least model

. We can neither conclude that she will go nor that she will not go to the library

Steffen Hölldobler
The Weak Completion Semantics – Introduction 17



Denial of the Antecedent and Additional Arguments
I She does not have an essay to write

If she has an essay to write, then she will go to the library
If the library stays open, then she will go to the library

I Programs P
e ← ⊥ assumption
` ← e ∧ ¬abe rule

abe ← ⊥ assumption
` ← o ∧ ¬abo rule

abo ← ⊥ assumption
abe ← ¬o rule
abo ← ¬e rule

I Weakly completed program & Generation of least model

e ↔ ⊥ true false ΦP
` ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo) e 1

abe ↔ ⊥∨ ¬o abo 2
abo ↔ ⊥∨ ¬e ` 3

I Computing logical consequences with respect to the least model

. She will not go to the library
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Affirmation of the Consequent

I She will study late in the library
If she has an essay to write, then she will study late in the library
Has she an essay to write?

. 71% yes

I She will study late in the library
If she has an essay to write, then she will study late in the library
If she has textbooks to read, then she will study late in the library
Has she an essay to write?

. 13% yes

I She will study late in the library
If she has an essay to write, then she will study late in the library
If the library stays open, then she will study late in the library
Has she an essay to write?

. 54% yes

Steffen Hölldobler
The Weak Completion Semantics – Introduction 19



Affirmation of the Consequent

I She will go to the library
If she has an essay to write, then she will go to the library

I Program
` ← >
` ← e ∧ ¬abe

abe ← ⊥

I Weakly completed program & Generation of least model

` ↔ >∨ (e ∧ ¬abe) true false
abe ↔ ⊥ ` abe

I Computing logical consequences with respect to the least model

. We cannot conclude that she has an essay to write

. But most humans conclude that she has

. Don’t consider ` as a fact in the presence of a rule for `

II Consider ` to be an observation that needs to be explained
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Abduction

I Program & Observation
` ← e ∧ ¬abe `

abe ← ⊥

I Abducibles

e ← > e ← ⊥

I Weakly completed program plus explanation & Generation of least model

` ↔ e ∧ ¬abe true false
abe ↔ ⊥ e abe

e ↔ > `

I Computing logical consequences with respect to the least model

. She has an essay to write
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Affirmation of the Consequent and Alternative Arguments

I Program & Observation

` ← e ∧ ¬abe `
abe ← ⊥

` ← t ∧ ¬abt
abt ← ⊥

I Abducibles

e ← > t ← > e ← ⊥ t ← ⊥

I Weakly completed program plus explanations & Generation of least models

` ↔ (e ∧ ¬abe) ∨ (t ∧ ¬abt ) true false true false
abe ↔ ⊥ e abe t abe
abt ↔ ⊥ abt abt

e ↔ > or t ↔ > ` `

I Computing skeptical consequences with respect to both models

. We cannot conclude that she has an essay to write

. Reasoning creduluously we can but the participants did not do this

Steffen Hölldobler
The Weak Completion Semantics – Introduction 22



Affirmation of the Consequent and Additional Arguments
I Program & Observation

` ← e ∧ ¬abe `
abe ← ⊥

` ← o ∧ ¬abo
abo ← ⊥
abe ← ¬o
abo ← ¬e

I Abducibles

e ← > o ← > e ← ⊥ o ← ⊥
I Weakly completed program plus explanations & Generation of least model

` ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo) true false
abe ↔ ⊥∨ ¬o e
abo ↔ ⊥∨ ¬e o

e ↔ > abe
o ↔ > abo

`

I Computing consequences with respect to the least model

. She has an essay to write
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Denial of the Consequent

I She will not study late in the library
If she has an essay to write, then she will study late in the library
Does she not have an essay to write?

. 92% yes

I She will not study late in the library
If she has an essay to write, then she will study late in the library
If she has textbooks to read, then she will study late in the library
Does she not have essay to write?

. 96% yes

I She will not study late in the library
If she has an essay to write, then she will study late in the library
If the library stays open then, she will study late in the library
Does she not have an essay to write?

. 33% yes
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Denial of the Consequent

I Program & Observation
` ← e ∧ ¬abe ¬`

abe ← ⊥

I Abducibles

e ← > e ← ⊥

I Weakly completed program plus explanation & Generation of least model

` ↔ e ∧ ¬abe true false
abe ↔ ⊥ abe

e ↔ ⊥ e
`

I Computing logical consequences with respect to the least model

. She does not have an essay to write
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Denial of the Consequent and Alternative Arguments
I Program & Observation

` ← e ∧ ¬abe ¬`
abe ← ⊥

` ← t ∧ ¬abt
abt ← ⊥

I Abducibles

e ← > t ← > e ← ⊥ t ← ⊥

I Weakly completed program plus explanations & Generation of least model

` ↔ (e ∧ ¬abe) ∨ (t ∧ ¬abt ) true false
abe ↔ ⊥ e
abt ↔ ⊥ t

e ↔ ⊥ abe
t ↔ ⊥ abt

`

I Computing consequences with respect to the least model

. She does not have an essay to write
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Denial of the Consequent and Additional Arguments

I Program & Observation

` ← e ∧ ¬abe ¬`
abe ← ⊥

` ← o ∧ ¬abo
abo ← ⊥
abe ← ¬o
abo ← ¬e

I Abducibles

e ← > o ← > e ← ⊥ o ← ⊥

I Weakly completed program plus explanations & Generation of least models

` ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo) true false true false
abe ↔ ⊥∨ ¬o e o
abo ↔ ⊥∨ ¬e abo abe

e ↔ ⊥ or o ↔ ⊥ ` `

I Computing skeptical consequences with respect to both models

. We cannot conclude that she does not have an essay to write
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Summary (1)

Ex atomic sentences conditional sentences queries WCS
e ¬e ` ¬` e ⇒ ` t ⇒ ` o ⇒ ` ` ¬` e ¬e

1 X X 96% >
2 X X X 96% >
3 X X X 38% U
4 X X 46% >
5 X X X 4% U
6 X X X 63% >
7 X X 71% >
8 X X X 13% U
9 X X X 54% >

10 X X 92% >
11 X X X 96% >
12 X X X 33% U
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Summary (2)

I The Weak Completion Semantics appears to be adequate

. The suppression effect is modeled

. The average reasoner is modeled

I Principles

. Licenses for inference

II Abnormalities

II Modeling additional antecedents by context dependent rules

. Abduction

II If a fact corresponds to the consequent of a conditional
then treat the fact as an observation which needs to be explained

II Skeptical abduction is adequate

II Credulous abduction is not
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The Six Stages of Reasoning
Premises, general knowledge, and observations

REASONING: towards a program

Program

WEAK COMPLETION

Weakly Completed Program

MODEL GENERATION

Unique least model

REASONING: with respect to the least model

Putative conclusion Observations not explained Nothing new follows

ABDUCTION: search for explanations

Putative skeptical conclusion Nothing new follows

CONSOLIDATION: search for counterexamples

Valid skeptical conclusion Nothing new follows
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Necessary and Non-Necessary Antecedents

I Given a conditional sentence if A then C

. A is necessary iff C cannot be true unless A is true

. A is non-necessary iff C can be true irrespective of the truth of A

I Are the following antecedents necessary or non-necessary?

. If the library stays open, then she will study late in the library

. If she has an essay to write, then she will study late in the library

I The answer depends on experience, culture, etc
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Non-Necessary Antecdents

I Suppose the antecedent of

if she has an essay to write, then she will study late in the library

was classified as non-necessary

I But then there are other (unknown) reasons for studying late in the library

. This can be taken into consideration by the abducible `← >

I Recall Experiment 4 (denial of the antecedent)

. The least model was 〈∅, {e, `, abe}〉

. 46% answered she will not study late in the library

. What about the others?

. Due to the abducible we can construct a counterexample 〈{`}, {e, abe}〉

. Reasoning skeptically she may or may not study late in the library
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Formal and/or Cognitive Theory

I Collins English Dictionary

. A formal theory is an uninterpreted symbolic system whose syntax is
precisely defined and on which a relation of deducibility is defined in purely
syntactic terms

. A cognitive theory is any theory of mind that focuses on mental activities,
such as perceiving, attending, thinking, remembering, evaluating, planning,
language, and creativity, especially a theory that suggests a model for the
various processes involved

I The Weak Completion Semantics is a formal theory

I But is it also a cognitive theory?
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Human Disjunctive Reasoning

I In classical two-valued logic {A ∨ B,¬A} |= B holds

. Can you prove it?

I What do you think about the following human reasoning episode?

Eva’s in Rio or she’s in Brazil
She’s not in Brazil
Therefore, she is in Rio

. Johnson-Laird, Byrne: Conditionals 2002
No sensible person other than a logician is likely to draw this conclusion as
it is impossible for Eva to be in Rio and not in Brazil, because Rio is in Brazil

. What should a computer scientist reply?
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Expected and Suggested Readings

I I expect students to read

. Byrne: Suppressing Valid Inferences with Conditionals 1989

. Łuksiewicz: O logice trójwartościowey 1920

I I suggest that students have a look at

. Stenning, van Lambalgen: Human Reasoning and Cognitive Science 2008

. Kowalski: Computational Logic and Human Thinking 2011

I Complete references are given in the manuscript
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Alphabet

I We consider an alphabet consisting of

. a finite set of function symbols with arity≥ 0

. a countably infinite set of variables

. a finite or countably infinite set of relation symbols with arity≥ 0

. the connectives ¬, ∧, ∨,←, and↔

. the existential quantifier ∃

. the universal quantifier ∀

. the special symbols (, ),>,⊥, U, and ,

I We assume that alphabets are implicitly given as the set of symbols occurring
in the syntactic objects under consideration
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Terms, Atoms, and Literals

I The set of terms is the smallest set satisfying the following conditions:

. Each variable is a term

. If f is an n-ary function symbol, n ≥ 0, and t1, . . . , tn are terms, then
f (t1, . . . , tn) is a term as well

II X , Y , a, b, f (a, X), g a

I The set of atoms consists of all expressions of the form p(t1, . . . , tn), where p
is an n-ary relation symbol, n ≥ 0, and t1, . . . , tn are terms

. p(b, X), q, r, s a

I A literal is either an atom or its negation

. p(a, b), ¬p(a, b)

I A term, atom, or literal is said to be ground iff if it does not contain the
occurrence of a variable

Steffen Hölldobler
Foundations – Logics 3



Formulas

I The set of formulas is the smallest set satisfying the following conditions

. Each atom and each truth constant is a formula

. If F is a formula, then so is ¬F

. If F and G are formulas, then so are (F ∧G), (F ∨G), (F ← G), and (F ↔ G)

. If F is a formula and X is a variable, then (∀X) F and (∃X) F are formulas

I A formula is called clause iff if it is a finite disjunction of literals

I In logic programming, clauses are often written in the form

A← L1 ∧ . . . ∧ Ln

where A is an atom and Li , 1 ≤ i ≤ n, are literals

. They are called program clauses with head A and body L1 ∧ . . . ∧ Ln
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Equations

I An equation is an atom of the form s ≈ t , where

. s and t are terms and

. ≈ is a binary relation symbol written infix

I Equations are assumed to be universally closed

I We usually consider sets of equations

I Examples

. {a ≈ b}

. {X ◦ 1 ≈ X , X ◦ Y ≈ Y ◦ X , (X ◦ Y ) ◦ Z ≈ X ◦ (Y ◦ Z)} AC1

Steffen Hölldobler
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Axioms of Equality

I The equality relation enjoys some typical properties

I They are specified in the following logic program

X ≈ X ← > reflexivity

X ≈ Y ← Y ≈ X symmetry

X ≈ Z ← X ≈ Y ∧ Y ≈ Z transitivitiy

f (X1, . . . , Xn) ≈ f (Y1, . . . , Yn) ←
∧n

i=1 Xi ≈ Yi f-substitutivity

r(Y1, . . . , Yn) ← r(X1, . . . , Xn) ∧
∧n

i=1 Xi ≈ Yi r-substitutivity

where substitutivity axioms are given for each function and relation symbol

Steffen Hölldobler
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Equational Theories

I An equational theory consists of a set ot equations and the axioms of equality

I It is specified by the set of equations

I Example

{X ◦ 1 ≈ X , X ◦ Y ≈ Y ◦ X , (X ◦ Y ) ◦ Z ≈ X ◦ (Y ◦ Z)}

specifies the AC1 theory

Steffen Hölldobler
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Finest Congruence Relation

I An equational theory defines a finest congruence relation∼= on the set of
ground terms

. An equational theory is a definite logic program

. Definite logic programs enjoy the model intersection property

. The least model is the finest congruence relation

I Let t be a ground term

. [t] denotes the congruence class defined by∼= and containing t

. If the set of equations is empty we write t instead of [t]

Steffen Hölldobler
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An Abbreviation

I [p(t1, . . . , tn)] is an abbreviation for p([t1], . . . , [tn])

I [p(t1, . . . , tn)] = [q(s1, . . . , sm)] iff

. p = q

. n = m and

. [ti ] = [si ] for all 1 ≤ i ≤ n

I If the set of equations is empty we write p(t1, . . . , tn) instead of [p(t1, . . . , tn)]

I Example Consider the AC1-theory

[d ◦ t2] = [t2 ◦ d]

[d ◦ t1 ◦ d] = [t1 ◦ d ◦ d ◦ 1]

[p(d ◦ t2, d ◦ t1 ◦ d)] = [p(t2 ◦ d, t1 ◦ d ◦ d ◦ 1)]

where d, t2, t1, 1 are constants, ◦ is a function, and p is a relation symbol

Steffen Hölldobler
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Interpretations and Models

I The Herbrand universe is the quotient of the set of ground terms modulo∼=

I The Herbrand base is the of all expressions of the form [p(t1, . . . , tn)] where

. p is an n-ary relation symbol and

. [ti ] are elements of the Herbrand universe for all 1 ≤ i ≤ n

I An interpretation is a mapping from the set of formulas into the set of truth
values such that

. truth constants are mapped onto themselves and

. a given equational theory is mapped to true

I An interpretation is defined by

. the truth tables for the connectives and

. the mapping of the Herbrand base to the truth values

I An interpretation I is a model for a formula F (I |= F ) iff I maps F to true

Steffen Hölldobler
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Interpretations and Models – Example

I Consider P = {q X ← ¬ p X , p a ← >} and E = {a ≈ b}

I The Herbrand universe is {[a]}

I The Herbrand base is {[p a], [q b]}

I Interpretations are given by the truth tables for the connectives and

. [p a] 7→ > [q b] 7→ >

. [p a] 7→ ⊥ [q b] 7→ >

. [p a] 7→ > [q b] 7→ ⊥

. [p a] 7→ ⊥ [q b] 7→ ⊥

I Which interpretations are models for P and E in classical two-valued logic?

Steffen Hölldobler
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Semantic Equivalence

I Two formulas F and G are semantically equivalent (F ≡ G)
iff for all interpretations I we find I F = I G

. Under which logics is⊥ ∨ F ≡ F and (F ← G) ∧ (G ← F ) ≡ (F ↔ G)?

II Two-valued classical logic

II Three-valued Łukasiewicz logic

II Three-valued Kleene logics

II Three-valued Fitting logic

Prove your claim

Steffen Hölldobler
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Logical Consequence

I Let F be a set of formulas and G a formula

I F logically entails G or G is a logical consequence of F (F |= G)
iff every model for F is also a model for G

I Consider two-valued classical logic

. Does {`← e, e} |= ` hold?

. Does {`← e, ¬e} |= ¬` hold?

. Does {`← e, `} |= e hold?

. Does {`← e, ¬`} |= ¬e hold?

Prove your claim

Steffen Hölldobler
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Programs

I A (normal logic) program P is a finite or countably infinite set of clauses of the
form

A← Body

. A is an atom (but not an equation) called head

. Body is either a non-empty conjunction of literals, or>, or⊥

I Clauses are assumed to be universally closed

I A← > is called (positive) fact

I A← ⊥ is called (negative) assumption

I All other clauses are called rules

I P is propositional iff all atoms occurring in P are propositional

I P is a datalog program iff the terms occurring in P are variables and constants

I P is a definite program iff it does not contain an occurrence of⊥ or ¬

Steffen Hölldobler
The Weak Completion Semantics – Theory 2



Programs – Example

I Let P be
` ← e ∧ ¬abe
` ← t ∧ ¬abt
e ← >

abe ← ⊥
abt ← ⊥

Steffen Hölldobler
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Alphabet

I Let P be a program and E an equational theory

. The alphabet consists precisely of the symbols occurring in P and E

. If P or E is a first-order program
then the alphabet must contain at least one constant symbol

Steffen Hölldobler
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Ground Instances

I A ground instance of a clause is obtained by replacing each variable occurring
in the clause by a ground term

. The replacement must be consistent in that multiple occurrences of the
same variable are replaced by the same ground term

I The ground instance of a program P is the set of all ground instances of
clauses occurring in P

. gP denotes the ground instance of P

. If P is a propositional program then gP = P

Steffen Hölldobler
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Ground Programs – Example

I Let P be
q a ← >

q s X ← q X

I Then gP consists of
q a ← >

q s a ← q a
q s s a ← q s a

...
...

...

I Is q s a ← q s a ∈ gP ?

Steffen Hölldobler
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Defined Ground Atoms

I Let P be a ground program, E an equational theory, and A a ground atom

. If E is empty, then A is defined in P iff P contains a clause with head A

. If E is not empty, then A is defined in P iff P contains a clause with head
A′ and [A] = [A′]

I A is undefined in P iff A is not defined in P

I def P denotes the set of defined atoms in P

Steffen Hölldobler
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Defined Ground Atoms – Examples

I Consider the following programs

E = ∅ E = {a ≈ b}

` ← e ∧ ¬abe p a ← >
` ← t ∧ ¬abt q c ← ⊥
e ← >

abe ← ⊥
abt ← ⊥

. How does def P look like?

. Are there any undefined atoms?

Steffen Hölldobler
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Definitions

I Let P be a ground program, E an equational theory, and S a consistent set of
literals

. If E is empty, then defs(P,S) = {A← Body ∈ P | A ∈ S or ¬A ∈ S}

. If E is not empty,
then defs(P,S) = {A′ ← Body ∈ P | A ∈ S or ¬A ∈ S and [A′] = [A]}

I Let P be
` ← e ∧ ¬abe
` ← o ∧ ¬abo
e ← >

abe ← ⊥
abo ← ⊥
abe ← ¬o
abo ← ¬e

. How does defs(P, {e,¬abe}) look like?

Steffen Hölldobler
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Assumptions

I Let P be a ground program, E an equational theory, and A a ground atom

. If E is empty then ¬A is assumed in P iff

II P contains an assumption with head A and

II P does neither contain a fact A← > nor a rule A← Body

. If E is not empty then ¬A is assumed in P iff

II P contains an assumption of the form A′ ← ⊥ with [A] = [A′] and

II P does neither contain a fact B ← > nor a rule B ← Body with [A] = [B]

I Why has the second condition been added?

Steffen Hölldobler
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Assumptions – Examples

I What is assumed in the following programs if E = ∅?

.
` ← e ∧ ¬abe
` ← t ∧ ¬abt
e ← >

abe ← ⊥
abt ← ⊥

.
` ← e ∧ ¬abe
` ← o ∧ ¬abo
e ← >

abe ← ⊥
abo ← ⊥
abe ← ¬o
abo ← ¬e

I Assumptions can be overridden

Steffen Hölldobler
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Weakly Completed Programs

I Let P be a ground program and E an equational theory

I Consider the following transformation

1 For all A ∈ def P do

II If E is empty, replace all clauses of the form
A← Body1, A← Body2, . . . occurring in P by A← Body1 ∨ Body2 . . .

II If E is not empty, replace all clauses of the form
A1 ← Body1, A2 ← Body2, . . . occurring in P with
[A1] = [A2] = . . . = [A] by A← Body1 ∨ Body2 . . .

2 Add A← ⊥ for all undefined ground atoms A occurring in P
3 Replace all occurrences of← by↔

II The resulting set is called completion of P or cP
II If step 2 is omitted then the resulting set is called

weak completion of P or wcP

Steffen Hölldobler
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Program Completion – Example

I Let P be
` ← e ∧ ¬abe
` ← t ∧ ¬abt
e ← >

abe ← ⊥
abt ← ⊥

I The weak completion of P consists of

` ↔ (e ∧ ¬abe) ∨ (t ∧ ¬abt )
e ↔ >

abe ↔ ⊥
abt ↔ ⊥

I The completion of P is obtained by adding

t ↔ ⊥

Steffen Hölldobler
The Weak Completion Semantics – Theory 13



Program Completion – Another Example

I Let P be
p a ← >
q b ← r b

I How does cP look like?

I How does wcP look like?

Steffen Hölldobler
The Weak Completion Semantics – Theory 14



Program Completion – Yet Another Example

I Let P be
` ← e ∧ ¬abe
` ← o ∧ ¬abo
e ← >

abe ← ⊥
abo ← ⊥
abe ← ¬o
abo ← ¬e

I The weak completion of P consists of

` ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo)
e ↔ >

abe ↔ ⊥∨ ¬o
abo ↔ ⊥∨ ¬e

I Under Łukasiewicz logic we find F ∨ ⊥ ≡ F

Steffen Hölldobler
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Convention

I Let P be a ground program and E an equational theory

I In the future

. If E is empty, we will delete an assumption A← ⊥ if the program contains a
fact A← > or a rule A← Body

. If E is not empty, then A← ⊥ will be deleted if the ground program contains
B ← > or B ← Body with [A] = [B]

Steffen Hölldobler
The Weak Completion Semantics – Theory 16



Sets of Literals versus Sets of Facts and Assumptions

I Let S be a consistent set of ground literals

I S↑ = {A← > | A ∈ S} ∪ {A← ⊥ | ¬A ∈ S}

I Let P be a ground program containing only facts and assumptions

. Remember our convention!

I P↓ = {A | A← > ∈ P} ∪ {¬A | A← ⊥ ∈ P}

I Example Let S = {e,¬abe} and P = {e ← >, abe ← ⊥}

. S↑ = P

. P↓ = S

I Is P↓ consistent?

Steffen Hölldobler
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The Depends On Relation

I Let P be a ground program

I Atom A directly depends on atom B if

. P contains a rule of the form A← Body and

. B occurs (positively or negatively) in Body

I The depends on relation is the transitive closure of the directly depends on
relation

I Example Let P = {q a ← >, q s a ← q a, q s s a ← q s a, . . .}

. q s a directly depends on q a

. q s s a directly depends on q s a

. q s a depends on q a

. q s s a depends on q s a and q a

Steffen Hölldobler
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The Function deps

I Let P be a ground program and S a consistent set of ground literals

deps(P,S) = {B ← Body ∈ P | Body ∈ {>,⊥} and there exists A ∈ S or
¬A ∈ S such that A depends on B}

I Example Let P = {q a ← >, q s a ← q a, q s s a ← q s a, . . .}

. deps(P, {q s a a, ¬ q s a}) = {q a ← >}

Steffen Hölldobler
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The Meaning of Programs

I Let P be a program and E an equational theory

. In many scenarios E = ∅

. When modeling ethical decision problems E = AC1

I Recall equations, equational theories, interpretations, and models

I What is the meaning of P?

Steffen Hölldobler
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Łukasiewicz Three-Valued Logic

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U > >
⊥ ⊥ U >

↔ > U ⊥
> > U ⊥
U U > U
⊥ ⊥ U >
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Kleene Three-Valued Logic

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U U >
⊥ ⊥ U >

↔ > U ⊥
> > U ⊥
U U U U
⊥ ⊥ U >
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Fitting Three-Valued Logic

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U U >
⊥ ⊥ U >

↔ > U ⊥
> > ⊥ ⊥
U ⊥ > ⊥
⊥ ⊥ ⊥ >
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Three-Valued Interpretations

I A (three-valued) interpretation assigns to each formula a value from {>,⊥,U}

I It is represented by 〈I>, I⊥〉, where

. I> contains all ground atoms which are mapped to>

. I⊥ contains all ground atoms which are mapped to⊥

. I> ∩ I⊥ = ∅

. All ground atoms which occur neither in I> nor I⊥ are mapped to U

I In the sequel, I, J denote interpretations 〈I>, I⊥〉, 〈J>, J⊥〉, respectively

I The intersection I ∩ J is defined as 〈I> ∩ J>, I⊥ ∩ J⊥〉

Steffen Hölldobler
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Three-Valued Interpretations – Examples

I Consider

P wcP cP
` ← e ∧ ¬abe ` ↔ (e ∧ ¬abe) ` ↔ (e ∧ ¬abe)
` ← t ∧ ¬abt ∨ (t ∧ ¬abt ) ∨ (t ∧ ¬abt )
e ← > e ↔ > e ↔ >

abe ← ⊥ abe ↔ ⊥ abe ↔ ⊥
abt ← ⊥ abt ↔ ⊥ abt ↔ ⊥

t ↔ ⊥

I Then
I I P I wcP I cP
〈{e, abe}, ∅〉 > ⊥ ⊥
〈{e, `}, {abe, abt}〉 > > U
〈{e, `, t}, {abe, abt}〉 > > ⊥
〈{e, `}, {abe, abt , t}〉 > > >

Steffen Hölldobler
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Models

I An interpretation I is a model for a program P (I |= P) iff I P = >

I This definition depends on the underlying logic!

. We will indicate the underlying logic by adding a subscript to |=

. Ł denotes Łukasiewicz logic

. K denotes Kleene logic

. F denotes Fitting logic

I Which of the following interpretations are models for

P = {a ← b}

. 〈∅, ∅〉
?
|=Ł P 〈{a, b}, ∅〉

?
|=Ł P 〈∅, {a, b}〉

?
|=Ł P

. 〈∅, ∅〉
?
|=K P 〈{a, b}, ∅〉

?
|=K P 〈∅, {a, b}〉

?
|=K P

I In the sequel, we use Łukasiewicz logic if not stated otherwise

Steffen Hölldobler
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Model Intersection Property

I We would like to show that

∩{I | I |= P} |= P

I It holds in classical two-valued logic for definite programs

I But it does not hold in classical two-valued logic for normal programs

I Under Łukasiewicz logic

. The intersection of two models is not necessarily a model

. Let P be the definite program

p ← q1 ∧ r1
p ← q2 ∧ r2

. 〈∅, {p, q1, r2}〉 |= P

. 〈∅, {p, q2, r1}〉 |= P

. But 〈∅, {p}〉 6|= P

Steffen Hölldobler
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The Meaning of Programs

I Proposition 10 If I = 〈I>, I⊥〉 |= P then I′ = 〈I>, ∅〉 |= P

I Proof Suppose I |= P ,
i.e., for all A← Body ∈ gP we find I |= A← Body

. We consider the truth ordering ⊥ <t U <t >

. We consider all cases for I A

. We will show I′ |= A← Body by I′ A ≥t I′ Body

. We distinguish three cases

1 I A = > In this case A ∈ I> and hence I′ |= A← Body

2 I A = ⊥
3 I A = U

Steffen Hölldobler
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Proof of Proposition 10 Case 2

2 I A = ⊥ In this case A ∈ I⊥ and I′ A = U

. Because I |= A← Body we conclude I Body = ⊥

. Hence we find a literal L ∈ Body such that I L = ⊥

II L = B In this case I B = ⊥ and hence I′ B = I′ L = U

II L = ¬B In this case I B = > and hence I′ B = > and I′ L = ⊥

. Consequently I′ Body ∈ {U,⊥}

. Because I′ A = U we conclude I′ |= A← Body

Steffen Hölldobler
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Proof of Proposition 10 Case 3

3 I A = U In this case I′ A = U

. I Body = ⊥ As in the previous case we find I′ Body ∈ {⊥,U}

II Consequently I′ |= A← Body

. I Body = U In this case we find a literal L ∈ Body with I L = U

II Then I′ L = U

II Consequently I′ Body = U

II Hence I′ |= A← Body 2

Steffen Hölldobler
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Proposition 10 – Examples

I Let P = {`← e ∧ ¬abe, e ← >, abe ← ⊥}

. 〈{e, `}, {abe}〉 |= P

. 〈{e, `}, ∅〉 |= P

I Let E = {a ≈ b} and P = {q X ← ¬ p X , p a ← >}

. 〈{[p a]}, {[q b]}〉 |= P

. 〈{[p a]}, ∅〉 |= P

I Does Proposition 10 hold under Kleene or Fitting logic?

Steffen Hölldobler
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Intersection of Two Models with Empty ⊥-Part

I Proposition 11 Let I1 = 〈I>1 , ∅〉 and I2 = 〈I>2 , ∅〉 be two models of P
Then I = 〈I>1 ∩ I>2 , ∅〉 is also a model of P

I Proof Suppose I 6|= P

. Then we find A← Body ∈ gP such that I 6|= A← Body

. We distinguish three cases

1 I A = ⊥ and I Body = > Impossible because I⊥ = ∅
2 I A = ⊥ and I Body = U Impossible because I⊥ = ∅
3 I A = U and I Body = >

Because I A = U we find j ∈ {1, 2} with Ij A = U

Because Ij |= A← Body we find Ij Body ∈ {U,⊥} (∗)
Because I Body = > and I⊥ = ∅ we find
for all L ∈ Body that L is an atom and L ∈ I>

Hence for all L ∈ Body we find L ∈ I>j , j ∈ {1, 2}

Consequently Ij Body = >, j ∈ {1, 2} contradicting (∗) 2
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Model Intersection

I Theorem 12 The model intersection property holds for P
i.e., ∩{I | I |= P} |= P

I Proof Follows immediately from Propositions 10 and 11 2

I Example Consider P = {p ← q}

. The least model of P under Łukasiewicz logic is 〈∅, ∅〉

I Theorem 12 does not hold under Fitting logic (|=F)

. 〈{p, q}, ∅〉 |=F p ← q

. 〈∅, {p, q}〉 |=F p ← q

. However 〈∅, ∅〉 6|=F p ← q

I Theorem 12 does not hold under Kleene logic (|=K)

I What are the least models for the first three programs in the suppression task?
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The Meaning of Weakly Completed Programs

I Theorem 13 The model intersection property holds for wcP as well

I Proof later in the lecture

I MwcP denotes the least model of wcP

I IsMwcP the least model of P?

I Corollary 14 If I |= wcP then I |= P

I Proof F ↔ G ≡ (F → G) ∧ (G → F ) under Łukasiewicz logic 2

I Proposition 14 does not hold under Fitting logic

. 〈∅, ∅〉 |=F wc{p ← q} = {p ↔ q}

. However 〈∅, ∅〉 6|=F {p ← q}
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The Suppression Task – Experiments 1-3

Ex. P wcP MwcP

1 e ← > e ↔ > 〈{e, `}, {abe}〉
` ← e ∧ ¬abe ` ↔ e ∧ ¬abe

abe ← ⊥ abe ↔ ⊥
2 e ← > e ↔ > 〈{e, `}, {abe, abt}〉

` ← e ∧ ¬abe ` ↔ (e ∧ ¬abe) ∨ (t ∧ ¬abt )
` ← t ∧ ¬abt abe ↔ ⊥

abe ← ⊥ abt ↔ ⊥
abt ← ⊥

3 e ← > e ↔ > 〈{e}, {abo}〉
` ← e ∧ ¬abe ` ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo)
` ← o ∧ ¬abo abe ↔ ⊥∨ ¬o

abe ← ⊥ abo ↔ ⊥∨ ¬e
abo ← ⊥
abe ← ¬o
abo ← ¬e
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The Suppression Task – Experiments 4-6

Ex. P wcP MwcP

4 e ← ⊥ e ↔ ⊥ 〈∅, {e, `, abe}〉
` ← e ∧ ¬abe ` ↔ e ∧ ¬abe

abe ← ⊥ abe ↔ ⊥
5 e ← ⊥ e ↔ ⊥ 〈∅, {e, abe, abt}〉

` ← e ∧ ¬abe ` ↔ (e ∧ ¬abe) ∨ (t ∧ ¬abt )
` ← t ∧ ¬abt abe ↔ ⊥

abe ← ⊥ abt ↔ ⊥
abt ← ⊥

6 e ← ⊥ e ↔ ⊥ 〈{abo}, {e, `}〉
` ← e ∧ ¬abe ` ↔ (e ∧ ¬abe) ∨ (o ∧ ¬abo)
` ← o ∧ ¬abo abe ↔ ⊥∨ ¬o

abe ← ⊥ abo ↔ ⊥∨ ¬e
abo ← ⊥
abe ← ¬o
abo ← ¬e
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Monotonicity

I Let P and P′ be sets of formulas and G a formula
A logic is monotonic if the following holds:
If P |= G then P ∪ P′ |= G

I Classical logic is monotonic

I A logic based on the weak completion semantics is non-monotonic

. Consider
P = {c ← ⊥}
P′ = {c ← >}

. Then
wcP = {c ↔ ⊥} |= ¬c
wc (P ∪ P′) = {c ↔ ⊥∨>} |= c
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Computing Least Models

I How can we compute the least models of weakly completed programs?

I In classical two-valued logic we obtain

TP I = {A | there exists A← Body ∈ gP with I Body = >}

where P is a definite logic program and I an interpretation

I In three-valued logic programming we obtain ΨP I = 〈J>, J⊥〉 where

J> = {A | there exists A← Body ∈ gP with I Body = >}
J⊥ = {A | for all A← Body ∈ gP we find I Body = ⊥}

. ΨP is monotone on (I,⊆)

. The least model of cP under Fitting logic is the least fixed point of ΨP

. Inadequate for human reasoning  Why?
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The Semantic Operator for Weakly Completed Programs

I Consider the following immediate consequence operator

Φ′
P I = 〈J>, J⊥〉 where

J> = {A | there exists A← Body ∈ gP with I Body = >}
J⊥ = {A | there exists A← Body ∈ gP and

for all A← Body ∈ gP we find I Body = ⊥}

I Φ′
P “without the red condition” is ΨP
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The Semantic Operator for Weakly Completed Programs with Equality

I Let P be a program, E an equational theory, and I an interpretation

I Consider the following immediate consequence operator

ΦP I = 〈J>, J⊥〉 where

J> = {[A] | there exists A← Body ∈ gP with I Body = >}
J⊥ = {[A] | there exists A← Body ∈ gP and

for all A′ ← Body ∈ gP with [A] = [A′] we find I Body = ⊥}

and [A] denotes the finest congruence class defined by E and containing A
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Semantic Operator – Examples

I Iteratively apply ΦP to the following programs starting with 〈∅, ∅〉

. P = {e ← >, `← e ∧ ¬abe, abe ← ⊥} and E = ∅

. P = {q X ← ¬p X , p a ← >} and E = {a ≈ b}

I Do least fixed points of ΦP always exist?

I How long does it take to compute least fixed points of ΦP?

. Recall fixed point theory
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The Complete Partial Order of Interpretations – Example

I Let P = {p X ← q X} and E = {a ≈ b}

I Let I denote the set of all three-valued interpretations

I I = 〈I>, I⊥〉 ⊆ 〈J>, J⊥〉 = J iff I> ⊆ J> and I⊥ ⊆ J⊥

I (I,⊆) is a complete partial order

〈∅, ∅〉

〈{[p a]}, ∅〉 〈{[q b]}, ∅〉 〈∅, {[q b]}〉 〈∅, {[p a]}〉

〈{[p a], [q b]}, ∅〉 〈{[p a]}, {[q b]}〉 〈{[q b]}, {[p a]}〉 〈∅, {[p a], [q b]}〉
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The Complete Partial Order of Interpretations 1

I Let P be a program and E an equational theory

I Let J be a set of interpretations

. J> = {I> | 〈I>, I⊥〉 ∈ J}

. J⊥ = {I⊥ | 〈I>, I⊥〉 ∈ J}

I Proposition 15 Let J be a directed set of interpretations
Then the interpretation I = 〈

⋃
J>,

⋃
J⊥〉 is the least upper bound of J

I Proof Given J we have to show that

(i) I is an interpretation

(ii) I is an upper bound of J  Exercise

(iii) I is the least upper bound of J  Exercise
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Proof of Proposition 15 (i)

I To show I = 〈
⋃
J>,

⋃
J⊥〉 is an interpretation

. By definition
⋃
J> and

⋃
J⊥ are unions of congruence classes

. It remains to show
⋃
J> ∩

⋃
J⊥ = ∅

. Suppose we find [A] ∈
⋃
J> ∩

⋃
J⊥

. Then we find I1, I2 ∈ J with [A] ∈ I>1 and [A] ∈ I⊥2

. Because J is directed, it contains a common upper bound K of I1 and I2

. We find [A] ∈ K> and [A] ∈ K⊥

. Hence, K cannot be an interpretation  contradiction 2
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The Complete Partial Order of Interpretations 2

I Corollary 16
The set of all interpretations I is a complete partial order with respect to⊆

I Proof

. Reflexivity, antisymmetry, and transitivity holds for⊆

. By Proposition 15 every directed subset of I has a least upper bound in I
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Monotonocity of the Semantic Operator

I Proposition 17
For each program P and equational theory E the mapping ΦP is monotonic

I Proof Let I = 〈I>, I⊥〉 ⊆ 〈J>, J⊥〉 = J

. To show ΦP I = I′ = 〈I′>, I′⊥〉 ⊆ 〈J′>, J′⊥〉 = J′ = ΦP J

. I′> ⊆ J′>

II [A] ∈ I′> iff we find A← Body ∈ gP such that I Body = >
II Because I ⊆ J we claim J Body = > prove it!

II Hence, [A] ∈ J′>

. I′⊥ ⊆ J′⊥  Exercise 2
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Non-Continuity of the Semantic Operator 1

I Let E = ∅ and P be
q a ← >

q s X ← q X
p ← ¬ q X

I The least fixed point of ΦP is

〈{[q sk a] | k ∈ N}, {[p]}〉

I It is reached after ω + 1 iterations

I By the Kleene Fixed Point Theorem 4 ΦP is not continuous

I The Herbrand base contains infinitely many equivalence classes

[p], [q a], [q s a], . . .

where each equivalence class has one member
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Non-Continuity of the Semantic Operator 2
I Let P be

q 1 ← >
q (X ◦ a) ← q X

p ← ¬ q X

and E be
X ◦ (Y ◦ Z) ≈ (X ◦ Y ) ◦ Z

X ◦ Y ≈ Y ◦ X
X ◦ 1 ≈ X

I The least fixed point of ΦP is

〈{[q(1 ◦
k︷ ︸︸ ︷

a ◦ . . . ◦ a)] | k ∈ N}, {[p]}〉

I It is reached after ω + 1 iterations

I By Kleene Fixed Point Theorem 4 ΦP is not continuous

I The Herbrand base contains infinitely many equivalence classes

[p], [q 1], [q a], [q(a ◦ a)], . . .

where with the exception of [p] each of these equivalence classes is infinite
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Finite Propositional and Finite Ground Programs

I Proposition 18
For each finite propositional program P the mapping ΦP is continuous

I Proof

. Because P is finite, the set I of interpretations is finite

. By Corollary 16 (I,⊆) is a complete partial order

. By Proposition 17 ΦP is monotonic on I

. By Proposition 7 the mapping ΦP is continuous 2

I Proposition 19
If the Herbrand base for a program P and a set of equations E is finite
then the mapping ΦP is continuous

I Proof

. Define a bijection between the set of ground atoms occurring in P
and an equally large set of propositional atoms

. Replace each ground atom by a propositional atom

. Apply Proposition 18 2
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Least Fixed Points and Models

I Lemma 20 Let J be the least fixed point of ΦP and I a model of wcP

. Then for every ground atom A we find

II If J A = > then I A = >
II If J A = ⊥ then I A = ⊥

I Proof Let J be the least fixed point of ΦP and I a model of wcP

. We start iterating ΦP on 〈∅, ∅〉

. Claim For every ordinal α and every ground atom A we find

II If ΦP ↑ αA = > then I A = >
II If ΦP ↑ αA = ⊥ then I A = ⊥

. Proof of the Claim by transfinite induction  Exercise

. The lemma follows from Propositions 3 and 17 2
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Lemma 20 – Example

I Let P = {q a ← >, q s X ← q X , p ← ¬ q X , r a ← >}

I I = 〈{q sk a | k ∈ N} ∪ {r a, r s2 a}, {p, r s a}〉 is a model of wcP

ΦP ↑ 0 〈∅, ∅〉
ΦP ↑ 1 〈{q a, r a}, ∅〉
ΦP ↑ 2 〈{q a, q s a, r a}, ∅〉

...
...

ΦP ↑ ω 〈{q sk a | k ∈ N} ∪ {r a}, ∅〉
ΦP ↑ (ω + 1) 〈{q sk a | k ∈ N} ∪ {r a}, {p}〉
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Fixed Points are Models

I Lemma 21
If I is a fixed point of ΦP then I is a model of wcP

I Proof to show I(A↔ F ) = > for all A↔ F ∈ wcP

. [A] ∈ I> We find A← Body ∈ P with I Body = >

II Then, F = Body ∨ F ′ and I F = >
II Hence, I A = I F

. [A] ∈ I⊥  Exercise

. [A] 6∈ I> ∪ I⊥  Exercise 2
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Least Fixed Points are Minimal Models

I Proposition 22
If J is the least fixed point of ΦP then J is a minimal model of wcP

I Proof Let J be the least fixed point of ΦP

. By Lemma 21 J is a model of wcP

. By Proposition 20 for every model I of wcP we find
J> ⊆ I> and J⊥ ⊆ I⊥, i.e., J ⊆ I

. Hence, J is a minimal model of wcP 2
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Least Fixed Points and Least Models

I Proposition 23
If I is a minimal model of wcP then I is the least fixed point of ΦP

I Proof Let I be a minimal model of wcP and J be the least fixed point of ΦP

. From Lemma 20 we learn that J> ⊆ I> and J⊥ ⊆ I⊥

. But then I = J as otherwise we have a conflict with the minimality of I 2

I Theorem 13 wcP has a least model

I Proof Follows from Propositions 22 and 23 and the fact that the least fixed
point of ΦP is unique 2

I Theorem 24 I is the least fixed point of ΦP iff I is the least model of wcP

I Proof Follows from Theorem 13 and Propositions 22 and 23 2
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Entailment under the Weak Completion Semantics

I LetMwcP denote the least fixed point of ΦP

. which is equal to the least model of wcP

I P entails F under the weak completion semantics

P |=wcs F iff MwcP F = >

Steffen Hölldobler
The Weak Completion Semantics – Theory 55



Two Examples

I Consider the program P = {p ← q, q ← p}

. It has a least model 〈∅, ∅〉

. It can be computed iterating ΦP starting with 〈∅, ∅〉

. But if the iteration would start with 〈{p}, ∅〉 then it will run forever

. Do humans always start with the empty interpretation?

I Consider the program P = {even 0 ← >, even s X ← ¬ even X}

. It has a least model 〈{even sk 0 | k is even}, {even sk 0 | k is odd}〉

. It can be computed iterating ΦP starting with 〈∅, ∅〉

. How many steps do we need?

I We will address both questions using metric methods
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Semantic Operators as Contraction Mappings

I A level mapping for P is a mapping level from the set of ground atoms to N
such that level A = level B iff [A] = [B]

. It is extended to a mapping from ground literals to N by level ¬A = level A

I Let level be a level mapping for P

. P is acyclic with respect to level iff
for every rule A← L1 ∧ . . . ∧ Ln ∈ gP
we find level A > level Li for all 1 ≤ i ≤ n

. P is acyclic iff it is acyclic with respect to some level mapping

. The problem to determine whether P is acyclic is undecidable
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Acyclic Programs – Examples 1

I Consider the program P
p ← r ∧ q
q ← r ∧ p

. Is P acyclic?

. How many fixed points has ΦP?

. Is ΦP a contraction on a complete metric space?

I Are the followig programs acyclic?

. {q a ← >, q s X ← q X , p ← ¬ q X}

. {even 0 ← >, even s X ← ¬ even X}
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Acyclic Programs – Examples 2

I Consider the program P
p ← q ∧ r
q ← ¬r
r ← >

I Let level r = 0, level q = 1, level p = 2

. P is acyclic with respect to level

. We find

ΦP(〈{q, r}, {p}〉) = 〈{p, r}, {q}〉 ΦP(〈{p}, ∅〉) = 〈{r}, ∅〉
ΦP(〈{p, r}, {q}〉) = 〈{r}, {p, q}〉 ΦP(〈{r}, ∅〉) = 〈{r}, {q}〉

ΦP(〈{r}, {q}〉) = 〈{r}, {p, q}〉

. 〈{r}, {p, q}〉 is the unique fixed point of ΦP

. Is ΦP a contraction? If so, on what metric space?
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Programs and Metric Spaces

I Proposition 25 Let P be a program, E an equational theory,
level a level mapping for P , I the set of interpretations for P , and I, J ∈ I

. The function dlevel : I × I → R defined as

dlevel (I, J) =


1

2n I 6= J and
I A = J A 6= U for all A with level A < n and
I A 6= J A or I A = J A = U for some A with level A = n

0 otherwise

is a metric

I Proof  Exercise
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Programs and Metric Spaces – Example 1

I Consider the program P

even 0 ← >
even s X ← ¬ even X

I Let

I = 〈{even sk 0 | k ∈ {0, 2, . . .}}, {even sk 0 | k ∈ {1, 3, . . .}}〉
J = 〈{even sk 0 | k ∈ {0, 2, . . .}}, ∅〉

and
level even sk 0 = k

I Then

dlevel (I, J) =
1
2

I Note gP is infinite and P is acyclic
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Programs and Metric Spaces – Example 2

I Consider again the program P

even 0 ← >
even s X ← ¬ even X

I Let again level even sk 0 = k

I For all n ∈ N let

In = 〈{even sk 0 | k ≤ n and k even}, {even sk 0 | k ≤ n and k odd}〉

I What is the distance between In and Im?

I Is the sequence (In | n ≥ 0) a Cauchy sequence?

I Does the sequence (In | n ≥ 0) converge?
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Programs and Complete Metric Spaces

I Let level be a level mapping for P , E an equational theory
and I the set of interpretations for P

I Proposition 26 (I, dlevel ) is a complete metric space

I Proof To show Every Cauchy sequence of interpretations converges

. Let (Ik | k ≥ 1) be a Cauchy sequence of interpretations

. I.e., for all ε > 0 there is K ∈ N: for all k1, k2 ≥ K we find dlevel (Ik1 , Ik2 ) ≤ ε

. In particular, for all n ∈ N, there is K ∈ N: for all k1, k2 ≥ K we find

dlevel (Ik1 , Ik2 ) ≤
1

2n+1

. For all n ∈ N let Kn be the least such K

. Hence, if n1 ≤ n2 then 1
2n1+1 ≥ 1

2n2+1 and Kn1 ≤ Kn2

. To show (Ik | k ≥ 1) converges

. i.e., there is I: for every ε > 0, there is a K : for all k ≥ K we find d(I, Ik ) ≤ ε
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Proof of Proposition 26 – Continued

I Let I be such that for each ground atom A we have I A = IK`
A where ` = level A

I We choose ε > 0 and let n ∈ N be such that 1
2n+1 ≤ ε

I Claim dlevel (I, Ik ) ≤ 1
2n+1 ≤ ε for any k ≥ Kn

I Proof of the Claim  Exercise 2

Steffen Hölldobler
The Weak Completion Semantics – Theory 64



Programs and Contractions

I Let level be a level mapping for P , E an equational theory
and I the set of interpretations for P

I Theorem 27
If P is acyclic with respect to level then ΦP is a contraction on (I, dlevel )

I Proof we will prove a more general result later in the lecture

I Corollary 28 If P is acyclic then ΦP has a unique fixed point which can be
reached by iterating ΦP up to ω times starting with any interpretation

I Proof Follows from Theorems 27 and 9 2
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Reconsidering Two Examples

I Reconsider the program P = {p ← q, q ← p}

. It is not acyclic

. Model construction must start with the empty interpretation

I Reconsider the program P = {even 0 ← >, even s X ← ¬ even X}

. It is acyclic

. Model construction can start with any interpretation

ΦP I> I⊥

↑ 0 even 0
↑ 1 even 0

even s 0
↑ 2 even 0 even s 0

even s s 0
...

...
...

. The least fixed point will be computed in ω steps
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Abduction – Overview

I Integrity constraints

I Abducibles

I Abductive Frameworks

I Observations

I Credulous versus skeptical reasoning

I Examples
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Abduction

I Charles Sanders Peirce 1932

. given a program and an observation (which is not entailed by the program)

. a consistent set of facts (and assumptions) is infered or abduced

. such that the program and the facts entail the observation

I The set of facts is called explanation for the observation

I Applications

. fault diagnosis

. high level vision

. natural language processing

. planning

. knowledge assimilation

. . . .
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Integrity Constraints

I Integrity constraints are formulas of the form

U← Body (weak IC) or ⊥ ← Body (strong IC)

where Body is a conjunction of literals

I IC denotes a finite set of integrity constraints

I Interpretation I satisfies IC iff I satisfies each constraint occurring in IC

I Integrity constraints eliminate models

I Examples

a U← a ⊥ ← a U← ¬a ⊥ ← ¬a

> U ⊥ > >
U > U > U
⊥ > > U ⊥

I What is the difference between⊥ ← a and a ← ⊥?
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Integrity Constraints – Preferences
I Michael believes that offering Kim a homemade cake or homemade cookies will

make her happy. But he also knows that she does not want both.

happy ← cake ∧ ¬abcake
happy ← cookies ∧ ¬abcookies
abcake ← ⊥

abcookies ← ⊥

cake cookies U← cake ∧ cookies ⊥ ← cake ∧ cookies

> > U ⊥
> U > U
> ⊥ > >

U > > U
U U > U
U ⊥ > >

⊥ > > >
⊥ U > >
⊥ ⊥ > >
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Integrity Constraints and Models

I Suppose IC 6= ∅

I Then P as well as wcP may not have models satisfying IC

I Can you specify an example?
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Abducibles

I Let P be a ground program

I The set of abducibles is

AP = {A← > | A is undefined in P} ∪ {A← ⊥ | A is undefined in P}

I Should defeaters of negative assumptions be added to this set?
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Abductive Frameworks

I Let P be a ground program

I An abductive framework 〈P,AP ,IC, |=wcs〉 consists of

. a program P

. a set of abduciblesAP

. a set IC of integrity constraints

. the entailment relation |=wcs

I In the sequel, we sometimes consider datalog programs

. In this case, the set of abducibles as well as abductive frameworks are
defined with respect to the ground instances of the program
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The Suppression Task – Abducibles

P AP

` ← e ∧ ¬abe e ← >
abe ← ⊥ e ← ⊥
` ← e ∧ ¬abe e ← >
` ← t ∧ ¬abt e ← ⊥

abe ← ⊥ t ← >
abt ← ⊥ t ← ⊥
` ← e ∧ ¬abe e ← >
` ← o ∧ ¬abo e ← ⊥

abe ← ⊥ o ← >
abo ← ⊥ o ← ⊥
abe ← ¬o
abo ← ¬e

Steffen Hölldobler
The Weak Completion Semantics – Theory 74



Observations and Explanations

I An observationO is a set of ground literals

I O is explainable in the abductive framework 〈P,AP ,IC, |=wcs〉
iff there exists a non-empty X ⊆ AP called explanation such that

. Mwc(P∪X ) |=wcs L for all L ∈ O

. Mwc(P∪X ) satisfies IC

I Sometimes explanations are required to be minimal

. where X is minimal if there does not exist an explanation X ′ with X ′ ⊆ X

I Is P ∪ X satisfiable?

I Is the empty observation explainable?
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Observations and Explanations – Example

I Let P consist of

happy ← cake ∧ ¬abcake
happy ← cookies ∧ ¬abcookies
abcake ← ⊥

abcookies ← ⊥

I ThenAP consists of

cake ← > cookies ← >
cake ← ⊥ cookies ← ⊥

I Let IC = {U← cake ∧ cookies}

I LetO = {happy}

I {cake ← >} and {cookies ← >} are explanations

I {cake ← >, cookies ← >} is not an explanation
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The Suppression Task – Experiments 7-9

Ex. P AP O X e
7 ` ← e ∧ ¬abe e ← > ` e ← > 0.71

abe ← ⊥ e ← ⊥
8 ` ← e ∧ ¬abe e ← > ` e ← > t ← > 0.13

` ← t ∧ ¬abt e ← ⊥
abe ← ⊥ t ← >
abt ← ⊥ t ← ⊥

9 ` ← e ∧ ¬abe e ← > ` e ← > 0.54
` ← o ∧ ¬abo e ← ⊥ o ← >

abe ← ⊥ o ← >
abo ← ⊥ o ← ⊥
abe ← ¬o
abo ← ¬e
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The Suppression Task – Experiments 10-12

Ex. P AP O X ¬e
10 ` ← e ∧ ¬abe e ← > ¬` e ← ⊥ 0.96

abe ← ⊥ e ← ⊥
11 ` ← e ∧ ¬abe e ← > ¬` e ← ⊥ 0.96

` ← t ∧ ¬abt e ← ⊥ t ← ⊥
abe ← ⊥ t ← >
abt ← ⊥ t ← ⊥

12 ` ← e ∧ ¬abe e ← > ¬` e ← ⊥ o ← ⊥ 0.33
` ← o ∧ ¬ab3 e ← ⊥

abe ← ⊥ o ← >
ab3 ← ⊥ o ← ⊥
abe ← ¬o
ab3 ← ¬e
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Skeptical and Credulous Consequences

I Let 〈P,AP ,IC, |=wcs〉 be an abductive framework,O an observation,
and F a formula

I F follows credulously from P andO
iff there exists an explanation X forO such that P ∪ X |=wcs F

I F follows skeptically from P andO
iff for all explanations X forO we find P ∪ X |=wcs F
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Complementary Pairs

I A pair of clauses of the form c ← > and c ← ⊥ is complementary

I A set of clauses is complementary if it contains a complementary pair

I Proposition 29 Let 〈P,AP ,IC, |=wcs〉 be an abductive framework
O an observation and X ⊆ AP an explanation forO
which contains a complementary pair c ← > and c ← ⊥

. Then, X ′ = X \ {c ← ⊥} is also an explanation forO
andMwc(P∪X ) =Mwc(P∪X ′)

I Proof  Exercise

I Proposition 30 Given n undefined atoms in a ground program P
there are 22n

subsets ofAP and 3n non-complementary subsets ofAP

I Proof  Exercise

I Are humans considering 3n − 1 possible explanations?
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Reasoning to the Best Explanation 1

I If I watered the garden, then the grass is wet
If it was raining, then the grass is wet

I Reasoning towards a program

wet grass ← watered ∧ ¬abwatered
abwatered ← ⊥

wet grass ← rain ∧ ¬abrain
abrain ← ⊥

I Observation The grass is wet

I What are the minimal explanations?
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Reasoning to the Best Explanation 2

I If I watered the garden, then the grass is wet
If it was raining, then the grass is wet
The sky was clear all day

I Reasoning towards a program

wet grass ← watered ∧ ¬abwatered
abwatered ← ⊥

wet grass ← rain ∧ ¬abrain
abrain ← ⊥

clear sky ← >

I Common sense U← clear sky ∧ rain

I Observation The grass is wet

I What is the best minimal explanation?

Steffen Hölldobler
The Weak Completion Semantics – Theory 82



The Tweety Scenario 1

I Birds usually fly, but kiwis and penguins do not; Tweety and Jerry are birds

I Reasoning towards a program

fly X ← bird X ∧ ¬abfly X
abfly X ← kiwi X
abfly X ← penguin X

bird tweety ← >
bird jerry ← >

I The least model of its weak completion

〈{bird tweety, bird jerry}, ∅〉

I The set of abducibles

kiwi tweety ← > kiwi tweety ← ⊥
kiwi jerry ← > kiwi jerry ← ⊥

penguin tweety ← > penguin tweety ← ⊥
penguin jerry ← > penguin jerry ← ⊥
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The Tweety Scenario 2

I Birds usually fly, but kiwis and penguins do not; Tweedy and Jerry are birds

I Suppose we observe that Jerry does fly

I The minimal explanation is

X = {kiwi jerry ← ⊥, penguin jerry ← ⊥},

I The observation follows

I Are you happy with this formalization?
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The Tweety Scenario 3

I Birds usually fly; Tweety and Jerry are birds

I Reasoning towards a program

fly X ← bird X ∧ ¬abfly X
abfly X ← ⊥

bird tweety ← >
bird jerry ← >

I The least model of its weak completion

〈{bird tweety, bird jerry, fly tweety, fly jerry}, {abfly tweety, abfly jerry}〉.

I What is the set of abducibles in this case?

I Can the observation that Tweety does not fly be explained?

I Are you happy with this formalization?
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Summary of Chapter 3

I Programs as well as their weak completions admit least models under the
three-valued Łukasiewicz logic

. This does not hold if Kleene or Fitting logic is used

I The least models of weakly completed programs can be computed as least
fixed points of an associated semantic operator

I These computations are bounded by the first limit ordinal in case of finite
propositional programs, finite datalog programs or acyclic programs

I Abduction can be applied to explain observations

. Humans seem to apply skeptical abduction

I The approach adequately models an average human reasoner in the
suppression task

I All results hold in the presence of an equational theory
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I Conditional Reasoning

I Syllogistic Reasoning

I Disjunctive Reasoning

I Contextual Reasoning

I Spatial Reasoning

I Ethical Decision Problems
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Conditional Reasoning

I Conditionals

I The Semantics of Conditionals

I Reasoning with a Conditional

I Reasoning about a Conditional

I The Selection Task
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Introduction – Conditionals

I Conditionals are statements of the form if antecedent then consequence

I Claim of membership in a class or category

. If it is a dog then it is a mammal

. If the city is Rio then it is in Brasil

I Declarative (indicative) statements of fact or assumed fact

. If the serial number is less that 150000 then it was built before 1995

. If it is raining then the roofs are wet

. If the roofs are wet then it is raining

I Promise

. If you clean your shoes
then Santa Claus will fill them with nuts, fruits, and chocolate

I Threat

. If you violate the terms of the contract then we will sue
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More Conditionals

I Advice

. If it will be cold then put your sweater on

. If it is raining then take your umbrella

I Tip

. If you want to make a good impression then wear a dress or a suit and tie

I Legal rules

. If you want to drink alcohol in a restaurant
then you must be older than 18 years of age

I Command

. If you find termites then apply the pesticide

I Request

. If it is convenient for you
then please drop the package off on your way to work
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Even More Conditionals

I Counterfactual

. If I had not taken this road today then I would have avoided the accident

I Prediction

. If I take my umbrella then it will not rain in the afternoon

. If there is a d on one side of a card then there is a 3 on the other side

I Question

. If she graduates with 1
will she be promoted to the PhD program of her choice?

I Warning

. If you park there then your car will be towed

I Nickerson: Conditional Reasoning: 2015
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Conditionals in this Lecture

I In the sequel, let if A then C be a conditional, where

. antecedentA and consequence C
are finite and consistent sets of ground literals

. IfA or C is a singleton set, then curly brackets are omitted

I Conditionals are evaluated wrt some background knowledge

. a finite propositional or datalog program P

. an equational theory E

. a set of integrity constraints IC

I LetMwcP be the least model of the weak completion of P
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The Semantics of Conditionals

I If it rains then the roofs are wet and she takes her umbrella

I Let P consist of wet roofs ← rain ∧ ¬abw

abw ← ⊥
umbrella ← rain ∧ ¬abu

abu ← ⊥

I MwcP = 〈∅, {abw , abu}〉 AP = {rain← >, rain← ⊥}

I What follows if we additionally observe that

. the roofs are wet?

. she took her umbrella?

. the roofs are not wet?

. she did not take her umbrella?

I Are you happy with the formalization?
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The Semantics of Conditionals – Obligation Conditionals

I A conditional if A then C is said to be an obligation conditional
iff its consequence C is obligatory given its antecedentA

I Byrne: The Rational Imagination: 2005

. We cannot easily imagine a case
where the antecedent is true and the consequence is not

. The possibilityA ∧ ¬C is forbidden or unlikely

I Can you name obligation conditionals?

. If a person is drinking beer then the person must be over 19 years of age

. If somebody is riding a motorbike then he/she must wear a helmet

. If a german tourist wants to enter Russia then he needs a visa

. If somebody’s parents are elderly then he/she should look after them

. If there is no light then plants will not grow

. If an object is not supported it will drop to the floor

. If it is raining then the roofs are wet

Steffen Hölldobler
Applications and Extensions 8



Obligation Conditionals 2

I Byrne: The Rational Imagination: 2005

I For obligation conditionals there are two initial possibilities people think about

. the conjunction of antecedent and consequent (permitted)

II it rains and the roofs are wet

. the conjunction of antecedent and negation of consequent
(forbidden/unlikely)

II it rains and the roofs are not wet

I Exceptions are possible but unlikely
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Factual Conditionals

I A conditional if A then C is said to be a factual conditional
iff its consequent C is not obligatory given its antecedentA

I There is no forbidden or unlikely possibility

I Can you name factual conditionals?

. If the letter d is on one side of a card then the number 3 is on the other side

. If Nancy rides her motorbike she goes to the mountains

. If Fred was in Paris then Joe was in Lisbon

. If it raining then she is taking her umbrella

. If the sun is shining then I will water my garden in the evening
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Obligation versus Factual Conditionals – Summary

I Humans may classify conditionals as obligation or factual conditionals

I This is an informal and pragmatic classification

I It depends on

. the background knowledge and experience of a human

as well as on

. the context in which a conditional is stated
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Necessary Antecedents

I The antecedentA of a conditional if A then C is said to be necessary
iff its consequent C cannot be true unless the antecedent is true

. But the antecedentA may be true while the consequence C is not

series circuit
A1 A2

C

I Can you name conditionals with necessary antecedent?

. If the kid is tall enough then it can ride the roller coaster

. If it is raining then the roofs are wet

. If there is gas in the gas tank then the engine will start

. If the switch is toggled then the light will be turned on
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Non-Necessary Antecedents

I The antecedentA of a conditional if A then C is said to be non-necessary
iff A is not necessary

I C may be true withoutA being true

I Can you name conditionals with non-necessary antecedent?

. If Polly is a parrot then Polly is a bird

. If the number ends with 3 then it is an odd number

. If the car has no gas then it will not run

. If it is raining then she is taking her umbrella

. If a person is drinking beer then the person must be over 19 years of age

. If the sun is shining then she is going to the swimming pool

. If I want to meet friends then I will go to my favorite pub

. If Nancy rides her motorbike she goes to the mountains
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Necessary versus Non-Necessary Antecedents – Summary

I Humans may classify antecedents as necessary or non-necessary

I The classification is informal and pragmatic

I It depends on

. the background knowledge and experience of a human

as well as on

. the context in which a conditional is stated
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Representing the Semantics of Conditionals

I Conditional if A then C

I Represented by
C ← A ∧ ¬ab
ab ← ⊥

I Abducibles are
AP = {A← >, A← ⊥}

I We extend the set of abducibles

Ae
P = AP ∪ Ann

P ∪ A
f
P

where

Ann
P = {C ← > | C is head of a rule in P representing

a conditional with non-necessary antecedent}
Af
P = {ab ← > | ab occurs in the body of a rule in P

representing a factual conditional}
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Returning to the Initial Example

C ← A ∧ ¬ab A non-necessary A necessary

Factual conditional ab ← >, C ← > ab ← >
Obligation conditional C ← >

I If it rains then the roofs are wet

. Obligation conditional with necessary antecedent

. AP = {rain← >, rain← ⊥} = Ae
P

I If it rains then she takes her umbrella

. Factual conditional with non-necessary antecedent

. Ae
P = {rain← >, rain← ⊥, umbrella ← >, abu ← >}

I Are you happier now?

Steffen Hölldobler
Applications and Extensions 16



Reasoning with a Conditional

I First premise: conditional sentence if A then C

I Second premise: (possibly negated) atomic sentence

. affirmation of the antecedent (AA)

. denial of the antecedent (DA)

. affirmation of the consequent (AC)

. denial of the consequent (DC)

I What follows?
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Reasoning with a Conditional – Examples

I If it rains then the roofs must be wet
It rains (AA)

I If Pauls rides a motorbike then Paul must wear a helmet
Paul does not ride a motorbike (DA)

I If the library is open then Elisa is studying late in the library
Elisa is studying late in the library (AC)

I If Nancy rides her motorbike then Nancy goes to the mountains
Nancy does not go to the mountains (DC)

I What follows?
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Facts, Assumptions, or Observations

I First premise
C ← A ∧ ¬ab

ab ← ⊥

with set of abducibles
A = {A← >, A← ⊥}

I Shall the second premise be represented as fact, assumption, or observation?

. So far, if atom undefined then fact or assumption else observation

. In this section, always observation
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An Experiment

I 56 logically naive participants from mid-Europe including UK

I Proficient speakers in English

I They were given a short story and thereafter

. a conditional sentence and a (possibly negated) atomic sentence

I What follows?

I 48 problems consisting of 12 conditionals classified by the authors

I Solved all four inference types (AA, DA, AC, DC)

I Participants could answer

. corresponding atomic sentence which was not presented as second premise

. corresponding negated atomic sentence

. nothing (new) follows (nf)

I Participants acted as their own controls
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Conditionals used in the Experiment
I Obligation Conditionals with Necessary Antecedent

(1) If it rains then the roofs must be wet
(2) If water in the cooking pot is heated over 99◦C then the water starts boiling
(3) If the wind is strong enough then the sand is blowing over the dunes

I Obligation Conditionals with Non-Necessary Antecedent

(4) If Paul rides a motorbike then Paul must wear a helmet
(5) If Maria is drinking alcoholic beverages in a pub

then Maria must be over 19 years of age
(6) If it rains then the lawn must be wet

I Factual Conditionals with Necessary Antecedent

(7) If the library is open then Sabrina is studying late in the library
(8) If the plants get water then they will grow
(9) If my car’s start button is pushed then the engine will start running

I Factual Conditionals with Non-Necessary Antecedent

(10) If Nancy rides her motorbike then Nancy goes to the mountains
(11) If Lisa plays on the beach then Lisa will get sunburned
(12) If Ron scores a goal then Ron is happy
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Affirmation of the Antecedent (AA)

Class C ¬C nf Sum Mdn C Mdn nf

(1) 55 1 0 56 3343 na
(2) 55 1 0 56 3487 na
(3) 53 3 0 56 3516 na

Obligation+necessary 163 (.97) 5 (.03) 0 168 3408 na

(4) 53 1 2 56 3403 3472
(5) 53 2 1 56 3903 3572
(6) 54 1 1 56 3088 6959

Obligation+non-necessary 160 (.95) 4 (.02) 4 (.02) 168 3543 4183

(7) 49 1 6 56 3885 7051
(8) 54 1 1 56 3559 7349
(9) 54 1 1 56 3710 3826

Factual+necessary 157 (.93) 3 (.02) 8 (.05) 168 3615 6926

(10) 51 2 3 56 3929 6647
(11) 54 1 1 56 3777 5073
(12) 55 1 0 56 2977 na

Factual+non-necessary 160 (.95) 4 (.02) 4 (.02) 168 3644 5860

Obligation 323 9 4 336 3516 4183

Factual 317 7 12 336 3640 6575

Necessary 320 8 8 336 3546 6926

Non-necessary 320 8 8 336 3588 4934

Total 640 (.95) 16 (.02) 16 (.02) 672 3570 5925
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AA – Details

I P = {C ← A ∧ ¬ab, ab ← ⊥} AP = {A← >, A← ⊥}

I O = {A} is explained by {A← >}

I Neither {C ← >} nor {ab ← >} can explainO

if A then C

A

〈∅, {ab}〉

abductionAP /Ae
P

〈{A, C}, {ab}〉
C

I Please check an example for each class!

Steffen Hölldobler
Applications and Extensions 23



Denial of the Antecedent (DA)

Class C ¬C nf Sum Mdn¬C Mdn nf

(1) 0 45 11 56 2863 4901
(2) 2 54 0 56 3367 na
(3) 2 51 3 56 3647 10477

Obligation+necessary 4 (0.2) 150 (.89) 14 (.08) 168 3356 5115

(4) 1 40 15 56 3722 7189
(5) 3 28 25 56 5735 7814
(6) 4 36 16 56 3602 6240

Obligation+non-necessary 8 (.05) 104 (.62) 56 (.33) 168 4064 7471

(7) 2 51 3 56 3928 7273
(8) 1 47 8 56 3296 5728
(9) 1 52 3 56 3549 8735

Factual+necessary 4 (.02) 150 (.89) 14 (.08) 168 3605 6582

(10) 1 39 16 56 3725 6874
(11) 0 41 15 56 3374 5887
(12) 1 41 14 56 3205 7002

Factual+non-necessary 2 (.01) 121 (.72) 45 (.28) 168 3374 6221

Obligation 12 254 70 336 3583 6613

Factual 6 271 59 336 3518 6221

Necessary 8 (.02) 300 (.89) 28 (.08) 336 3474 5808

Non-necessary 10 (.03) 225 (.67) 101 (.30) 336 3646 6700

Total 18 (.03) 525 (.78) 129 (.19) 672 3558 6450
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DA – Details

I P = {C ← A ∧ ¬ab, ab ← ⊥} AP = {A← >, A← ⊥}

I O = {¬A} is explained by

. {A← ⊥}

. {A← ⊥, C ← >} (in case of a non-necessary antecedent)

if A then C

¬A

〈∅, {ab}〉

abductionAP
〈∅, {A, C, ab}〉

¬C

abductionAe
P ¬C / nf

I Please check an example for each class!
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Affirmation of the Consequent (AC)

Class A ¬A nf Sum Mdn A Mdn nf

(1) 37 1 18 56 3952 7995
(2) 48 1 7 56 4003 4170
(3) 43 1 12 56 3458 9001

Obligation+necessary 128 (.76) 3 (.02) 37 (.22) 168 3797 8175

(4) 42 1 13 56 3659 8828
(5) 32 1 23 56 4704 6044
(6) 29 1 26 56 3593 4396

Obligation+non-necessary 103 (.61) 3 (.02) 62 (.37) 168 3968 5939

(7) 51 1 4 56 3767 4397
(8) 42 1 13 56 3798 4565
(9) 45 1 10 56 3492 4598

Factual+necessary 138 (.82) 3 (.02) 27 (.16) 168 3699 4565

(10) 34 2 20 56 5224 6289
(11) 29 2 25 56 3218 6205
(12) 33 1 22 56 3483 4992

Factual+non-necessary 96 (.57) 5 (.03) 67 (.40) 168 3885 6116

Obligation 231 6 99 336 3888 6044

Factual 234 8 94 336 3769 5650

Necessary 266 (.79) 6 (.02) 64 (.19) 336 3735 5450

Non-necessary 199 (.59) 8 (.02) 129 (.38) 336 3906 6039

Total 465 (.69) 14 (.02) 193 (.29) 672 3826 5802
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AC – Details

I P = {C ← A ∧ ¬ab, ab ← ⊥} AP = {A← >, A← ⊥}

I O = {C} is explained by

. {A← >}

. {C ← >} (in case of a non-necessary antecedent)

if A then C

C

〈∅, {ab}〉

abductionAP
〈{A, C}, {ab}〉

A

abductionAe
P A / nf

I Please check an example for each class!
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Denial of the Consequent (DC)

Class A ¬A nf Sum Mdn¬A Mdn nf

(1) 1 45 10 56 3449 4758
(2) 0 50 6 56 4058 7922
(3) 2 46 8 56 3796 4517

Obligation+necessary 3 (.02) 141 (.84) 24 (.14) 168 3767 5732

(4) 3 46 7 56 3872 4154
(5) 1 54 1 56 4946 8020
(6) 0 36 20 56 4062 5235

Obligation+non-necessary 4 (.02) 136 (.81) 28 (.17) 168 4293 5803

(7) 1 37 18 56 5974 4744
(8) 3 42 11 56 4367 5013
(9) 0 47 9 56 4208 3966

Factual+necessary 4 (0.2) 126 (.75) 38 (.23) 168 4849 4574

(10) 2 35 19 56 4879 4167
(11) 0 39 17 56 4411 5647
(12) 0 34 22 56 3726 3813

Factual+non-necessary 2 (.01) 108 (.64) 58 (.35) 168 4338 4542

Obligation 7 (.02) 277 (.82) 52 (.15) 336 4053 4790

Factual 6 (.02) 234 (.70) 96 (.28) 336 4459 4345

Necessary 7 267 62 336 4096 4758

Non-necessary 6 244 86 336 4325 4555

Total 13 (.02) 511(.76) 148 (.22) 672 4311 5162
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DC – Details

I P = {C ← A ∧ ¬ab, ab ← ⊥} AP = {A← >, A← ⊥}

I O = {¬C} is explained by

. {A← ⊥}

. {ab ← >} (in case of a factual conditional)

if A then C

¬C

〈∅, {ab}〉

abductionAP
〈∅, {A, C, ab}〉

¬A

abductionAe
P ¬A / nf

I Please check an example for each class!
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Reasoning About a Conditional

I Revision

I Minimal Revision Followed by Abduction

I Pam is Well

I The Moon is Not Made out of Cheese

I The Suppression Task Revisited

I The Shooting of Kennedy

I The Firing Squad

I The Forest Fire

I Relevance

I The Selection Task
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Experiment – The Firing Squad

I Pearl: Causality: Models, Reasoning, and Inference: 2000

I If the court orders an execution, then the captain will give the signal
upon which riflemen A and B will shoot the prisoner
Consequently the prisoner will be dead

I We assume that

. the court’s decision is unknown

. both riflemen are accurate, alert, and law-abiding

. the rifles are operating as expected

. the prisoner is unlikely to die from any other causes

I Evaluate the following conditionals (true, false, unknown)

. If the prisoner is not dead then the captain did not signal

. If rifleman A shot then rifleman B shot as well

. If rifleman A did not shoot then the prisoner is not dead

. If the captain gave no signal and rifleman A decides to shoot,
then the court did not order an execution
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More on Conditionals

I In the sequel, let if A then C be a conditional, where

. antecedentA and consequence C
are finite and consistent sets of ground literals

I Conditionals are evaluated wrt some background knowledge

. a finite propositional or datalog program P

. an equational theory E

. a set of integrity constraints IC such thatMwcP satisfies IC

I We distinguish three cases wrt the value of the antecedent underMwcP
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Indicative Conditionals

I Let if A then C be a conditional such thatMwcP A = >

. Such conditionals are often called indicative conditionals

. Their consequent is asserted to be true if their antecedent is true

. Check whetherMwcP C = > holds
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Counterfactuals

I Let if A then C be a conditional such thatMwcP A = ⊥

. Such conditionals are sometimes called counterfactuals

II Their antecedent is false

II Their consequent may or may not be true

II But in the counterfactual circumstance of the antecedent being true
the consequence is asserted to be true

. Counterfactuals are always true because the premise is false
Eco: The Name of the Rose: 1988

II Humans do not consider counterfactuals this way

II Counterfactuals are very important Byrne: Counterfactuals in XAI: 2019

II If the car had detected the pedestrian earlier and braked
the passenger would not have been injured

II If the car had not swerved and hit the wall
the passenger would not have been injured

. We need to revise the background knowledge
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Revision

I Let S be a finite and consistent set of literals

rev(P,S) = (P \ defs(P,S)) ∪ S↑

is called the revision of P with respect to S

rev({e ← >, `← e ∧ ¬abe, abe ← ⊥}, {¬`})
= {e ← >, `← ⊥, abe ← ⊥}

I Proposition 31
Let P be a program, E an equational theory, and S a consistent set of literals

. rev is nonmonotonic

. IfMwcP L = U for all L ∈ S then rev is monotonic:MwcP ⊆Mwc rev(P,S)

. Mwc rev(P,S) S = >

I Proof  Exercise
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Unknown Antecedents

I Let if A then C be a conditional such thatMwcP A = U

. To the best of my knowledge this case has not been considered so far

. We believe that humans would like to assign true to the antecedent

II Skeptical abduction

II Revision

. There are scenarios where abduction alone cannot solve the problem

. We propose to

II minimally revise the background knowledge

II and to apply skeptical abduction

II such that the antecedent becomes true

. Do humans make an attempt to assign false to the antecedent?
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Minimal Revision Followed by Abduction (MRFA)

I Given P , E, IC, and the conditional sentence if A then C

I IfMwcP does not satisfy IC, then

. ifO = ∅ can be explained by X ⊆ AP
then evaluate if A then C with respect toMwc(P∪X )

else nothing follows

I IfMwcP A = >, then the value of if A then C isMwcP C

I IfMwcP A = ⊥, then evaluate if A then C wrtMwc rev(P,S), where

. S = {L ∈ A | MwcP L = ⊥}

I IfMwcP A = U, then evaluate if A then C wrtMwcP′ , where

. P′ = rev(P,S) ∪ X ,

. S is a minimal subset ofA,

. X ⊆ Arev(P,S) is an explanation forA \ S

. such that P′ |=wcs A andMwcP′ satisfies IC

I Abduction has to be applied skeptically
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Pam is well

I P = {well ← >}

I MwcP = 〈{well}, ∅〉

I Evaluate if Pam is not well, then she has the flu

I rev(P,¬well) = {well ← ⊥}

I Mwc rev(P,¬well) = 〈∅, {well}〉

I Hence, the value of the conditional is unknown

I The conditional is not treated as an implication
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The Moon is Not Made out of Cheese

I IC = {⊥ ← cheese}

I P = ∅

I MwcP = 〈∅, ∅〉

I X = {Cheese ← ⊥} explainsO = ∅

I Mwc(P∪X ) = 〈∅, {cheese}〉

I Evaluate if the moon is made out of cheese, then life exists on other planets

I rev(P ∪ X , cheese) = {cheese ← >}

I A{cheese←>} = ∅

I nothing follows
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The Suppression Task Revisited Again – Background Knowledge

I In the remainder of this section E = IC = ∅

I Group 1

. If she has an essay to write then she will study late in the library

I Group 2

. If she has an essay to write then she will study late in the library

. If she has some textbooks to read then she will study late in the library

I Group 3

. If she has an essay to write then she will study late in the library

. If the library stays open then she will study late in the library
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The Suppression Task Revisited Again – Conditionals

I The groups are asked to evaluate the following conditionals

. If she has an essay to write then she will study late in the library

II S = ∅, X = {e ← >}

. If she does not have an essay to write then she will not study late in the
library

II S = ∅, X = {e ← ⊥}

. If she will study late in the library then she has an essay to write

II Exercise

. If she will not study late in the library then she does not have an essay to
write

II Exercise

I Applying MRFA yields the same results as before

. Skeptical reasoning is required

. It should be experimentally verified
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The Shooting of Kennedy

I Adams: Subjunctive and indicative conditionals: 1970

I Background knowledge

. If Oswald shot then the president was killed

. If somebody else shot then the president was killed

. Oswald shot

I Reasoning towards a program P

k ← os ∧ ¬abos abos ← ⊥ os ← >
k ← ses ∧ ¬abses abses ← ⊥

I Weakly completing P and computingMwcP

〈{os, k}, {abos, abses}〉
I Evaluate

. If Oswald did not shoot Kennedy in Dallas then no one else would have

. If Kennedy was killed in Dallas and Oswald did not shoot
then no one else would have
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The Shooting of Kennedy – The Set of Abducibles

I Recall

k ← os ∧ ¬abos abos ← ⊥ os ← >
k ← ses ∧ ¬abses abses ← ⊥

I How would you classify the two conditionals of the background knowledge?

. Factual conditionals with non-necessary antecedent

I Now consider

if Oswald shot or somebody else shot, then the president was killed

. Factual (generalized) conditional with necessary antecedent

I The set of abducibles

{ses ← >, ses ← ⊥, abos ← >, abses ← >}

. k ← > is not added
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The Shooting of Kennedy – First Conditional

I If Oswald did not shoot Kennedy in Dallas then no one else would have

if ¬os then¬ses

I rev(P, {¬os})

k ← os ∧ ¬abos abos ← ⊥ os ← ⊥
k ← ses ∧ ¬abses abses ← ⊥

I Mwc rev(P,{¬os})

〈∅, {os, abos, abses}〉

I The counterfactual is unknown
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The Shooting of Kennedy – Second Conditional
I If Kennedy was killed and Oswald did not shoot then no one else did

if {k ,¬os} then¬ses

I rev(P, {¬os})

k ← os ∧ ¬abos abos ← ⊥ os ← ⊥
k ← ses ∧ ¬abses abses ← ⊥

I Mwc rev(P,{¬os})

〈∅, {os, abos, abses}〉

I Ae
rev(P,{¬os})

{ses ← >, ses ← ⊥, abos ← >, abses ← >}

I Mwc(rev(P,{¬os})∪{ses←>})

〈{ses, k}, {os, abos, abses}〉

I The counterfactual is false
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Modeling the Firing Squad
I Reasoning towards a program P

signal ← execution ∧ ¬ab1 ab1 ← ⊥
riflemanA ← signal ∧ ¬ab2 ab2 ← ⊥
riflemanB ← signal ∧ ¬ab3 ab3 ← ⊥

dead ← riflemanA ∧ ¬ab4 ab4 ← ⊥
dead ← riflemanB ∧ ¬ab5 ab5 ← ⊥
alive ← ¬dead ∧ ¬ab6 ab6 ← ⊥

I Weakly completing the program and computingMwcP

〈∅, {ab1, ab2, ab3, ab4, ab5, ab6}〉

I The set of abduciblesAP
{execution← >, execution← ⊥}

. X> = {execution← >}
explains {signal, riflemanA, riflemanB, dead,¬alive}

. X⊥ = {execution← ⊥}
explains {¬signal,¬riflemanA,¬riflemanB,¬dead, alive}

. {¬signal, riflemanA} cannot be explained
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The Firing Squad – Conditionals

I Recall

. X> = {execution← >} explains
{signal, riflemanA, riflemanB, dead,¬alive}

. X⊥ = {execution← ⊥} explains
{¬signal,¬riflemanA,¬riflemanB,¬dead, alive}

. {¬signal, riflemanA} cannot be explained

I If the prisoner is alive then the captain did not signal

if alive then¬signal : P 7→ P ∪ X⊥ 7→ >

I If rifleman A shot then rifleman B shot as well

if riflemanA then riflemanB : P 7→ P ∪ X> 7→ >

I If the captain gave no signal and rifleman A decides to shoot
then the court did not order an execution

if {¬signal, riflemanA} then¬execution : P 7→ rev(P, {riflemanA}) ∪ X⊥ 7→ >
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The Firing Squad – Last Conditional Revisited

I If the captain gave no signal and rifleman A decides to shoot
then the court did not order an execution

P 7→ rev(P, {riflemanA}) ∪ X⊥ 7→ >

I Consider the dependency graphs (ignoring abnormalities)

·
d

·
riflemanA

·
riflemanB

·
s

·
e

·
a

◦
d

◦
riflemanA

·
riflemanB

·
s

·
e

•
a

◦
d

◦
riflemanA

•
riflemanB

•
s

•
e

•
a

· unknown ◦ true • false
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The Forest Fire Example

I Byrne: The Rational Imagination: 2005

I Suppose lightning hits a forest and a devastating forest fire breaks out
The forest was dry after a long hot summer and many acres were destroyed

I Causal relationships lightning caused the forest fire

I Enabling relationships dry leaves made it possible for the fire to occur

I An enabler is usually not considered to be the cause for an event

I A missing enabler can prevent an event
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Encoding the Forest Fire Example

I Lightning may cause a forest fire Lightning happened Dry leaves are
present

P = { ff ← lightning ∧ ¬ab`, lightning ← >,
ab` ← ¬dryleaves, dryleaves ← >}

I If there had not been so many dry leaves on the forest floor
then the forest fire would not have occurred

ΦP Φrev(P,{¬dryleaves})

↑ 0 〈∅, ∅〉 〈∅, ∅〉
↑ 1 〈{dryleaves, lightning}, ∅〉 〈{lightning}, {dryleaves}〉
↑ 2 〈{dryleaves, lightning}, {ab`}〉 〈{lightning, ab`}, {dryleaves}〉
↑ 3 〈{dryleaves, lightning, ff}, {ab`}〉 〈{lightning, ab`}, {dryleaves, ff}〉

rev(P, {¬dryleaves}) = { ff ← lightning ∧ ¬ab`, lightning ← >,
ab` ← ¬dryleaves, dryleaves ← ⊥}

I The counterfactual is true
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The Extended Forest Fire Example 1

I Pereira, Dietz, H.: Contextual Abductive Reasoning with Side-Effects: 2014

I Add to the previous example Arson may cause a forest fire

I If there had not been so many dry leaves on the forest floor
then the forest fire would not have occurred

P = {ff ← lightning ∧ ¬ab`, ff ← arson ∧ ¬aba,

lightning ← >, ab` ← ¬dryleaves,

dryleaves ← >, aba ← ⊥}
MwcP = 〈{dryleaves, lightning, ff}, {ab`, aba}〉

rev(P, {¬dryleaves}) = {ff ← lightning ∧ ¬ab`, ff ← arson ∧ ¬aba,

lightning ← >, ab` ← ¬dryleaves,

dryleaves ← ⊥, aba ← ⊥}
Mwc rev(P,{¬dryleaves}) = 〈{lightning, ab`}, {dryleaves, aba}〉

I The counterfactual is unknown
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The Extended Forest Fire Example 2

I If there had not been so many dry leaves on the forest floor
and there was no arson
then the forest fire would not have occurred

I What will happen?
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The Selection Task – The Abstract Case

I Wason: Reasoning About a Rule: 1968

I If the letter d is on one side of a card then the number 3 is on the other side

d f 3 7

I Which cards must be turned to show that the rule holds?

I Humans typically turn the cards showing d and 3
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An Analysis of the Abstract Case

I Stenning, van Lambalgen: Human Reasoning and Cognitive Science: 2008

. With respect to classical two-valued logic!

I Almost everyone (89%) correctly selects d

. Corresponds to modus ponens in classical logic

I Almost everyone (84%) correctly does not select f

. Because the condition does not mention f

I Many (62%) incorrectly select 3

. If there is a 3 on one side then there is a d on the other side

. Converse of the given conditional

I Only a small percentage of participants (25%) correctly selects 7

. If the number on one side is not 3 then the letter on the other side is not d

. Contrapositive of the given conditional
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The Selection Task – The Social Case

I Griggs, Cox: The Elusive Thematic Materials Effect in the Wason Selection Task:
1982

I If a person is drinking beer then the person must be over 19 years of age

beer coke 22yrs 16yrs

I Which cards must be turned to show that the rule holds?

I Humans typically turn the cards showing beer and 16yrs
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The Selection Task – Alternative Conditional 1

I If Nancy rides her motorbike she goes to the mountains

rides
no

ride mountain
no

mountain

I Which cards must be turned to show that the rule holds?
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The Selection Task – Alternative Conditional 2

I If it rains then the roofs are wet

rain no rain wet roofs dry roofs

I Which cards must be turned to show that the rule holds?
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The Selection Task

I The Abstract Case

. If there is the letter d on one side of the card then the number 3 is on the
other side

II Factual conditional with necessary antecedent

I The Social Case

. If a person is drinking beer then the person must be over 19 years of age

II Obligational conditional with non-necessary antecedent

C ← A ∧ ¬ab non-necessary necessary

factual ab ← >, C ← > ab ← >
obligational C ← >
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The Abstract Case: Factual Conditional with Necessary Antecedent

I If the letter d is on one side of a card then there is the letter 3 on the other side

I Reasoning towards a program yields P = {3 ← d ∧ ¬aba, aba ← ⊥}

I Its set of abducibles is Ae
P = {d ← >, d ← ⊥, aba ← >}

I Observations, least models, and decisions

d ¬d 3 ¬3

true false true false true false true false true false
d aba d d aba d aba
3 aba 3 aba 3

3 3

turn no turn turn no turn
0.89 0.16 0.62 0.25
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The Social Case: Obligation with Non-Necessary Antecedent

I If a person is drinking beer then the person must be over 19 years of age

I Reasoning towards a program yields P = {o ← b ∧ ¬abs, abs ← ⊥}

I Its set of abducibles is Ae
P = {b ← >, b ← ⊥, o ← >}

I Observations, least models, and decisions

b ¬b o ¬o

true false true false true false true false true false
b abs b o abs b abs b
o abs o abs

o o

turn no turn no turn turn
0.95 0.025 0.025 0.80
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The Selection Task – Summary

I We obtain adequate answers if

. the abstract case is interpreted as
a factual conditional with necessary antecedent

. the social case is interpreted as
an obligational conditional with non-necessary antecedent

. reasoning skeptically
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Syllogisms

I Introduction

I A Meta-Study

I Seven Reasoning Principles

I The Representation of Quantified Statements

I Entailment

I Future Work
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Introduction

I Consider the following inference

In some cases when I go out, I am not in company
Every time I am very happy I am in company
Therefore, in some cases when I go out, I am not very happy

I It is valid

. the conclusion is true in every case in which both premises are true

I Aristotle was the first to analyze syllogisms

I Syllogisms were central to logic until the second half of the 19th century

I Psychological studies of reasoning with determiners, such as some and all,
have almost all concerned syllogistic reasoning
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Reasoning

I The ability to reason is at the core of human mentality

I Many contexts in daily life call for inferences

. decisions about goals and actions

. evaluation of conjectures and hypothesis

. the pursuit of arguments and negotiations

. the assessment of evidence and data

. science, technology, and culture

I Examples

. Any experiment containing a confound is open to misinterpretation

. No current word processor spontaneously corrects a user’s grammar

. Every chord containing three adjacent semitones is highly dissonant
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Common Sense Reasoning

I In daily life, individuals reason in a variety of contexts,
and often so rapidly that they are unaware of having made an inference

I Example

. Belinda: If you drop this cup it’ll break

. Jeffrey: It looks pretty solid to me

. Belinda: Yes, but it’s made from porcelain
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An Example

I Try to determine, as quickly as you can, whether the following syllogism is valid

All roses are flowers
Some flowers fade quickly
Therefore, some roses fade quickly

I Now, take your time and think about it again
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Another Example

I What follows necessarily from the following premises?

some a are b
no b are c

Aac all a are c

Iac some a are c

Eac no a are c answer by humans

Oac some a are not c answer by humans the only correct answer wrt FOL

Aca all c are a

Ica some c are a

Eca no c are a

Oca some c are not a

NVC no valid conclusion
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Syllogisms

I 4 moods

mood (AFFIRMO NEGO) natural language FOL short
affirmative universal (A) all a are b (∀X)(a X → b X) Aab
affirmative existential (I) some a are b (∃X)(a X ∧ b X) Iab
negative universal (E) no a are b (∀X)(a X → ¬ b X) Eab
negative existential (O) some a are not b (∃X)(a X ∧ ¬ b X) Oab

I 4 figures

figure 1 figure 2 figure 3 figure 4
premise 1 a-b b-a a-b b-a
premise 2 b-c c-b c-b b-c

I 64 pairs of premises

. abbreviated by the first and the second mood and the figure (e.g., IE1)

I 512 syllogisms

. possible conclusions are the 4 moods instantiated by a-c and c-a
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A Meta-Study

I Khemlani, Johnson-Laird 2012

I Data from 6 studies

. Humans deviate from FOL reasoning

I 12 cognitive theories

. None of the 12 theories models human reasoning adequately

I The existence of 12 theories of any scientific domain is a small desaster

I If psychologists could agree on an adequate theory of syllogistic reasoning,
then progress towards a more general theory of reasoning would seem to be
feasible

I If researchers were unable to account for syllogistic reasoning,
then they would have little hope of making sense of reasoning in general
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Three Examples

I OA4: some b are not a all b are c

I IE4: some b are a no b are c

I IA2: some b are a all c are b

participants FOL PSYCOP mental models verbal models
OA4 Oca Oca Oca Oca Oca

Ica Iac Oac NVC NVC
matching percentage 1.0 0.78 0.78 0.89

IE4 Oac NVC Oac Oac Oac NVC Oac NVC
Iac Ica Eac Eca Oca

matching percentage 0.89 0.67 0.67 1.00
IA2 Ica Iac Ica Ica Ica

NVC NVC NVC NVC
matching percentage 0.67 0.67 0.89 0.78

accuracy 0.77 0.83 0.84
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Significance and Accuracy

I Significance of an Answer

. Given 9 possible answers,
the chance that a conclusion has been chosen randomly is 1/9 = 0.11

. A binomial test shows that if a conclusion is drawn more than 0.16
it is unlikely to be a random guess

I Accuracy of the Predication

. For each syllogism

II Order the nine possible conclusions (Aac, Eac, . . . , Oca, NVC)

II Consider the list of the participant’s conclusions (0, 1, . . . , 1, 0)

II Compute the list of conclusions predicted by a theory (1, 0, . . . , 1, 1)

II Compute

comp i =

{
1 if both lists have the same value for the ith element
0 otherwise

II The matching percentage of the syllogism is
∑9

i=1 comp i/9

. The accuracy is the average of the matching percentage of all syllogisms
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First Principle: Licenses for Inferences (licences)

I Stenning, van Lambalgen 2008

I Formalize conditionals by licences for inferences

for all X , if q X then p X

⇓

p X ← q X ∧ ¬ ab X

ab X ← ⊥
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Second Principle: Existential Import or Gricean Implicature (import)

I Humans normally do not quantify over things that do not exist

. Gricean implicature Grice 1975

. Consequently, for all implies there exists

I Likewise, humans seem to require existential import for a conditional to be true

I Furthermore, some a are b often implies some a are not b
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Third Principle: Unknown Generalization (unknownGen)

I Humans seem to distinquish between some a are b and all a are b

I If we learn that some a are b then

. there must be an object o1 belonging to a and b (existential import)

. there must be another object o2 belonging to a
and for which it is unknown whether it belongs to b

I This is a new principle!
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Fourth Principle: Converse Interpretation (converse)

I Some humans seem to distinguish between some a are b and some b are a

I But in FOL ∃X(a X ∧ b X) ≡ ∃X(b X ∧ a X)

I Nevertheless, we propose that Iab implies Iba and vice versa
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Fifth Principle: Search Alternative Conclusions to NVC (abduction)

I Suppose, NVC is derived

. Humans may not want to accept this conclusion

. They proceed to check whether there exists unknown relevant information

. This information may be explanations for facts

. The facts will come from existential import

I Skeptical abduction
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Sixth Principle: Negation by Transformation (transformation)

I Logic programs do not allow negative literals as heads of clauses

I Replace a negative conclusion ¬ p X by p′ X and add the clause

p X ← ¬ p′ X

as well as the weak integrity constraint

U← p X ∧ p′ X

I Combined with the principle of licences for inferences we obtain

p X ← ¬ p′ X ∧ ¬ ab X

ab X ← ⊥
U ← p X ∧ p′ X
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Seventh Principle: Blocking by Double Negatives (blocking)

I What conclusions can be drawn from double negatives?

I This appears to be a quite difficult reasoning task for humans

I They seem to avoid drawing conlusions through double negatives

I Example

. If not a then b If not b then c a is true

. We obtain
b ← ¬a ∧ ¬abnab

abnab ← ⊥
c ← ¬b ∧ ¬abnbc

abnbc ← ⊥
a ← >

. The least model of its weak completion is

〈{a, c}, {b, abnab, abnbc}〉

. c can be blocked by removing abnbc ← ⊥
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Ayz: All y are z

I PAyz z X ← y X ∧ ¬ abyz X licenses

abyz X ← ⊥ licenses

y o ← > import

I Computing the least model of its weak completion

ΦPAyz ↑ 0 = 〈∅, ∅〉
ΦPAyz ↑ 1 = 〈{y o}, {abyz o}〉
ΦPAyz ↑ 2 = 〈{y o, z o}, {abyz o}〉 = MwcPAyz
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Eyz: No y are z

I PEyz z′ X ← y X ∧ ¬ abynz X transformation&licenses

abynz X ← ⊥ licenses

y o ← > import

z X ← ¬ z′ X ∧ ¬ abnzz X transformation&licenses

abnzz o ← ⊥ licenses&blocking

U ← z X ∧ z′ X transformation

I Computing the least model of its weak completion

ΦPEyz ↑ 0 = 〈∅, ∅〉
ΦPEyz ↑ 1 = 〈{y o}, {abynz o, abnzz o}〉
ΦPEyz ↑ 2 = 〈{y o, z′ o}, {abynz o, abnzz o}〉
ΦPEyz ↑ 3 = 〈{y o, z′ o}, {abynz o, abnzz o, z o}〉 = MwcPEyz
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Iyz: Some y are z

I PIyz z X ← y X ∧ ¬ abyz X licenses

abyz o1 ← ⊥ licenses&unknownGen

y o1 ← > import

y o2 ← > unknownGen

y X ← z X ∧ ¬ abzy X converse&licenses

abzy o3 ← ⊥ converse&licenses&unknownGen

z o3 ← > converse&import

z o4 ← > converse&unknownGen

I Computing the least model of its weak completion

ΦPIyz ↑ 0 = 〈∅, ∅〉
ΦPIyz ↑ 1 = 〈{y o1, y o2, z o3, z o4}, {abyz o1, abzy o3}〉
ΦPIyz ↑ 2 = 〈{y o1, y o2, z o3, z o4, z o1, y o3}, {abyz o1, abzy o3}〉

= MwcPIyz
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Oyz: Some y are not z
I POyz z′ X ← y X ∧ ¬ abynz X transformation&licenses

abynz o1 ← ⊥ licenses&unknownGen

y o1 ← > import

y o2 ← > unknownGen

z X ← ¬ z′ X ∧ ¬ abnzz X transformation&licenses

abnzz o1 ← ⊥ licenses&blocking

abnzz o2 ← ⊥ licenses&blocking

U ← z X ∧ z′ X transformation

I Computing the least model of its weak completion

ΦPOyz ↑ 0 = 〈∅, ∅〉

ΦPOyz ↑ 1 = 〈{y o1, y o2}, {abynz o1, abnzz o1, abnzz o2}〉

ΦPOyz ↑ 2 = 〈{y o1, y o2, z′ o1}, {abynz o1, abnzz o1, abnzz o2}〉

ΦPOyz ↑ 3 = 〈{y o1, y o2, z′ o1}, {abynz o1, abnzz o1, abnzz o2, z o1}〉

= MwcPOyz
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Entailment of Syllogisms

I Khemlani, Johnson-Laird 2012 appear to use entailment as defined in FOL

I P entails Ayz (all y are z)

iff ∃X(P |=wcs y X) ∧ ∀X(P |=wcs y X → P |=wcs z X)

I P entails Eyz (no y are z)

iff ∃X(P |=wcs y X) ∧ ∀X(P |=wcs y X → P |=wcs ¬ z X)

I P entails Iyz (some y are z)

iff ∃X1(P |=wcs y X1 ∧ z X1) ∧ ∃X2(P |=wcs y X2 ∧ P 6|=wcs z X2)
∧ ∃X3(P |=wcs z X3 ∧ P 6|=wcs y X3)

I P entails Oyz (some y are not z)

iff ∃X1(P |=wcs y X1 ∧ ¬z X1) ∧ ∃X2(P |=wcs y X2 ∧ P 6|=wcs ¬z X2)

I P entails NVC

iff none of the above is entailed where either yz = ac or yz = ca
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Syllogism OA4

I The premises are Oba (some b are not a) and Abc (all b are c)

I The participants concluded Oca (some c are not a)

I POA4 : b o1 ← > import
b o2 ← > unknownGen
a′ X ← b X ∧ ¬ abbna X transformation&licenses

abbna o1 ← ⊥ unknownGen&licenses
a X ← ¬a′ X ∧ ¬ abnaa X transformation&licenses

abnaa o1 ← ⊥ blocking&licenses
abnaa o2 ← ⊥ blocking&licenses

c X ← b X ∧ ¬ abbc X licenses
abbc X ← ⊥ licenses

b o3 ← > import

U ← a X ∧ a′ X transformation

I MwcPOA4 = 〈{b o1, b o2, b o3, a′ o1, c o1, c o2, c o3},
{abbna o1, abnaa o1, abnaa o2, abbc o1, abbc o2, abbc o3, a o1}〉

I POA4 entails Oca and nothing else  perfect match 1.0
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Syllogism IE4

I The premises are Iba (some b are a) and Ebc (no b are c)

I The participants concluded Oac (some a are not c) and NVC

I PIE4 : b o1 ← > import
b o2 ← > unknownGen
a X ← b X ∧ ¬ abba X licenses

abba o1 ← ⊥ licenses&unknownGen
b X ← a X ∧ ¬ abab X converse&licenses

abab o3 ← ⊥ converse&licenses&unknownGen
a o3 ← > converse&import
a o4 ← > converse&unknownGen
c′ X ← b X ∧ ¬ abbnc X transformation&licenses

abbnc X ← ⊥ licenses
c X ← ¬ c′ X ∧ ¬ abncc X transformation&licenses

b o5 ← > import
abncc X ← ⊥ licenses

U ← c X ∧ c′ X transformation

I PIE4 entails Oac and nothing else  partial match 0.89
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Syllogism IA2
I The premises are Iba (some b are a) and Acb (all c are b)

I The participants concluded Iac and Ica

I PIA2 : a X ← b X ∧ ¬ abba X licenses
abba o1 ← ⊥ licenses&unknownGen

b o1 ← > import
b o2 ← > unknownGen
b X ← a X ∧ ¬ abab X converse&licenses

abab o3 ← ⊥ converse&licenses&unknownGen
a o3 ← > converse&import
a o4 ← > converse&unknownGen
b X ← c X ∧ ¬ abcb X licenses

abcb X ← ⊥ licenses
c o5 ← > import

I MwcPIA2 = 〈{a o1, a o3, a o4, b o1, b o2, b o3, b o5, c o5}
{abba o1, abab o3, abcb o1, abcb o2, abcb o3, abcb o4, abcb o5}〉

I PIA2 entails NVC

I Search for alternatives skeptical abduction
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Syllogism IA2 Continued

I Idea the heads of existential imports are considered as observation

O = {b o1, a o3, c o5}

I The corresponding facts are removed

P−IA2 = PIA2 \ {b o1 ← >, a o3 ← >, c o5 ← >}

I The minimal and skeptical explanation forO is

X = {c o5 ← >, c o1 ← >, c o3 ← >, abba o3 ← ⊥}

I Let P′IA2 = P−IA2 ∪ X and we obtainMwcP′
IA2

=

〈{a o1, a o3, a o4, b o1, b o2, b o3, b o5, c o1, c o3, c o5}
{abba o1, abba o3, abab o3, abcb o1, abcb o2, abcb o3, abcb o4, abcb o5}〉

I P′IA2 entails Iac and Ica and nothing else  perfect match 1.0
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The Examples Revisited

I OA4: some b are not a all b are c

I IE3: some b are not a no b are c

I IA2: some b are a all c are b

participants FOL PSYCOP mental models verbal models WCS
OA4 Oca Oca Oca Oca Oca Oca

Ica Iac Oac NVC NVC
1.0 0.78 0.78 0.89 1.00

IE4 Oac NVC Oac Oac Oac NVC Oac NVC Oac
Iac Ica Eac Eca Oca

0.89 0.67 0.67 1.00 0.89
IA2 Ica Iac Ica Iac Ica Ica Iac

NVC NVC NVC NVC
0.67 0.67 0.89 0.78 1.00

accuracy 0.77 0.83 0.84 0.89
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Discussion

I The best possible value achievable by WCS is .925

. because NVC is entailed only if nothing else is entailed

I WCS is better than any other cognitive theory that I am aware of!

I Open Questions

. How can we model clusters of reasoners?

. How shall we define entailment?

. What exactly is the role of the abnormalities?

. How important is the sequence in which the premises are presented?

. Is there a difference between abstract and social syllogisms?
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Contextual Reasoning

I The Context Operator

I Contextual Programs

I Properties

I Examples
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The Context Operator

I A new truth-functional operator

L ctxt L

> >
⊥ ⊥
U ⊥

I Captures locally negation by failure

p ← q p ← ctxt q
p ← ⊥ p ← ⊥

I Their weak completions have the following minimal models

〈∅, ∅〉 〈∅, {p}〉
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Another Example

I Let P1 = {p a ← >, q b ← r b} with MwcP1 = 〈{p a}, ∅〉

. How is cP1 defined?

cP1 = {p a ↔ >, p b ↔ ⊥, q a ↔ ⊥, q b ↔ r b, r a ↔ ⊥, r b ↔ ⊥}

I Now consider P2
p X ← X ≈ a
q X ← X ≈ b ∧ r b

X ≈ X ← >

. What is the least model of wcP2?

MwcP2 = 〈{a ≈ a, b ≈ b, p a}, ∅〉

. What happens if P3 = P2 ∪ {a ≈ b ← ⊥, b ≈ a ← ⊥}?

MwcP3 = 〈{a ≈ a, b ≈ b, p a}, {a ≈ b, b ≈ a, p b, q a}〉

. Is there a problem with P3?
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Another Example – Continued

I Let P4
p X ← ctxt X ≈ a
q X ← ctxt X ≈ b ∧ r b

X ≈ X ← >

. Can you specify a model of wcP4?

〈{a ≈ a, b ≈ b, p a}, {p b, q a}〉

. Compare

MwcP3 = 〈{a ≈ a, b ≈ b, p a}, {a ≈ b, b ≈ a, p b, q a}〉

. This is a local version of negation by failure!
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Contextual Programs

I Literals are atoms or negated atoms

I Let L be a literal

I A contextual literal is of the form ctxt L or ¬ ctxt L

I A contextual rule is of the form A← Body, where A is an atom and Body is a
finite conjunction of literals and contextual literals containing at least one
contextual literal

I A contextual program is a set of rules, contextual rules, facts, and assumptions
containing at least one contextual rule

I Note a program is not a contextual program
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Contextual Programs and Models

I P
p ← ctxt q
p ← ⊥

I wcP
p ↔ ctxt q ∨ ⊥

I How many minimal models has wcP?

I What is
〈∅, ∅〉(wcP) = ?

〈∅, {p}〉(wcP) = ?

〈{p, q}, ∅〉(wcP) = ?

〈{p}, ∅〉(wcP) = ?

〈{q}, ∅〉(wcP) = ?

I Does there exist a least model?
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Contextual Programs and Supported Models
I Let P consist of

p ← ctxt q
p ← ⊥

I wcP has two minimal models 〈∅, {p}〉 and 〈{p, q}, ∅〉

I Let’s apply the semantic operator

ΦP I> I⊥ I> I⊥

↑ 0 p
q

↑ 1 p p

↑ 2 p p

I Only 〈∅, {p}〉 is a fixed point

. It will turn out that it is the only fixed point

. It will be called supported model
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Contextual Programs and Monotonicity

I Let P consist of
p ← ctxt ¬ p

I We find
ΦP I> I⊥

↑ 0

↑ 1 p

↑ 2 p

↑ 3 p

...
...

...

I The semantic operator is no longer monotonic

I wcP = {p ↔ ctxt ¬p} is unsatisfiable
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Acyclic Contextual Programs

I Let L be a literal
lvl ctxt L = lvl ¬ ctxt L = lvl L

I A contextual program P is acyclic with respect to the level mapping lvl
if and only if for each rule A← Body occurring in P and each (normal or
contextual) literal L occurring in Body we find lvl A > lvl L

I A contextual program P is acyclic
if and only if it is acyclic with respect to some level mapping

I Recall

dlvl (I, J) =


1

2n I 6= J and
I A = J A 6= U for all A with lvl A < n and
I A 6= J A or I A = J A = U for some A with lvl A = n

0 otherwise

I Proposition 25 still applies: dlvl is a metric

I Proposition 26 still applies: (I, dlvl ) is a complete metric space
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Contextual Programs and Fixed Points 1
I In the sequel, let P be a contextual program, E and equational theory

lvl a level mapping for P and I the set of interpretations for P

I Theorem 32 If P is acyclic with respect to lvl
then ΦP is a contraction on the metric space (I, dlvl )

I Proof Let I and J be interpretations, Φ = ΦP , and d = dlvl

. We will show d(Φ I, Φ J) ≤ 1
2 d(I, J)

. If I = J then Φ I = Φ J and d(Φ I, Φ J) = d(I, J) = 0

. If I 6= J then we find n ∈ N such that d(I, J) ≤ 1
2n

II We will show d(Φ I, Φ J) ≤ 1
2n+1

II i.e. for all ground atoms A with lvl A < n + 1 we find
Φ(I)(A) = Φ(J)(A) 6= U

II Let’s take some A with lvl A < n + 1

II Because P is acyclic, for any A← L1 ∧ . . . ∧ Lm ∈ gP
we find lvl Li < lvl A < n + 1 for all 1 ≤ i ≤ m

II Because d(I, J) ≤ 1
2n we find I Li = J Li 6= U for all 1 ≤ i ≤ m

II Hence, Φ(I)(A) = Φ(J)(A) 6= U 2
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Contextual Programs and Fixed Points 2

I Proof of Theorem 27 If program P is acyclic with respect to lvl
then ΦP is a contraction on the metric space (I, dlvl )

. can be proven as before

. by considering non-contextual programs

I Corollary 33 If P is acyclic then ΦP has a unique fixed point which can be
computed by iterating ΦP up to ω times starting with any interpretation

. Follows from Theorems 32 and 9 (Banach Contraction Mapping Theorem)
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Contextual Programs and Fixed Points 3

I Proposition 34
If P is acyclic then the unique fixed point of ΦP is a model of wcP

I Proof Let I = 〈I>, I⊥〉 be the unique fixed point of Φ = ΦP and
A↔ F ∈ wcP

. I A = > We find A← Body ∈ gP such that I Body = >

II Hence, I F = I(A↔ F ) = >

. I A = ⊥ We find a clause A← Body ∈ gP and
for all clauses A← Body ∈ gP we find I Body = ⊥

II Hence, I F = ⊥ and I(A↔ F ) = >

. I A = U  Exercise

I Conjecture the unique fixed point of ΦP a minimal model of wcP
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Supported Models

I The unique fixed point of ΦP is called supported model of wcP

I It will be denoted byMwcP

I Formula F follows from an acyclic contextual program P under WCS
in symbols P |=wcs F iff MwcP maps F to true

I Reconsider P
p ← ctxt q
p ← ⊥

. MwcP = 〈∅, {p}〉

. P |=wcs ¬p ∧ ¬(p ∧ q)
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The Tweety Scenario Revisited
I Let P consist of the following clauses:

fly X ← bird X ∧ ¬abfly X

abfly X ← ctxt kiwi X

abfly X ← ctxt penguin X

bird tweety ← >
bird jerry ← >

I Iterating the semantic operator yields

ΦP I> I⊥

↑ 0

↑ 1 bird tweety abfly tweety
bird jerry abfly jerry

↑ 2 bird tweety abfly tweety
bird jerry abfly jerry
fly tweety
fly jerry
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Tweety is a Penguin

I Suppose we learn that Tweety is a penguin

I Let P′ be

fly X ← bird X ∧ ¬abfly X

abfly X ← ctxt kiwi X

abfly X ← ctxt penguin X

bird tweety ← >
bird jerry ← >

penguin tweety ← >
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Computing the Supported Model
I Iterating the semantic operator yields

ΦP′ I> I⊥

↑ 0

↑ 1 bird tweety abfly tweety
bird jerry abfly jerry

penguin tweety

↑ 2 bird tweety abfly jerry
bird jerry

penguin tweety
abfly tweety
fly tweety
fly jerry

↑ 3 bird tweety abfly jerry
bird jerry fly tweety

penguin tweety
abfly tweety

fly jerry
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The Drowning Problem

I Drowning Problem if an object belonging to a particular class and being
exceptional with respect to some property of the class, becomes exceptional
with respect to other or all properties of the class

I Example
fly X ← birdX ∧ ¬ abfly X

abfly X ← ctxt penguin X
abfly X ← ctxt moa X

wings X ← bird X ∧ ¬ abwings X
abwings X ← ctxt moa X

bird t ← >
penguin t ← >

I Least model of the weak completion

〈{bird t, penguin t, abfly t, wings t}, {fly t, abwings t}〉

I The Weak Completion Semantics does not suffer from the drowning problem
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Human Reasoning and the Weak Completion Semantics

Technische Universität Dresden

Exercise 8

Steffen Hölldobler, Meghna Bhadra

December 13, 2021

Note: Please consider the equational theory to be empty for each question, unless stated
otherwise.

Problem 1

Within the WCS framework, what is the difference between a← ⊥ and ⊥ ← a?

Problem 2

Give an example of a program, and a set of integrity constraints such that neither the pro-
gram itself, nor the weak completion of the program have models which satisfy the integrity
constraints.

Problem 3

Please recall the definition of a complementary pair of clauses, and answer the following ques-
tions:
a. Prove the following proposition: Let ⟨P,AP , IC, |=wcs⟩ be an abductive framework, O an
observation, and X ⊆ AP an explanation for O which contains a complementary pair c ← ⊤
and c← ⊥. Then, X ′=X\{c← ⊥} is also an explanation for O andMwcs(P∪X )=Mwcs(P∪X ′).
b. What is the key takeaway?

Problem 4

Please consider the following scenario:
If Jill consumes a cold beverage then she feels good. If Jill consumes a hot beverage then she
feels good. If Jill consumes chocolate then she feels good. Jill mostly avoids consuming a hot
and a cold beverage in one meal. The observation here is that Jill feels good. The first three
lines are represented by the following program,

{feelgood← hotdrink ∧ ¬abhot, abhot ← ⊥,
feelgood← colddrink ∧ ¬abcold, abcold ← ⊥,
feelgood← chocolate ∧ ¬abchocolate, abchocolate ← ⊥}.
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Given the concepts of strong and weak constraints from the lecture, please choose an appropriate
one for this scenario and state the reason(s) for your choice.
Hint: Consider the minimal explanation(s) for the given observation.

Problem 5

Please consider the following program:

{fly(X)← bird(X) ∧ ¬abfly(X),
abfly(X)← kiwi(X),
abfly(X)← penguin(X),
bird(tweety)← ⊤,
bird(jerry)← ⊤}.

a. What are the undefined (grounded) atoms?
b. What are the abducibles possible for the above undefined atoms?
c. What are the minimal explanations for an observation, Jerry cannot fly?

Problem 6

For each of the following, please write down a logic program P, and an observation O, and list
one conclusion (formula) which follows:
a. Only credulously.
b. Only sceptically.
c. Both sceptically and credulously.
d. Neither sceptically nor credulously.



Human Reasoning and the Weak Completion Semantics

Technische Universität Dresden

Exercise 7

Steffen Hölldobler, Meghna Bhadra

December 7, 2021

Note: Please consider the equational theory to be empty for reach question, unless stated
otherwise.

Problem 1

Consider the program P : {p ← ⊤, q ← ¬p}. The level mapping is, level(p) = 0, level(q) = 1.
Please answer the following questions:
a. Is the program acyclic? Why or why not?
b. Let I1= ⟨∅, ∅⟩, I2= ⟨{p}, ∅⟩ and I3= ⟨{p}, {q}⟩.
Please compute dlevel(I1, I2) and dlevel(I2, I3).

Problem 2

Consider the program P : {p← r ∧ q, q ← r ∧ p}. Please answer the following questions:
a. Is the program acyclic? Why or why not?
b. Is ΦP a contraction? Why or why not?

Problem 3

Consider the program P : {even(0)← ⊤, even(successor(X))← ¬even(X)}.
Let the level mapping be such that, level(even(0)) = 0,
level(even(successor(0))) = 1, level(even(successor(successor(0)))) = 2 and so on.
Please answer the following questions:
a. Is P acyclic? Why or why not?
b. Starting with the empty interpretation, please show some immediate consequences of ΦP ,
namely, I0 (this is the one after the empty interpretation), I1, I2, I3.
c. What is the fixed point of P , I? Are any other fixed points possible?
c. Please compute the following, dlevel(I0, I1), dlevel(I1, I2), dlevel(I2, I3).
d. Please compute, dlevel(I0, I3) and dlevel(I2, I3).

Problem 4

a. Please state two points of difference between the operator Φ behaving as contraction and
otherwise (not a contraction).
b. Based on whatever has been covered in the lectures so far, what is the utility of the Banach
Contraction Mapping Theorem?
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Human Reasoning and the Weak Completion Semantics

Technische Universität Dresden

Exercise 9

Steffen Hölldobler, Meghna Bhadra

January 3, 2022

Note: Please consider the equational theory and the set of integrity constraints to be empty
for each question, unless stated otherwise.

Problem 1

Using relevant conditional sentences (preferably not from the manuscript) please differentiate
between obligational and factual conditionals, and necessary and non-necessary antecedents.

Note: For the following questions, please illustrate all computational steps as spec-
ified in the current WCS framework.

Problem 2

Consider the (first) conditional premise: if it is Christmas day, then I listen to Christmas carols.
Let us assume that it is classified as a factual conditional with non-necessary antecedent. Given
the second premise,
a. I do not listen to Christmas carols.
b. I listen to Christmas carols.
What follows from each of the above sets of first and second premises?

� It is Christmas day.
� It is not Christmas day.
� Nothing follows.

Problem 3

Consider the conditional premise: if the traffic signal shows a red light, then I stop my car at
the signal. Let us assume that it is classified as an obligational conditional with non-necessary
antecedent. Given the second premise,
a. I do not stop my car at the signal. What follows?

� The traffic signal shows a red light.
� The traffic signal does not show a red light.
� Nothing follows.
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b. The traffic signal does not show a red light. What follows?

� I stop my car at the signal.
� I do not stop my car at the signal.
� Nothing follows.

Problem 4

Consider the conditional premise: if the lamp is switched on, then its bulb produces light. Let us
assume that it is classified as a factual conditional with necessary antecedent. Given the second
premise,
a. The lamp is switched on. What follows?

� Its bulb produces light.
� Its bulb does not produce light.
� Nothing follows.

b. The lamp’s bulb does not produce light. What follows?

� The lamp is switched on.
� The lamp is not switched on.
� Nothing follows.

c. The lamp’s bulb produces light. What follows?

� The lamp is switched on.
� The lamp is not switched on.
� Nothing follows.



Human Reasoning and the Weak Completion Semantics II

Technische Universität Dresden

Exercise 6

Steffen Hölldobler, Meghna Bhadra

June 14, 2022

Problem 1

Please suggest a neural network where the role of modifiers are minimized or eliminated.

Problem 2

Can you think of a function that can be computed by a 3-layered feed forward network of logical
threshold units but by a not 2-layered network of logical threshold units?
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Human Reasoning and the Weak Completion Semantics II

Technische Universität Dresden

Exercise 7

Steffen Hölldobler, Meghna Bhadra

June 21, 2022

Problem 1

Given the program, P:
teÐ J, oÐ K,

lÐ e^ abe,

lÐ o^ abo,

abe Ð K, abe Ð  o,

abo Ð K, abo Ð  eu.

Considering the active weighted connections from input-hidden and hidden-output layers to be
w, and those from output-input layer to be 1, please construct a recurrent network, N÷

P and:

� Illustrate every time step of the computation of its unique stable state while highlighting
the activation patterns in each,

� Mention the sum of the weighted inputs of the active units in the output layer during the
appropriate time steps.
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Human Reasoning and the Weak Completion Semantics II

Technische Universität Dresden

Exercise 8

Steffen Hölldobler, Meghna Bhadra

June 28, 2022

Problem 1

Given the program, P:
thappy Ð tea^ abt, abt Ð K,

happy Ð coffee^ abc, abc Ð K,

cookiesÐ  cake,

milk Ð cookies,

teaÐ Ju,

and the integrity constraint, tUÐ tea^ coffeeu.
Please answer the following questions by constructing appropriate networks:

1. Determine or detect whether P has reached a stable state.

2. Check whether the integrity constraint is satisfied.

3. Check if a given observation, O � t cakeu, can be explained by the least model of wcpPq.

4. Provide an externally activated clamp unit to extend the network, such that O can be
(minimally) explained.

5. Does the above lead to any stable coalition? Give reasons for your response.
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Human Reasoning and the Weak Completion Semantics II

Technische Universität Dresden

Exercise 9

Steffen Hölldobler, Meghna Bhadra

July 5, 2022

Problem 1

Given the program, P:
trelaxÐ tea^ abt, abt Ð Ku

and the empty integrity constraint.
Please answer the following questions by constructing appropriate networks:

1. Provide a finite automaton generating all possible and non-complementary explanations.
Do state how the output function encodes the explanations.

2. Why are we interested in non-complementary explanations?

3. What are sceptical conclusions?

4. Provide a McCulloch-Pitts network for the finite automaton.

5. Consider the observation, O � trelaxu. Extend the previous network (you can omit the
recurring network details where the stable state is generated) such that the new network
generates sceptical conclusions for O. Highlight all the active units in the input and output
layers of the last network.

6. Under what conditions will the various input units of the last network be activated?

7. Why is each unit that you have highlighted in the output layer of the last network, active?

8. Imagine there are multiple explanations for O. How or why would the corresponding
multiple least models persist in the input layer of the last network?

1



Human Reasoning and the Weak Completion Semantics II

Technische Universität Dresden

Exercise 1

Steffen Hölldobler, Meghna Bhadra

January 25, 2022

Note: Please consider the equational theory to be empty for each question, unless stated
otherwise.

Problem 1

1. Please create a contextual program P representing the following scenario and compute the
least fixed point:
Birds usually fly. However, Penguins and Kiwis are birds which do not. Birds usually
have wings, but Kiwis do not. Tweety is a Penguin. Sylvester is a bird.

2. Is the operator ΦP monotonic?

3. Is P acyclic?

4. Is the above computed model the least model of wc(P), or is it a supported one?

Problem 2

Discuss whether Proposition 35 holds for non-contextual acyclic programs as well.
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Human Reasoning and the Weak Completion Semantics II

Technische Universität Dresden

Exercise 2

Steffen Hölldobler, Meghna Bhadra

May 4, 2022

Note: Please consider the equational theory and the set of integrity constraints to be empty
for each question, until stated otherwise.

Problem 1

In this exercise we will try to simulate the core idea behind Schrödinger’s famous thought ex-
periment. Hence, please consider the following Wikipedia excerpt on the same: ”To further
illustrate, Schrödinger described how one could, in principle, create a superposition in a large-
scale system by making it dependent on a quantum particle that was in a superposition. He
proposed a scenario with a cat in a locked steel chamber, wherein the cat’s life or death depended
on the state of a radioactive atom, whether it had decayed and emitted radiation or not. Ac-
cording to Schrödinger, the Copenhagen interpretation implies that the cat remains both alive
and dead until the state has been observed. Schrödinger did not wish to promote the idea of
dead-and-live cats as a serious possibility; on the contrary, he intended the example to illustrate
the absurdity of the existing view of quantum mechanics.”.

The following statements (somewhat) depicts the scenario:
If there is no observer looking inside the steel chamber then the cat is dead. If there is no
observer looking inside the steel chamber then the cat is alive. If there is a quantum collapse of
the radioactive atom then it releases some poison. If any poison is released then the cat is dead.
If any poison is not released then the cat is alive.

� Let the set of integrity constraints be empty. What would be the least models of (minimal)
abduction applied to the empty observation?

� Now considering the realistic constraint that a cat can either be dead or alive but not
both, which models persist?

� Given the above constraint, and the fact that Schrödinger’s experiment showed the ab-
surdity of basing the superposition of the cat’s living state on the presence (or not) of an
observer, which statements do you think may be removed from the prior set of statements?

� Would you have formulated the simulation differently? If so, please elaborate.
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Human Reasoning and the Weak Completion Semantics II

Technische Universität Dresden

Exercise 4

Steffen Hölldobler, Meghna Bhadra

May 17, 2022

Problem 1

Let us consider a modified version of the trolley problem. The modifications are the following:

� There are two humans on the side track and one on the main track.

� There is something about the side track that slows down the speed of the trolley in such
a way that the trolley will injure the humans, instead of killing them. This implies that
on changing the switch there will be injured people instead of dead people.

Suppose that in such a case the person controlling the (track) switch, Hank, prefers the direct
action change over donothing. Please propose and discuss how you would model such a prefer-
ence. In particular please do not leave out any clause from the program being proposed.
(Good to remember - casualty means people badly affected by an event or situation, here, dead
or injured people).
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Human Reasoning and the Weak Completion Semantics II

Technische Universität Dresden

Exercise 5

Steffen Hölldobler, Meghna Bhadra

May 24, 2022

Problem 1

� Please discuss and provide a modelling of the collapsing bridge scenario for utilitarianism
and the doctrines of double and triple effects.

� As an extension to the above, assume that something is abnormal with respect to the
collapse, for example the switch of the machine which will collapse the bridge is not
working. Because of this the actor in the scenario, Ian, now considers if he should throw
the heavy person off the bridge. To that end, please provide a modelling of the extension
under the doctrine of the double effect.

(Good to remember - casualty means people badly affected by an event or situation, here, dead
or injured people).

1
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Problem 1

Consider a docking terminal for ships which has three blocks, a, b and c placed on a dock, and
a robot arm which can help one move these blocks around.
Given an initial state of the world: ondock(a) ◦ ondock(b) ◦ on(c, a) ◦ clear(b) ◦ clear(c) ◦ empty .
The fluent ondock(X ) signifies that block X is on the dock, on(X ,Y ) signifies that block X is
on top of Y , clear(X ) signifies that the top of block X is clear, empty signifies that the robot’s
arm is not holding anything and holding(X ) signifies that the robot is holding X.
We want to reach the goal state: ondock(c) ◦ on(b, c) ◦ on(a, b) ◦ clear(a) ◦ empty .

Given the following set of possible actions, action(preconditions,name, effects):
action(clear(V ) ◦ ondock(V ) ◦ empty , pickup(V ), holding(V )),
action(clear(V ) ◦ on(V ,W ) ◦ empty , unstack(V ,W ), holding(V ) ◦ clear(W )),
action(holding(V ), putdown(V ), clear(V ) ◦ ondock(V ) ◦ empty),
action(holding(V ) ◦ clear(W ), stack(V ,W ), on(V ,W ) ◦ clear(V ) ◦ empty).

Also given the set of rules:
causes(X , [ ],Y )← X ≈ (Y ◦ Z ),
causes(X , [V |W ],Y )← action(P ,V ,Q) ∧ (P ◦ Z ) ≈ X ∧ causes(Z ◦Q ,W ,Y ),
X ≈ X .

Please answer the following questions:

� Using the above set of actions and rules of inference, starting with

causes(ondock(a) ◦ ondock(b) ◦ on(c, a) ◦ clear(b) ◦ clear(c) ◦ empty,W,

ondock(c) ◦ on(b, c) ◦ on(a, b) ◦ clear(a) ◦ empty),

show the next 3 steps of computation. Recall: causes(X ,W ,Y ) signifies the sequence of
actions W which transforms state X to state Y .

� List the plan or the (grounded) sequence of actions (not to be confused with the action
predicate) which would transform the given initial state to the desired goal state.

� Suppose that the symbol ◦ is idempotent, meaning X ◦X ≈ X . Using one of the above
steps of computation as an example show what would change and what kind of problem
could arise.

1
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Problem 1

Normal logic programs are finite or countably infinite set of clauses of the form Head if Body
i.e. Head ← A1 ∧ A2 ∧ . . . ∧ Am ∧ ¬B1 ∧ ¬B2 ∧ . . . ∧ ¬Bn, Head ← ⊤ or Head ← ⊥ where
Head is a positive literal (also called atom). The right hand side of the implication ← is called
the Body.
Now, consider the normal logic program P1: {e ← ⊤, l ← e ∧ ¬abe, abe ← ⊥}. Clauses
are usually taken to be a finite collection of (universally closed) positive or negative literals (i.e.
atoms or their negations respectively) which are connected using disjunctions, i.e. l1∨l2∨. . .∨ln.
Each of the implications in the program P1 are logically equivalent to clauses.
a. Can you write down the (equivalent) clausal form for each?
b. A definite logic program is a special kind of logic program that does not have occurrences of
negations or ⊥. Then, is P1 a definite logic program? Why or why not?
c. P1 is a propositional program. What will be a grounded instance of P1?

Problem 2

Consider the definite first-order program P2: {p(a)← ⊤, p(f(X))← p(X)}. X is a variable, a
is a constant symbol and f is a function symbol. We only consider two-valued logic.
a. What is the Herbrand Universe? Is it finite?
b. What is the Herbrand Base?
c. What is the grounded program?
d. A Herbrand interpretation maps atoms in the Herbrand Base to true or false. It is this map-
ping that distinguishes one Herbrand interpretation from another. An Herbrand interpretation
is called a (Herbrand) model when it maps each clause in the grounded program to true. In
two-valued logic, models can be represented simply using the atoms from the Base which the
model has mapped to true. Furthermore, in two-valued logic, the model intersection property
holds for definite logic programs. This basically means, the intersection of all Herbrand models
of a definite logic program in two-valued logic is again a model. This model is called the least
model, as it is minimal and there can be no further minimal models aside from this.
Given all this information, what should be the least (Herbrand) model for the above program?
e. Recall the definition of the dependency function deps. What is deps(P2, p(a)) and
deps(P2, ¬p(f(f(a))))?

Problem 3

a. Proposition: Given a definite logic program P. The model intersection property holds for P,
in two-valued logic; in other words P will have a least Herbrand model. Prove the proposition.

1



b. Consider what would happen to the model intersection property in case of a normal logic
program as defined above, w.r.t. two-valued logic.

Problem 4

Consider the normal first-order logic program P3: {q(X) ← ¬p(X), p(a) ← ⊤} and equation
a ≈ b.
a. What will be the Herbrand Universe, and the Herbrand Base?
b. Under the semantics of the three-value  Lukasiewicz-logic, what might be the least model of
P3?
c. Can you also think of a model which is not the least one?

Problem 5 (Optional)

Let us revisit the Supression Task. We see how weak completion (under the three valued
semantics of  Lukasiewicz-logic) helps us adequately model the responses of the experiment. But
what if the weak completions are replaced by completions? Do you think it could still sufficiently
model the Supression Task?



Human Reasoning and the Weak Completion Semantics

Technische Universität Dresden

Exercise 5

Steffen Hölldobler, Meghna Bhadra

November 22, 2021

Problem 1

a. Give an example of a partially ordered set where the least upper bound does not exist.
b. Give an example of a partially ordered set where the greatest lower bound does not exist.

Problem 2

With reference to the notions of monotonic and continuous functions as discussed in the lecture
and the manuscript, give an example of a partially ordered set S (please also mention the partial
order itself)*, and specify a function f : S → S if possible, which is:
a. Monotonic.
b. Non-Monotonic.
c. Continuous.
d. Not Continuous.
f. Monotonic and Continuous.
e. Continuous and Non-Monotonic.
*Note: You are free to use different partially ordered sets for each question, if you like.

Problem 3

Consider the set S = {0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, . . . , ω + ω}, and the relation ≤. Here, the
symbol ω is the first limit ordinal that occurs after the set of natural numbers, followed by the
non-limit ordinals ω + 1, ω + 2 etc. The symbol ω + ω is the second limit ordinal. Consider a
function f : S → S, such that f(x) = x if x < ω and f(x) = ω+ω if x ≥ ω. Now, please answer
the following questions:
a. Is the set S partially ordered?
b. Is the function f monotonic? Why or why not?
c. Is the function f continuous? Why or why not?

1
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Problem 1

Consider the program P : {q(X)← ¬p(X), p(a)← ⊤}, and the equational theory {a ≈ b}.
a. What is the Herbrand Base, and the grounded program?
b. Starting from the empty interpretation ⟨∅, ∅⟩, please show how the least fixed point of this
program can be computed by the (iterative) application of the modified Fitting operator, ΦP .
c. What do you think is the least model of P?
d. What do you think is the least model of the weak completion of P?
e. What observation can be drawn from the above points b, c and d?
f. With particular regard to the above point b, is ΦP monotonic? Please state why.
g. With particular regard to the above point b, is ΦP continuous? (Hint: You can use proposi-
tions from the manuscript to justify your response.)
h. What is the set of all possible interpretations (not to be confused with models) of P?
i. Is the above set (let’s call it I) directed? Please state the reason(s) for your answer.
j. Is I a complete partial order? Please state the reason(s) for your answer.
k. Please write down any two directed subsets of I, and state their least upper bounds.

Problem 2

a. Consider the program P1: {q(1) ← ⊤, q(X ◦ a) ← q(X)} and the AC1 theory: {x ◦ 1 ≈
X, X ◦Y ≈ Y ◦X, (X ◦Y )◦Z ≈ X ◦(Y ◦Z)}. Please state the Herbrand Universe, the Herbrand
Base, the grounded program, and state the least fixed point by listing the first 5 iterations of
the ΦP1 operator.
b. Consider the program P2: {q(1) ← ⊤, q(X ◦ a) ← q(X), p ← ¬q(X)}, and the above AC1
theory. Please state the Herbrand Universe, the Herbrand Base, the grounded program, and
state the least fixed point by listing the first 5 iterations of the ΦP2 operator.
c. Is there a difference in the number of iterations between the two operators, before it reaches
a fixed point?

Problem 3

Consider the program {q(a)← ⊤, r(b)← ⊤, p(X)← q(X) ∧ r(X)}, and the equation {b ≈ c}.
Please state the following,
a. Herbrand Universe.
b. Herbrand Base.
c. Grounded program.
d. A bijection between elements from the Herbrand Base, to propositional atoms (of your

1



choice).
e. The resulting, equivalent propositional program, P .
f. Starting with the empty interpretation, please show the computation of the least fixed point
of the propositional program, using ΦP .
g. Is ΦP monotonic, and continuous? Please state the reasons for your response.

Problem 4

Please provide a proof sketch of the following proposition: Let X be a directed (sub)set of
interpretations. Then, the interpretation I = ⟨

⋃
X⊤,

⋃
X⊥⟩ is the least upper bound of X. Note:

Here,
⋃

X⊤ and
⋃
X⊥ denote the union of all the true and false elements of all interpretations

in the (sub)set X, respectively.
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Problem 1

Consider the formula P : a ↔ b.
a. What will be the least three-valued model under the semantics of  Lukasiewicz-logic?
b. What will be the other non-least three-valued models under the same semantics?
c. Is a, ¬a, b or ¬b a logical consequence of P? Please state the reasons for your response.

Problem 2

In the Suppression Task as presented by the WCS manuscript, the conditional used by Byrne
in the original experiment, namely if she has an essay to write, then she must study in the
library seems a bit outdated. This is because, nowadays going to the library is not always
so important or mandatory when one has an essay to write. One can simply resort to the
internet, for example. Therefore, in view of broader research questions and applications of the
Weak Completion Semantics, how the Suppression Task would work in a more modern context
and setting is something we would like to consider. The findings may help supplement further
research and development of the framework.
To that end, the goal of this exercise is to consider the purpose of the Suppression Task conducted
by Ruth Byrne (you can refer to the WCS manuscript) and then imagine it in a modern context.
In other words please think of a context (possibly different from the original), such that when
replacing the conditionals with those from the context that your propose, we could possibly
imitate the original experiment. Also, please consider what the responses should be for the AA,
DA, AC and DC tasks, w.r.t the new context and conditionals.

1
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Note: Please consider the equational theory and the set of integrity constraints to be empty
for each question, unless stated otherwise.

Problem 1

Given the following: If X is a bird then X usually flies. However, Kiwis and Penguins cannot
fly. Tweety is a bird.
This can be represented by the program P : fly(X)← bird(X) ∧ ¬abfly(X), abfly ← kiwi(X),
abfly ← penguin(X), bird(X)← kiwi(X), bird(X)← penguin(X), bird(Tweety)← ⊤.
Also given: Tweety can fly.
You are provided the three choices of responses:

� Tweety is either a kiwi or a penguin.
� Tweety is neither a kiwi nor a penguin.
� Nothing follows.

Assuming the classification of the conditional if X is a bird then X usually flies to be factual
conditional with non-necessary antecedent, what do you think would be the general and sceptical
responses of humans? Can you model both?

Problem 2

Given the following: If X is a bird then X usually flies. Jonathan is a bird.
This can be represented by the program P : fly(X)← bird(X) ∧ ¬abfly(X), abfly ← ⊥,
bird(Jonathan)← ⊤.
Assume the conditional is classified as factual with non-necessary antecedent. Given the second
premise: Jonathan does not fly. Please model an explanation for the said observation.

Problem 3

Consider the experiments 7 and 8 of the suppression task. How would you classify the condi-
tionals? Please remodel the said experiments taking your classification into account. For each,
also state if the new conclusion differs from the one in the original experiment.

1



Problem 4

a. Consider experiment 2 of the suppression task. We slightly change the background knowledge
to: if she has an essay to write then she will study late in the library, if she has textbooks to read
then she will study late in the library. Assume that the conditionals are classified as obligational
with non-necessary antecedent. Please show the evaluation of the conditional, if she has an essay
to write then she will study late in the library using MRFA. Is the given conditional indicative
or subjunctive?

b. Consider experiment 9 of the suppression task. Assume that the conditional if she has an
essay to write then she will study late in the library has been classified as obligational with
non-necessary antecedent. And the conditional if the library is open then she will study late in
the library has been classified as factual with necessary antecedent. Please show the evaluation
of the conditional, if she is studying late in the library then she has an essay to write using
MRFA. Is the given conditional indicative or subjunctive?
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Note: Please consider the equational theory and the set of integrity constraints to be empty
for each question, unless stated otherwise.

Problem 1

Given the four cards below, you are provided with the conditional: if there is an A on one side
of the card, then there is a 9 on the other side.

A B 8 9

Which two cards would you turn in order to check whether the given conditional is indeed true?
Please show the modeling process explicitly and explain your choices.
(Your classification for this particular conditional need not match with how it is in the manuscript).

Problem 2

Given the four cards below, you are provided with the conditional: if a person with an Indian
citizenship wants to study in Germany, then the person needs a visa. This is classified as an
obligation with non-necessary antecedent.

study not study visa no visa

Which two cards would you turn in order to check whether the given conditional is indeed true?
Please show the modeling process explicitly and explain your choices.
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Problem 3

Given the following background knowledge: if it rains, then the roofs are wet and she takes her
umbrella. The first part of the information is an obligation but not the second.
Please show the modeling of the evaluation of the following conditionals (starting with the
specification of the program) along with the possible dependency graphs:
a. If the roofs are not wet then it has not rained.
b. If she has taken her umbrella then it has rained.
(The said dependency graphs may also be sent as clear photos or scans alongside the solutions.
Please do not forget to mention the numbering in such a case).
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Note: Please consider the equational theory to be empty for each question, unless stated
otherwise.

Problem 1

Illustrate how the following syllogisms can be modeled within the WCS framework. Please also
state which principle is used for which clause in the corresponding programs and finally what
the syllogism entails (as currently defined within the framework):

� AO1,

� EI2,

� OE4.
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