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Learning Outcomes

• Abstract data and queries from their physical implementation, and formalize them 

in a rigorous way - relational model

• Analyze the complexity of evaluating relational (algebra and calculus) queries

• Analyze the complexity of static analysis of relational (algebra and calculus) queries



Data Model

mathematical abstraction for structuring the data 

independent from the physical implementation

a collection of data 

structured in some way

querying the data



Relational Model

• Many ad hoc models before 1970

− Hard to work with

− Hard to reason about

• 1970: Relational Model by Edgar Frank Codd

− Data are stored in relations (or tables)

− Queried using a declarative language

− DBMS converts declarative queries into procedural queries that are 

optimized and executed

• Key Advantages

− Simple and clean mathematical model (based on logic)

− Separation of declarative and procedural

Edgar F. Codd 
(1923 - 2003)

Turing Award 1981 



Relational Databases

Database Schema: a finite set of relation names together with their attributes names

Flight origin:string destination:string airline:string

Airport code:string city:string

Database Instance: data conforming to the schema

VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

VIE Vienna
LHR London
LGW London
LGW Larnaca
GLA Glasgow
EDI Edinburgh

+



Relational Databases

Flight origin:string destination:string airline:string
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code:string city:string
VIE Vienna

LHR London

LGW London

LGW Larnaca

GLA Glasgow

EDI Edinburgh

• Ignore attribute types - data elements are coming 

from a countably infinite set Const (constant values)

• A relational database is a finite set of relational atoms



Relational Databases

Flight(VIE,LHR,BA),

Flight(LHR,EDI,BA),

Flight(LGW,GLA,U2),

Flight(LCA,VIE,OS),

Airport(VIE,Vienna),

Airport(LHR,London),

Airport(LGW,London),

Airport(LGW,Larnaca),

Airport(GLA,Glasgow),

Airport(EDI,Edinburgh)

…we will keep using the table representation without the attribute types



Querying: Relational Algebra

Flight origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

List all the airlines



Querying: Relational Algebra

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List all the airlines

πairline Flight

{BA, U2, OS}



Querying: Relational Algebra

Flight origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

List the codes of the airports in London



Querying: Relational Algebra

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the codes of the airports in London

πcode (σcity=‘London’   Airport)

{LHR, LGW}



Querying: Relational Algebra

Flight origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

List the airlines that fly directly from London to Glasgow



Querying: Relational Algebra

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

πairline ((Flight  ⋈origin=code  (σcity=‘London’   Airport)) ⋈destination=code  (σcity=‘Glasgow’   Airport))



Querying: Relational Algebra
πairline ((Flight  ⋈origin=code  (σcity=‘London’   Airport)) ⋈destination=code  (σcity=‘Glasgow’   Airport))

code city
LHR London
LGW London

code city
GLA Glasgow



Querying: Relational Algebra

code city
LHR London

LGW London

πairline ((Flight  ⋈origin=code  (σcity=‘London’   Airport)) ⋈destination=code  (σcity=‘Glasgow’   Airport))

origin destination airline code city
LHR EDI BA LHR London

LGW GLA U2 LGW London

code city
GLA Glasgow



Querying: Relational Algebra

code city
LHR London

LGW London

πairline ((Flight  ⋈origin=code  (σcity=‘London’   Airport)) ⋈destination=code  (σcity=‘Glasgow’   Airport))

code city
GLA Glasgow

origin destination airline code city
LHR EDI BA LHR London

LGW GLA U2 LGW London

origin destination airline code city code city
LGW GLA U2 LGW London GLA Glasgow



Querying: Relational Algebra

code city
LHR London

LGW London

πairline ((Flight  ⋈origin=code  (σcity=‘London’   Airport)) ⋈destination=code  (σcity=‘Glasgow’   Airport))

code city
GLA Glasgow

origin destination airline code city
LHR EDI BA LHR London

LGW GLA U2 LGW London

origin destination airline code city code city
LGW GLA U2 LGW London GLA Glasgow

airline
U2



• Selection: σ

• Projection: π

• Cross product:  ×
• Natural join: ⋈
• Rename: ρ

• Difference: ∖
• Union: ∪
• Intersection: ∩

Relational Algebra

in bold are the primitive operators

Formal definition can be found in Chapter 4 of PDB



Querying: Domain Relational Calculus

Flight origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

List all the airlines



{z | ∃x∃y Flight(x,y,z)}

Querying: Domain Relational Calculus

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List all the airlines

{BA, U2, OS}



Querying: Domain Relational Calculus

Flight origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

List the codes of the airports in London



{x | ∃y Airport(x,y)  ∧ y = London}

Querying: Domain Relational Calculus

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the codes of the airports in London

{LHR, LGW}



Querying: Domain Relational Calculus

Flight origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

List the airlines that fly directly from London to Glasgow



{z | ∃x∃y∃u∃v Airport(x,u)  ∧ u = London  ∧ Airport(y,v)  ∧ v = Glasgow  ∧ Flight(x,y,z)}

Querying: Domain Relational Calculus

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

{U2}



{x | ∀y R(x,y)}          {x | ¬R(x)}          {x,y | R(x) ∨ R(y)}

Domain Relational Calculus

{x1,…,xk | φ}

first-order formula with

free variables {x1,…,xk}

But, we can express “problematic” queries, i.e., depend on the domain

(see Chapter 4 of PDB & 
additional material on 
relational calculus)



Domain Relational Calculus

domain =  {1,2,3}

D = {R(1,1), R(1,2)}
Ans = { }

{x1,…,xk | φ}

first-order formula with

free variables {x1,…,xk}

But, we can express “problematic” queries, i.e., depend on the domain

{x | ∀y R(x,y)}          {x | ¬R(x)}          {x,y | R(x) ∨ R(y)}

(see Chapter 4 of PDB & 
additional material on 
relational calculus)



Domain Relational Calculus

domain =  {1,2}

D = {R(1,1), R(1,2)}
Ans = {1}

{x1,…,xk | φ}

first-order formula with

free variables {x1,…,xk}

But, we can express “problematic” queries, i.e., depend on the domain

{x | ∀y R(x,y)}          {x | ¬R(x)}          {x,y | R(x) ∨ R(y)}

(see Chapter 4 of PDB & 
additional material on 
relational calculus)



Domain Relational Calculus

…thus, we adopt the active domain semantics - quantified variables range over 

the active domain, i.e., the constants occurring in the input database

{x1,…,xk | φ}

first-order formula with

free variables {x1,…,xk}

But, we can express “problematic” queries, i.e., depend on the domain

{x | ∀y R(x,y)}          {x | ¬R(x)}          {x,y | R(x) ∨ R(y)}

(see Chapter 4 of PDB & 
additional material on 
relational calculus)



Algebra = Calculus

A fundamental theorem (assuming the active domain semantics):

Theorem: The following query languages are equally expressive

• Relational Algebra (RA)

• Domain Relational Calculus (DRC)

• Tuple Relational Calculus (TRC)

Note: Tuple relational calculus is the declarative language introduce by Codd. Domain relational 

calculus has been introduced later as a formalism closer to first-order logic

(see Chapter 6 of PDB)



{ | ∃x∃y∃z∃w∃v  Airport(x,Vienna)  ∧ Airport(y,Glasgow)  ∧
Flight(x,z,w)  ∧ Flight(z,y,v)}

Quiz!

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow
EDI Edinburgh

Is Glasgow reachable from Vienna?

London

Vienna

Larnaca

Glasgow

Edinburgh

YES



Quiz!

London

Vienna

Larnaca

Glasgow

Edinburgh

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is Glasgow reachable from Vienna?

NO

{ | ∃x∃y∃z∃w∃v  Airport(x,Vienna)  ∧ Airport(y,Glasgow)  ∧
Flight(x,z,w)  ∧ Flight(z,y,v)}



{ | ∃x∃y∃z∃w∃v  Airport(x,Vienna)  ∧ Airport(y,Glasgow)  ∧
Flight(x,z,w)  ∧ Flight(z,y,v)}

Quiz!

London

Vienna

Larnaca

Glasgow

Edinburgh

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is Glasgow reachable from Vienna?

YES∧ Flight(z,z1,w1)  ∧

∃z1∃w1



Quiz!

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is Glasgow reachable from Vienna?

NO

London

Vienna

Larnaca

Glasgow

Edinburgh

{ | ∃x∃y∃z∃w∃v  Airport(x,Vienna)  ∧ Airport(y,Glasgow)  ∧
Flight(x,z,w)  ∧ Flight(z,y,v)}∃z1∃w1

∧ Flight(z,z1,w1)  ∧



Quiz!

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is Glasgow reachable from Vienna?

London

Vienna

Larnaca

Glasgow

Edinburgh

Recursive query - not expressible in RA/DRC/TRC

(unless we bound the number of intermediate stops)



Complexity of Query Languages

• The goal is to understand the complexity of evaluating a query over a database

• Our main technical tool is complexity theory - see additional material

• What to measure? Queries may have a large output, and it would be unfair to 

count the output as “complexity”

• We therefore consider the following decision problems:

− Query Output Tuple (QOT)

− Boolean Query Evaluation (BQE)



Complexity of Query Languages

QOT(L)

Input: a database D, a query Q/k ∈ L, a tuple of constants t ∈ adom(D)k

Question: t ∈ Q(D)? 

Some useful notation:

• Given a database D, and a query Q, Q(D) is the answer to Q over D

• adom(D) is the active domain of D - the constants occurring in D

• We write Q/k for the fact that the arity of Q is k ≥ 0

L is some query language; for example, RA, DRC, etc.  - we will see more query languages



Complexity of Query Languages

BQE(L)

Input: a database D, a Boolean query Q ∈ L

Question: is Q(D) non-empty? 

Some useful notation:

• Given a database D, and a query Q, Q(D) is the answer to Q over D

• adom(D) is the active domain of D - the constants occurring in D

• We write Q/k for the fact that the arity of Q is k ≥ 0

L is some query language; for example, RA, DRC, etc.  - we will see more query languages



(≡L means logspace-equivalent)

Theorem: QOT(L) ≡L BQE(L), where L ∈ {RA, DRC, TRC}

BQE(L)

Input: a database D, a Boolean query Q ∈ L

Question: is Q(D) non-empty? 

QOT(L)

Input: a database D, a query Q/k ∈ L, a tuple of constants t ∈ adom(D)k

Question: t ∈ Q(D)? 

Complexity of Query Languages



Theorem: QOT(DRC) ≡L BQE(DRC)

Proof: (≤L) Consider a database D, a k-ary query Q = {x1,…,xk | φ}, and a tuple (t1,…,tk)

Let Qbool = {  | ∃x1⋯∃xk (φ ∧ x1 = t1 ∧ x2 = t2 ∧ ⋯ ∧ xk = tk) }

Clearly, (t1,…,tk) ∈ Q(D) iff Qbool (D) is non-empty

(≥L) Trivial  - a Boolean domain RC query is a domain RC query

Complexity of Query Languages

(let us show this for domain relational calculus)



Complexity Measures

• Combined complexity - both D and Q are part of the input

• Data complexity - input D, fixed Q

BQE[Q](L)

Input: a database D

Question: is Q(D) non-empty? 



Theorem: For L ∈ {RA, DRC, TRC} the following hold:

• BQE(L) is PSPACE-complete (combined complexity)

• BQE[Q](L) is in LOGSPACE, for a fixed query Q ∈ L (data complexity)

Complexity of RA, DRC, TRC

Proof hints:

• Recursive algorithm that uses polynomial space in Q and logarithmic space in D

• Reduction from QSAT (a standard PSPACE-hard problem)



Evaluating (Boolean) DRC Queries

Evaluation(D,φ) - for brevity we write φ instead of { | φ}

• If φ = R(t1,…,tk), then YES  iff R(t1,…,tk) ∈ D

• If φ = ψ1 ∧ ψ2, then YES  iff Evaluation(D,ψ1) = YES  and  Evaluation(D,ψ2) = YES 

• If φ = ¬ψ, then NO  iff Evaluation(D,ψ) = YES

• If φ = ∃x ψ(x), then YES  iff for some t ∈ adom(D), Evaluation(D,ψ(t)) = YES

ψ1 ∨ ψ2 ≡ ¬¬(ψ1 ∨ ψ2) ≡ ¬(¬ψ1 ∧ ¬ψ2)

∀x ψ(x)  ≡ ¬¬(∀x ψ(x)) ≡ ¬(∃x ¬ψ(x))



Evaluating (Boolean) DRC Queries

Lemma: It holds that

• Evaluation(D,φ) always terminates  - this is trivial

• Evaluation(D,φ) = YES  iff Q(D) is non-empty, where Q = { | φ} - trivial since it simply 

implements the semantics

• Evaluation(D,φ) uses O(||φ||2 ⋅ log ||D||) space

Proof idea: 

• It is clear that the recursion depth is O(||φ||)

• We can show by induction on the structure of φ that each recursive call uses space 

O(||φ|| ⋅ log ||D||). This relies on an encoding of the database that allows us to check 

whether R(t1,…,tk) ∈ D using space O(||φ|| ⋅ log ||D||)

• Consequently, the overall space used is O(||φ||2 ⋅ log ||D||)



Theorem: For L ∈ {RA, DRC, TRC} the following hold:

• BQE(L) is PSPACE-complete (combined complexity)

• BQE[Q](L) is in LOGSPACE, for a fixed query Q ∈ L (data complexity)

Complexity of RA, DRC, TRC

Proof hints:

• Recursive algorithm that uses polynomial space in Q and logarithmic space in D

• Reduction from QSAT (a standard PSPACE-hard problem)



EQUIV(L)

Input: two queries Q1 ∈ L and Q2 ∈ L

Question: Q1 ≡ Q2?  or  Q1(D) = Q2(D) for every database D?

SAT(L)

Input: a query Q ∈ L

Question: is there a database D such that Q(D) is non-empty? 

Other Important Algorithmic Problems

CONT(L)

Input: two queries Q1 ∈ L and Q2 ∈ L

Question: Q1 ⊆ Q2?  or  Q1(D) ⊆ Q2(D) for every database D?



EQUIV(L)

Input: two queries Q1 ∈ L and Q2 ∈ L

Question: Q1 ≡ Q2?  or  Q1(D) = Q2(D) for every (finite) database D?

SAT(L)

Input: a query Q ∈ L

Question: is there a (finite) database D such that Q(D) is non-empty? 

Other Important Algorithmic Problems

CONT(L)

Input: two queries Q1 ∈ L and Q2 ∈ L

Question: Q1 ⊆ Q2?  or  Q1(D) ⊆ Q2(D) for every (finite) database D?

these problems are important 

for optimization purposes



Other Important Algorithmic Problems

• If the answer is no, then the input query Q makes no sense

• Query evaluation becomes trivial - the answer is always NO!

SAT(L)

Input: a query Q ∈ L

Question: is there a database D such that Q(D) is non-empty? 



Other Important Algorithmic Problems

• Replace a query Q1 with a query Q2 that is easier to evaluate

• But, we have to be sure that Q1(D) = Q2(D) for every database D

EQUIV(L)

Input: two queries Q1 ∈ L and Q2 ∈ L

Question: Q1 ≡ Q2?  or  Q1(D) = Q2(D) for every database D?



• Approximate a query Q with a query Q’ that is easier to evaluate

• But, we have to be sure that Q’(D) ⊆ Q(D) for every database D

• Moreover, equivalence boils down to two containment checks

Other Important Algorithmic Problems

CONT(L)

Input: two queries Q1 ∈ L and Q2 ∈ L

Question: Q1 ⊆ Q2?  or  Q1(D) ⊆ Q2(D) for every database D?



Theorem: For L ∈ {RA, DRC, TRC}, SAT(L) is undecidable

Proof hint: By reduction from the halting problem.

Given a Turing machine M, we can construct a query QM ∈ L such that:

M halts on the empty string   iff there exists a database D such that Q(D) is non-empty

SAT is Undecidable

Note: Actually, this result goes back to the 1950 when 

Boris A. Trakhtenbrot proved that the problem of deciding 

whether a first-order sentence has a finite model is undecidable



An easy consequence of the fact that SAT is undecidable is that:

Theorem: For L ∈ {RA, DRC, TRC}, EQUIV(L) and CONT(L) are undecidable

Proof: By reduction from the complement of SAT(L)

• Consider a query Q ∈ L - i.e., an instance of SAT(L)

• Let Q’ be a query that is unsatisfiable, i.e., Q’(D) is empty for every D

• For example, when L = DRC, Q’ can be the query { | ∃x R(x) ∧ ¬R(x)}

• Clearly, Q is unsatisfiable iff Q ≡ Q’ (or even Q ⊆ Q’)

EQUIV and CONT are Undecidable



Recap

• The main languages for querying relational databases are:

− Relational Algebra (RA)

− Domain Relational Calcuclus (DRC)

− Tuple Relational Calculus (TRC)

• Evaluation is decidable, and highly tractable in data complexity

− Foundations of the database industry

− The core of SQL is equally expressive to RA/DRC/TRC

RA = DRC = TRC

(under the active domain semantics)

• Satisfiability, equivalence and containment are undecidable

− Perfect query optimization is impossible
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Thank You!

Andreas Pieris
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Learning Outcomes

• Syntax and semantics of conjunctive queries (a core fragment of relational calculus)

• Analyze the complexity of evaluating conjunctive queries

• Analyze the complexity of static analysis of conjunctive queries

• Minimization of conjunctive queries



So far

• The main languages for querying relational databases are:

− Relational Algebra (RA)

− Domain Relational Calcuclus (DRC)

− Tuple Relational Calculus (TRC)

• Evaluation is decidable, and highly tractable in data complexity

− Foundations of the database industry

− The core of SQL is equally expressive to RA/DRC/TRC

RA = DRC = TRC

(under the active domain semantics)

• Satisfiability, equivalence and containment are undecidable

− Perfect query optimization is impossible



= Conjunctive Queries

=  {σ,π,⋈}-fragment of relational algebra

=  relational calculus without ¬, ∀, ∨

=  simple SELECT-FROM-WHERE SQL queries 
= (only AND and equality in the WHERE clause)

A Crucial Question

Are there interesting sublanguages of RA/DRC/TRC for which perfect 

query optimization is possible?



Q(x)  := ∃y (R1(v1) ∧ ⋯ ∧ Rm(vm))

Syntax of Conjunctive Queries (CQ)

• R1,…,Rm are relations

• x, y, v1,…,vm are tuples of variables

• each variable mentioned in vi appears either in x or y

• the variables in x are free called distinguished or output variables

It is very convenient to see conjunctive queries as rule-based queries of the form

Q(x)  :- R1(v1),…,Rm(vm)

this is called the body of Q that can be seen as a set of atoms



{z | ∃x∃y Flight(x,y,z)}

Conjunctive Queries: Example 1

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List all the airlines

πairline Flight

{BA, U2, OS}

Q(z)  :- Flight(x,y,z)



{x | ∃y Airport(x,y)  ∧ y = London}

πcode (σcity=‘London’   Airport)

Conjunctive Queries: Example 2

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the codes of the airports in London

{LHR, LGW}

Q(x)  :- Airport(x,y), y = London



πcode (σcity=‘London’   Airport)

Conjunctive Queries: Example 2

Flight origin destination airline
VIE LHR BA
LHR EDI BA

LGW GLA U2
LCA VIE OS

Airport code city
VIE Vienna
LHR London

LGW London
LCA Larnaca
GLA Glasgow

EDI Edinburgh

List the codes of the airports in London

{LHR, LGW}

Q(x)  :- Airport(x,London){x | ∃y Airport(x,y)  ∧ y = London}



{z | ∃x∃y∃u∃v Airport(x,u)  ∧ u = London  ∧ Airport(y,v)  ∧ v = Glasgow  ∧ Flight(x,y,z)}

πairline ((Flight  ⋈origin=code  (σcity=‘London’   Airport)) ⋈destination=code  (σcity=‘Glasgow’   Airport))

Conjunctive Queries: Example 3

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

{U2}



Conjunctive Queries: Example 3

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

{U2}

Q(z)  :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)



Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Flight(VIE,LHR,BA),

Flight(LHR,EDI,BA),

Flight(LGW,GLA,U2),

Flight(LCA,VIE,OS),

Airport(VIE,Vienna),

Airport(LHR,London),

Airport(LGW,London),

Airport(LCA,Larnaca),

Airport(GLA,Glasgow),

Airport(EDI,Edinburgh)

Q(z)  :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)



Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Flight(VIE,LHR,BA),

Flight(LHR,EDI,BA),

Flight(LGW,GLA,U2),

Flight(LCA,VIE,OS),

Airport(VIE,Vienna),

Airport(LHR,London),

Airport(LGW,London),

Airport(LCA,Larnaca),

Airport(GLA,Glasgow),

Airport(EDI,Edinburgh)

Q(z)  :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)



• Pattern matching - properly formalized via the key notion of homomorphism

• A substitution from a set of terms S to a set of terms T is a function h : S → T, i.e., h 

is a set of mappings of the form s ↦ t, where s ∈ S and t ∈ T

• A homomorphism from a set of atoms A to a set of atoms B is a substitution            

h : terms(A) → terms(B) such that:

1. t is a constant value  ⇒ h(t) = t

2. R(t1,…,tk) ∈ A  ⇒ h(R(t1,…,tk)) = R(h(t1),…,h(tk)) ∈ B

Homomorphism

(terms(A) = {t | t is a variable or a constant value that occurs in A})



Homomorphism

h(A)
h

A

B

h : terms(A) → terms(B) that is the identity on constants



Homomorphism

R(x,a,y)

R(a,x,b)

S(x,c,y)

T(x,x,d)

A

B

R(a,a,b)

S(a,c,b)

T(a,a,d)

R(b,a,c) 

R(a,b,b)

S(b,c,c)

T(b,b,d)

(a,b,c,d are constants)



Homomorphism

R(x,a,y)

R(a,x,b)

S(x,c,y)

T(x,x,d)

h1

A

B

R(a,a,b)

S(a,c,b)

T(a,a,d)

R(b,a,c) 

R(a,b,b)

S(b,c,c)

T(b,b,d)

h1(A)

h1 = {a ↦ a, b ↦ b, c ↦ c, d ↦ d, x ↦ a, y ↦ b}

(a,b,c,d are constants)



Homomorphism

R(x,a,y)

R(a,x,b)

S(x,c,y)

T(x,x,d)

h2

A

B

R(a,a,b)

S(a,c,b)

T(a,a,d)

R(b,a,c) 

R(a,b,b)

S(b,c,c)

T(b,b,d)

h2(A)

(a,b,c,d are constants)

h2 = {a ↦ a, b ↦ b, c ↦ c, d ↦ d, x ↦ b, y ↦ c}



S4 = {P(x4,y4), P(y4,x4), P(y4,y4)}

S5 = {P(x5,x5)}

S3 = {P(x3,y3), P(y3,x3)}S2 = {P(x2,y2), P(y2,z2), P(z2,x2)}

S1 = {P(x1,y1), P(y1,z1), P(z1,w1)}

Find the Homomorphisms



S4 = {P(x4,y4), P(y4,x4), P(y4,y4)}

S5 = {P(x5,x5)}

S3 = {P(x3,y3), P(y3,x3)}S2 = {P(x2,y2), P(y2,z2), P(z2,x2)}

S1 = {P(x1,y1), P(y1,z1), P(z1,w1)}

Find the Homomorphisms

{x1 ↦ x3, y1 ↦ y3 , z1 ↦ x3 , w1 ↦ y3}{x1 ↦ x2, y1 ↦ y2 , z1 ↦ z2 , w1 ↦ x2}



S4 = {P(x4,y4), P(y4,x4), P(y4,y4)}

S5 = {P(x5,x5)}

S3 = {P(x3,y3), P(y3,x3)}S2 = {P(x2,y2), P(y2,z2), P(z2,x2)}

S1 = {P(x1,y1), P(y1,z1), P(z1,w1)}

Find the Homomorphisms

{x1 ↦ x3, y1 ↦ y3 , z1 ↦ x3 , w1 ↦ y3}{x1 ↦ x2, y1 ↦ y2 , z1 ↦ z2 , w1 ↦ x2}

{x3 ↦ x4, y3 ↦ y4}{x2 ↦ y4, y2 ↦ x4 , z2 ↦ y4}



S4 = {P(x4,y4), P(y4,x4), P(y4,y4)}

S5 = {P(x5,x5)}

S3 = {P(x3,y3), P(y3,x3)}S2 = {P(x2,y2), P(y2,z2), P(z2,x2)}

S1 = {P(x1,y1), P(y1,z1), P(z1,w1)}

Find the Homomorphisms

{x1 ↦ x3, y1 ↦ y3 , z1 ↦ x3 , w1 ↦ y3}{x1 ↦ x2, y1 ↦ y2 , z1 ↦ z2 , w1 ↦ x2}

{x3 ↦ x4, y3 ↦ y4}{x2 ↦ y4, y2 ↦ x4 , z2 ↦ y4}

{x4 ↦ x5, y4 ↦ x5}



S4 = {P(x4,y4), P(y4,x4), P(y4,y4)}

S5 = {P(x5,x5)}

S3 = {P(x3,y3), P(y3,x3)}S2 = {P(x2,y2), P(y2,z2), P(z2,x2)}

S1 = {P(x1,y1), P(y1,z1), P(z1,w1)}

Find the Homomorphisms

{x1 ↦ x3, y1 ↦ y3 , z1 ↦ x3 , w1 ↦ y3}{x1 ↦ x2, y1 ↦ y2 , z1 ↦ z2 , w1 ↦ x2}

{x3 ↦ x4, y3 ↦ y4}{x2 ↦ y4, y2 ↦ x4 , z2 ↦ y4}

{x5 ↦ y4}{x4 ↦ x5, y4 ↦ x5}



S4 = {P(x4,y4), P(y4,x4), P(y4,y4)}

S2 = {P(x2,y2), P(y2,z2), P(z2,x2)}

S1 = {P(x1,y1), P(y1,z1), P(z1,w1)}

Homomorphisms Compose

{x1 ↦ x2, y1 ↦ y2 , z1 ↦ z2 , w1 ↦ x2}

{x2 ↦ y4, y2 ↦ x4 , z2 ↦ y4}

{x1 ↦ y4, y1 ↦ x4 , z1 ↦ y4 , w1 ↦ y4}



S4 = {P(x4,y4), P(y4,x4), P(y4,y4)}

S3 = {P(x3,y3), P(y3,x3)}

S1 = {P(x1,y1), P(y1,z1), P(z1,w1)}

Homomorphisms Compose

{x1 ↦ x3, y1 ↦ y3 , z1 ↦ x3 , w1 ↦ y3}

{x3 ↦ x4, y3 ↦ y4}

{x1 ↦ x4, y1 ↦ y4 , z1 ↦ x4 , w1 ↦ y4}



• A match of a conjunctive query Q(x1,…,xk) :- body in a database D is a homomorphism 

h from the set of atoms body to the set of atoms D

• The answer to Q(x1,…,xk) :- body over D is the set of k-tuples

Q(D)  :=  {(h(x1),…,h(xk)) | h is a match of Q in D}

• The answer consists of the witnesses for the distinguished variables of Q

Semantics of Conjunctive Queries



Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Flight(VIE,LHR,BA),

Flight(LHR,EDI,BA),

Flight(LGW,GLA,U2),

Flight(LCA,VIE,OS),

Airport(VIE,Vienna),

Airport(LHR,London),

Airport(LGW,London),

Airport(LCA,Larnaca),

Airport(GLA,Glasgow),

Airport(EDI,Edinburgh)

Q(z)  :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)



Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Flight(VIE,LHR,BA),

Flight(LHR,EDI,BA),

Flight(LGW,GLA,U2),

Flight(LCA,VIE,OS),

Airport(VIE,Vienna),

Airport(LHR,London),

Airport(LGW,London),

Airport(LCA,Larnaca),

Airport(GLA,Glasgow),

Airport(EDI,Edinburgh)

Q(z)  :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

{x ↦ LGW, y ↦ GLA, z ↦ U2, 

London ↦ London, Glasgow ↦ Glasgow}



Complexity of CQ

Theorem: It holds that:

• BQE(CQ) is NP-complete (combined complexity)

• BQE[Q](CQ) is in LOGSPACE, for a fixed query Q ∈ CQ (data complexity)

Proof:

(NP-membership) Consider a database D, and a Boolean CQ Q :- body

Guess a substitution h : terms(body) → terms(D)

Verify that h is a match of Q in D, i.e., h(body) ⊆ D

(NP-hardness) Reduction from 3-colorability



NP-hardness

(NP-hardness) Reduction from 3-colorability

3COL

Input: an undirected graph G = (V,E)

Question: is there a function c : V → {R,G,B} such that (v,u) ∈ E ⇒ c(v) ≠ c(u)?

therefore, G is 3-colorable  iff there is a match of QG in D = {E(a,b),E(b,c),E(c,d)}

the Boolean CQ that represents G

Lemma: G is 3-colorable  iff G can be mapped to K3, i.e., G
hom



Complexity of CQ

Theorem: It holds that:

• BQE(CQ) is NP-complete (combined complexity)

• BQE[Q](CQ) is in LOGSPACE, for a fixed query Q ∈ CQ (data complexity)

Proof:

(NP-membership) Consider a database D, and a Boolean CQ Q :- body

Guess a substitution h : terms(body) → terms(D)

Verify that h is a match of Q in D, i.e., h(body) ⊆ D

(NP-hardness) Reduction from 3-colorability

(LOGSPACE-membership) Inherited from BQE[Q](DRC)



What About Optimization of CQs?

EQUIV(CQ)

Input: two queries Q1 ∈ CQ and Q2 ∈ CQ

Question: Q1 ≡ Q2?  or  Q1(D) = Q2(D) for every (finite) database D?

SAT(CQ)

Input: a query Q ∈ CQ

Question: is there a (finite) database D such that Q(D) is non-empty? 

CONT(CQ)

Input: two queries Q1 ∈ CQ and Q2 ∈ CQ

Question: Q1 ⊆ Q2?  or  Q1(D) ⊆ Q2(D) for every (finite) database D?



Canonical Database

• Convert a conjunctive query Q into a database D[Q]  - the canonical database of Q

• Given a conjunctive query of the form Q(x)  :- body, D[Q] is obtained from body by 

replacing each variable x with a new constant c(x) = x

• E.g., given Q(x,y) :- R(x,y), P(y,z,w), R(z,x), then D[Q] = {R(x,y), P(y,z,w), R(z,x)}

• Note: The mapping c : {variables in body} → {new constants} is a bijection, where 

c(body) = D[Q] and c-1(D[Q]) = body



SAT(CQ)

Input: a query Q ∈ CQ

Question: is there a (finite) database D such that Q(D) is non-empty? 

Satisfiability of CQs

Theorem: A query Q ∈ CQ is always satisfiable - SAT(CQ) ∈ O(1)-time

Proof: Due to its canonical database  - Q(D[Q]) is trivially non-empty 



Equivalence and Containment of CQs

Q1  ≡ Q2    iff Q1  ⊆ Q2 and Q2 ⊆ Q1

Q1  ⊆ Q2    iff Q1  ≡ (Q1 ∧ Q2)

…thus, we can safely focus on CONT(CQ)

EQUIV(CQ)

Input: two queries Q1 ∈ CQ and Q2 ∈ CQ

Question: Q1 ≡ Q2?  or  Q1(D) = Q2(D) for every (finite) database D?

CONT(CQ)

Input: two queries Q1 ∈ CQ and Q2 ∈ CQ

Question: Q1 ⊆ Q2?  or  Q1(D) ⊆ Q2(D) for every (finite) database D?



Homomorphism Theorem

A query homomorphism from Q1(x1,…,xk)  :- body1 to Q2(y1,…,yk)  :- body2

is a substitution h : terms(body1) → terms(body2) such that:

1. h is a homomorphism from body1 to body2

2. (h(x1),…,h(xk))  =  (y1,…,yk)

Homomorphism Theorem: Let Q1 and Q2 be conjunctive queries. It holds that:

Q1  ⊆ Q2    iff there exists a query homomorphism from Q2 to Q1



Homomorphism Theorem: Example

• h is a query homomorphism from Q2 to Q1 ⇒ Q1  ⊆ Q2

• But, there is no homomorphism from Q1 to Q2    ⇒ Q1  ⊂ Q2

Q1(x,y)  :- R(x,z), S(z,z), R(z,y)

Q2(u,v)  :- R(u,w), S(w,t), R(t,v)

h = {u ↦ x, v ↦ y, w ↦ z, t ↦ z}



Homomorphism Theorem: Proof

Assume that Q1(x1,…,xk)  :- body1 and Q2(y1,…,yk)  :- body2

(⇒) Q1  ⊆ Q2    ⇒ there exists a query homomorphism from Q2 to Q1

• Clearly, (c(x1),…,c(xk)) ∈ Q1(D[Q1])  - recall that D[Q1] = c(body1)

• Since Q1 ⊆ Q2, we conclude that (c(x1),…,c(xk)) ∈ Q2(D[Q1])

• Therefore, there exists a homomorphism h such that h(body2) ⊆ D[Q1] = c(body1)

and h((y1,…,yk))  =  (c(x1),…,c(xk))

• By construction, c-1(c(body1)) = body1

and c-1((c(x1),…,c(xk))) = (x1,…,xk)

• Therefore, c-1 ∘ h is a 

• query homomorphism from Q2 to Q1

Q2(y1,…,yk)  :- body2

Q1(c(x1),…,c(xk))  :- c(body1)

Q1(x1,…,xk)  :- body1

h

c-1

c-1 ∘ h



Homomorphism Theorem: Proof

Assume that Q1(x1,…,xk)  :- body1 and Q2(y1,…,yk)  :- body2

(⇐) Q1  ⊆ Q2    ⇐ there exists a query homomorphism from Q2 to Q1

• Consider a database D, and a tuple t such that t ∈ Q1(D)

• We need to show that t ∈ Q2(D)

• Clearly, there exists a homomorphism g such that g(body1) ⊆ D and g((x1,…,xk)) = t

• By hypothesis, there exists a query homomorphism h from Q2 to Q1

• Therefore, g(h(body2)) ⊆ D and                                                                         

g(h((y1,…,yk))) = t, which implies that t ∈ Q2(D) Q2(y1,…,yk)  :- body2

Q1(x1,…,xk)  :- body1

t D

h

g

g ∘ h



Existence of a Query Homomorphism

Theorem: Let Q1 and Q2 be conjunctive queries. The problem of deciding whether 

there exists a query homomorphism from Q2 to Q1 is NP-complete

Proof:

(NP-membership) Guess a substitution, and verify that is a query homomorphism

(NP-hardness) Straightforward reduction from BQE(CQ)

By applying the homomorphism theorem we get that:

Corollary: EQUIV(CQ) and CONT(CQ) are NP-complete



Recap

L ∈ {RA,DRC,TRC}

UNDECIDABLE PSPACE NP LOGSPACE O(1)-time

EQUIV(L)

CONT(L)

SAT(L)

BQE(L)
(combined)

QOT(L)
(combined)

BQE(CQ)
(combined)

QOT(CQ)
(combined)

EQUIV(CQ)

CONT(CQ)
BQE(L)
(data)

QOT(L)
(data)

SAT(CQ)



Minimizing Conjunctive Queries

• Goal: minimize the number of joins in a query

• A conjunctive query Q1 is minimal if there is no conjunctive query Q2 such that:

1. Q1 ≡ Q2

2. Q2 has fewer atoms than Q1

• The task of CQ minimization is, given a conjunctive query Q, to compute a 

minimal one that is equivalent to Q



Minimization by Deletion

By exploiting the homomorphism theorem we can show the following:

Theorem: Consider a conjunctive query Q1(x1,…,xk)  :- body1. 

If Q1 is equivalent to a conjunctive query Q2(y1,…,yk)  :- body2 where |body2| < |body1|, 

then Q1 is equivalent to a query Q3(x1,…,xk)  :- body3 such that body3 ⊆ body1

⇓

The above theorem says that to minimize a conjunctive query Q1(x1,…,xk)  :- body we 

simply need to remove some atoms from body



Minimization Procedure

Minimization(Q(x1,…,xk)  :- body)

While there is an atom α ∈ body such that the variables x1,…,xk appear in body ∖ {α}, and 

there is a query homomorphism from Q(x1,…,xk)  :- body to Q(x1,…,xk)  :- body ∖ {α} do

body := body ∖ {α}

Return Q(x1,…,xk)  :- body

Note: if there is a query homomorphism from Q(x1,…,xk)  :- body to Q(x1,…,xk)  :- body ∖ {α}, 

then the two queries are equivalent since there is trivially a query homomorphism from the 

latter to the former query



Minimization Procedure: Example

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

(a,b,c,d are constants)

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{y ↦ b}

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{v ↦ c}

minimal query

Note: the mapping x ↦ a is not valid since x is a distinguished variable



Uniqueness of Minimal Queries

Natural question: does the order in which we remove atoms from the body of the input 

conjunctive query matter?

Theorem: Consider a conjunctive query Q. Let Q1 and Q2 be minimal conjunctive queries 

such that Q1 ≡ Q and Q2 ≡ Q. Then, Q1 and Q2 are isomorphic (i.e., they are the same up 

to variable renaming)

Therefore, given a conjunctive query Q, the result of Minimization(Q) is unique (up to 

variable renaming) and is called the core of Q



Recap

• The main relational query languages  - RA/DRC/TRC

‒ Evaluation is decidable  - foundations of the database industry

‒ Perfect query optimization is impossible

• Conjunctive queries  - an important query language

‒ All the relevant algorithmic problems are decidable

‒ Query minimization

*under the active domain semantics

RA = DRC = TRC*

CQ
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Learning Outcomes

• Acyclicity of conjunctive queries

• Analyze the complexity of evaluating acyclic conjunctive queries

• Semantic acyclicity of conjunctive queries



Complexity of CQ

Theorem: It holds that:

• BQE(CQ) is NP-complete (combined complexity)

• BQE[Q](CQ) is in LOGSPACE, for a fixed query Q ∈ CQ (data complexity)

Proof:

(NP-membership) Consider a database D, and a Boolean CQ Q :- body

Guess a substitution h : terms(body) → terms(D)

Verify that h is a match of Q in D, i.e., h(body) ⊆ D

(NP-hardness) Reduction from 3-colorability

(LOGSPACE-membership) Inherited from BQE[Q](DRC)



Complexity of CQ

Theorem: It holds that:

• BQE(CQ) is NP-complete (combined complexity)

• BQE[Q](CQ) is in LOGSPACE, for a fixed query Q ∈ CQ (data complexity)

Evaluating a CQ Q over a database D takes time ||D||O(||Q||)



Minimizing Conjunctive Queries

• Database theory has developed principled methods for optimizing CQs:

‒ Find an equivalent CQ with minimal number of atoms (the core)

‒ Provides a notion of “true” optimality

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{y ↦ b}

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{v ↦ c}

minimal query



Minimizing Conjunctive Queries

• But, a minimal equivalent CQ might not be easier to evaluate  - remains NP-hard

• “Good” classes of CQs for which query evaluation is tractable (in combined complexity):

‒ Graph-based

‒ Hypergraph-based



(Hyper)graph of Conjunctive Queries

Q  :- R(x,y,z), R(z,u,v), R(v,w,x)

graph of Q - G(Q) hypergraph of Q - H(Q) 

x

y

u v

w

z

x

y

u v

w

z



“Good” Classes of Conjunctive Queries

• Graph-based

‒ CQs of bounded treewidth - their graph has bounded treewidth

• Hypergraph-based:

‒ CQs of bounded hypertree width - their hypergraph has bounded hypertree width

‒ Acyclic CQs  - their hypergraph has hypertree width 1

measures how close a graph is to a tree

measures how close a hypergraph is to an acyclic one



Acyclic Hypergraphs

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:

1. For each hyperedge e ∈ E of H, there exists n ∈ N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈ N | u ∈ L(n)} induces a connected subtree of T

1

6
7

3
4

8

5

2

9

10
11

12

13

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}



Acyclic Hypergraphs

{8,9,13}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

1

6
7

3
4

8

5

2

9

10
11

12

13

condition 2 is violated

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:

1. For each hyperedge e ∈ E of H, there exists n ∈ N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈ N | u ∈ L(n)} induces a connected subtree of T



A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:

1. For each hyperedge e ∈ E of H, there exists n ∈ N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈ N | u ∈ L(n)} induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree

Acyclic Hypergraphs

1

32
prime example of a cyclic hypergraph



Acyclic Hypergraphs

1

32
but this is acyclic

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:

1. For each hyperedge e ∈ E of H, there exists n ∈ N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈ N | u ∈ L(n)} induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree



Relevant Algorithmic Tasks

ACYCLICITY

Input: a query Q ∈ CQ

Question: is Q acyclic?  or  is H(Q) acyclic?

BQE(ACQ)

Input: a database D, a Boolean query Q ∈ ACQ

Question: is Q(D) non-empty? 

{Q ∈ CQ | H(Q) is acyclic}



Checking Acyclicity

2
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13

1 3

6
7

4

5

8

9

11
12

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges



Checking Acyclicity
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{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges



Checking Acyclicity

10

13

6
7

4

5

8

9

11
12

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges



Checking Acyclicity

10

6
7

4

5

8

9

11
12

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges



Checking Acyclicity

10

6
7

4

5

8

9

11

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges



Checking Acyclicity

10

6
7

4

5

8

9

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges



Checking Acyclicity

6
7

4

5

8

9

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges



Checking Acyclicity

6
7

4

5

8

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges



Checking Acyclicity

6
7

4

5

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges



Checking Acyclicity
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Checking Acyclicity

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

(∅,∅)



Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Theorem: A hypergraph H is acyclic iff GYO(H) = (∅,∅)

⇓
checking whether H is acyclic is feasible in polynomial time, and if it is 

the case, a join tree can be found in polynomial time

⇓
Theorem: ACYCLICITY is in PTIME



Checking Acyclicity

Theorem: ACYCLICITY is in PTIME

NOTE: actually, we can check whether a CQ is acyclic in time O(||Q||) 

linear time in the size Q



Evaluating Acyclic CQs

NOTE: actually, if H(Q) is acyclic, then Q can be evaluated in time O(||D|| ⋅ ||Q||)

linear time in the size of D and Q

Theorem: BQE(ACQ) is in PTIME



Yannakaki’s Algorithm

Given a database D, and an acyclic Boolean CQ Q

1. Compute the join tree T of H(Q)

2. Assign to each node of T the corresponding relation of D

3. Compute semi-joins in a bottom up traversal of T

4. Return YES if the resulting relation at the root of T is non-empty; 

otherwise, return NO

Dynamic programming algorithm over the join tree



Yannakaki’s Algorithm: Step 1

Q  :- R1(x1,x2,x3), R2(x2,x3), R2(x5,x6), R3(x3), R4(x2,x4,x3)

{x2,x3}

{x1,x2,x3}{x5,x6}

{x2,x4,x3}{x3}



Yannakaki’s Algorithm: Step 2

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c1 b1

c4 b6

x5 x6

c1 b2

c1 b1

c4 b6



Yannakaki’s Algorithm: Step 3

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c1 b1

c4 b6

x5 x6

c1 b2

c1 b1

c4 b6
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x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c1 b1

c4 b6

x5 x6

c1 b2

c1 b1

c4 b6



Yannakaki’s Algorithm: Step 3

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c1 b1

c4 b6

x5 x6

c1 b2

c1 b1

c4 b6



Yannakaki’s Algorithm: Step 3

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c1 b1

c4 b6

x5 x6

c1 b2

c1 b1

c4 b6



Yannakaki’s Algorithm: Step 4

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c1 b1

c4 b6

x5 x6

c1 b2

c1 b1

c4 b6

YES



Acyclic CQs: Recap

ACYCLICITY

Input: a query Q ∈ CQ

Question: is Q acyclic?  or  is H(Q) acyclic?

BQE(ACQ)

Input: a database D, a Boolean query Q ∈ ACQ

Question: is Q(D) non-empty? 

both problems are feasible in linear time



Query Optimization

Replace a given CQ with one that is much faster to execute

or

Replace a given CQ with one that falls in a “good” class of CQs

preferably, with an acyclic CQ 

since evaluation is in linear time



Semantic Acyclicity

Definition: A CQ Q is semantically acyclic if there exists an acyclic CQ Q’ such that Q ≡ Q’

Q(x,z)  :- R(x,y), R(y,z), R(x,w), R(w,z)

{w ↦ y, z ↦ y}

Q(x,z)  :- R(x,y), R(y,z)

w

yx z

yx z



Relevant Algorithmic Tasks

SemACYCLICITY

Input: a query Q ∈ CQ

Question: is there an acyclic CQ Q’ such that Q ≡ Q’?

BQE(SACQ)

Input: a database D, a Boolean query Q ∈ SACQ

Question: is Q(D) non-empty? 

{Q ∈ CQ | Q semantically acyclic}



Checking Semantic Acyclicity

Theorem: A CQ Q is semantically acyclic iff its core is acyclic

Theorem: SemACYCLICITY is NP-complete

Proof idea (upper bound):
• If Q is semantically acyclic, then there exists an acyclic CQ Q’ such that |Q’| ≤ |Q| 

and Q ≡ Q’ (why?)

• Then, we can guess in polynomial time:

‒ An acyclic CQ Q’ such that |Q’| ≤ |Q|

‒ A mapping h1 : terms(Q) → terms(Q’)

‒ A mapping h2 : terms(Q’) → terms(Q)

• And verify in polynomial time that h1 is a query homomorphism from Q to Q’ (i.e., 

Q’ ⊆ Q), and h2 is a query homomorphism from Q’ to Q (i.e., Q ⊆ Q’)



Evaluating Semantically Acyclic CQs

Theorem: BQE(SACQ) is fixed-parameter tractable

f(||Q||)   +   O(||D|| ⋅ ||Q||)

compute the equivalent
acyclic CQ

evaluate the equivalent 
acyclic CQ

an improvement compare to ||D||O(||Q||)  for evaluating arbitrary CQs 



Evaluating Semantically Acyclic CQs

Theorem: BQE(SACQ) is in PTIME

assuming Q belongs to SACQ:  Q(D) is non-empty   ⇔ Q →∃1C D

the duplicator has a winning strategy

for the existential 1-cover game,

which can be checked in polynomial time



Semantically Acyclic CQs: Recap

SemACYCLICITY

Input: a query Q ∈ CQ

Question: is there an acyclic CQ Q’ such that Q ≡ Q’?

BQE(SACQ)

Input: a database D, a Boolean query Q ∈ SACQ

Question: is Q(D) non-empty? 

NP-complete  - but no database is involved

in PTIME (combined complexity)



Recap

• “Good” classes of CQs for which query evaluation is tractable  - conditions 

based on the graph or hypergraph of the CQ

• Acyclic CQs  - their hypergraph is acyclic, can be checked in linear time

• Evaluating acyclic CQs is feasible in linear time (Yannakaki’s algorithm)

• Semantic acyclicity - difficult to check, but ensures tractable evaluation
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Learning Outcomes

• Syntax and semantics of Datalog (CQs + recursion)

• Analyze the complexity of evaluating Datalog queries

• Static analysis of Datalog queries



Q :- Airport(x,Vienna), Airport(y,Glasgow), Flight(x,z,w), Flight(z,y,v)

Limits of CQs

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is Glasgow reachable from Vienna?

London

Vienna

Larnaca

Glasgow

Edinburgh

YES



Limits of CQs

London

Vienna

Larnaca

Glasgow

Edinburgh

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is Glasgow reachable from Vienna?

Q :- Airport(x,Vienna), Airport(y,Glasgow), Flight(x,z,w), Flight(z,y,v)

NO



Limits of CQs

London

Vienna

Larnaca

Glasgow

Edinburgh

Flight origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

Is Glasgow reachable from Vienna?

Q :- Airport(x,Vienna), Airport(y,Glasgow), Flight(x,z,w), 

Flight(z,z1,w1), Flight(z,y,v)

YES



Limits of CQs

Flight origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

Is Glasgow reachable from Vienna?

London

Vienna

Larnaca

Glasgow

Edinburgh

Q :- Airport(x,Vienna), Airport(y,Glasgow), Flight(x,z,w), 

Flight(z,z1,w1), Flight(z,y,v)

NO



Limits of CQs

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is Glasgow reachable from Vienna?

London

Vienna

Larnaca

Glasgow

Edinburgh

Recursive query - not expressible in CQ 

(or even in RA and RC)



A Possible Strategy

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow
EDI Edinburgh

Is Glasgow reachable from Vienna?

London

Vienna

Larnaca

Glasgow

Edinburgh

• List all the pairs (a,b) such that b is reachable from a

• Check if there exists a pair (a,b) such that a is in Vienna 

and b is in Glasgow



A Possible Strategy

Flight origin destination airline Airport code city

Is Glasgow reachable from Vienna?

• List all the pairs (a,b) such that b is reachable from a

Reachable(x,y) :- Flight(x,y,z)

Reachable(x,w) :- Flight(x,y,z), Reachable(y,w)

• Check if there exists a pair (a,b) such that a is in Vienna and b is in Glasgow

Answer() :- Airport(x,Vienna), Airport(y,Glasgow), Reachable(x,y)



A Possible Strategy

Flight origin destination airline Airport code city

Is Glasgow reachable from Vienna?

• List all the pairs (a,b) such that b is reachable from a

Reachable(x,y) :- Flight(x,y,z)

Reachable(x,w) :- Flight(x,y,z), Reachable(y,w)  - recursion

• Check if there exists a pair (a,b) such that a is in Vienna and b is in Glasgow

Answer() :- Airport(x,Vienna), Airport(y,Glasgow), Reachable(x,y)



A Possible Strategy

Flight origin destination airline Airport code city

Is Glasgow reachable from Vienna?

• List all the pairs (a,b) such that b is reachable from a

Reachable(x,y) :- Flight(x,y,z)

Reachable(x,w) :- Flight(x,y,z), Reachable(y,w)  - recursion

DATALOG



Datalog at First Glance

Transitive closure of a graph

a b c d



Datalog at First Glance

TrClosure(x,y) :- Edge(x,y)

TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

Edge start end
a b
b c
c d

Answer start end
a b
a c
a d
b c
b d
c d



Datalog at First Glance

• Semantics: a mapping from databases of the extensional schema to databases of 

the intensional schema, and the answer is determined by the output relation

• Equivalent ways for defining the semantics

• Model-theoretic: logical sentences asserting a property of the result

• Fixpoint: solution of a fixpoint procedure

Edge start end
a b

b c

c d

Answer start end
a b

a c

a d

b c

b d

c d



Syntax of Datalog

A Datalog rule is an expression of the form

S(x)  :- R1(x1),…,Rn(xn)

• n ≥ 0 (the body might be empty)

• S,R1,…,Rn are relation names

• x, x1,…,xn are tuples of variables

• each variable in the head occurs also in the body (safety condition)

bodyhead



Syntax of Datalog

• Datalog program P: a finite set of Datalog rules

• Extensional relation: does not occur in the head of a rule of P

• Intensional relation: occurs in the head of some rule of P

• EDB(P) is the set of extensional relations of P

• IDB(P) is the set of intensional relations of P

• Datalog query Q: a pair of the form (P, Answer), where P is a Datalog program, 

and Answer a distinguished intensional relation, the output relation

the schema of P

SCH(P) = EDB(P) ∪ IDB(P)



Example of Datalog

Flight origin destination airline Airport code city

Is Glasgow reachable from Vienna?

Reachable(x,y) :- Flight(x,y,z)

Reachable(x,w) :- Flight(x,y,z), Reachable(y,w)

Answer() :- Airport(x,Vienna), Airport(y,Glasgow), Reachable(x,y)

P  = 

EDB(P) = {Flight, Airport} IDB(P) = {Reachable, Answer}

Q = (P, Answer)



Semantics of Datalog

• Given a database D and a Datalog program P, an atom R(a1,...,an) is an immediate 

consequence for D and P if:

• R(a1,...,an) belongs to D, or

• There exists a rule R(x1,...,xn) :- body in P, and a homomorphism h from 

body to D such that R(h(x1),...,h(xn)) = R(a1,...,an)

• TP(D) = {R(a1,...,an) | R(a1,...,an) is an immediate consequence for D and P}

• The immediate consequence operator TP should be understood as a function from 

databases of SCH(P) to databases of SCH(P)

…it relies on the notion of immediate consequence operator



Semantics of Datalog

…it relies on the notion of immediate consequence operator

Theorem: For every Datalog program P and database D of EDB(P), the immediate 

consequence operator TP has a minimum fixpoint containing D

a database D’ is a fixpoint of TP if TP(D’) = D’

the semantics of P on D, denoted P(D), is the minimum fixpoint of P containing D

for a Datalog query Q = (P, Answer), Q(D) = {t | Answer(t) ∈ P(D)}

…how do we compute P(D)?



Semantics of Datalog

…it relies on the notion of immediate consequence operator

TP,0(D) = D          and TP,i+1(D) = TP(TP,i(D))

TP,∞(D) = TP,0(D) ∪ TP,1(D) ∪ TP,2(D) ∪ TP,3(D) ∪ ⋯



Semantics of Datalog: Example

…it relies on the notion of immediate consequence operator

TrClosure(x,y) :- Edge(x,y)

TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

P  = D = {Edge(a,b), Edge(b,c), Edge(c,d)}

TP,0(D) = D

TP,1(D) = TP(TP,0(D)) = D ∪ {TrClosure(a,b), TrClosure(b,c), TrClosure(c,d)}

TP,2(D) = TP(TP,1(D)) = TP,1(D) ∪ {TrClosure(a,c), TrClosure(b,d), Answer(a,b), 

Answer(b,c), Answer(c,d)} 

TP,3(D) = TP(TP,2(D)) = TP,2(D) ∪ {TrClosure(a,d), Answer(a,c), Answer(b,d)}

TP,4(D) = TP(TP,3(D)) = TP,3(D) ∪ {Answer(a,d)} 

TP,5(D) = TP(TP,4(D)) = TP,4(D) TP,∞(D) = TP,4(D)



Semantics of Datalog

…it relies on the notion of immediate consequence operator

TP,0(D) = D          and TP,i+1(D) = TP(TP,i(D))

TP,∞(D) = TP,0(D) ∪ TP,1(D) ∪ TP,2(D) ∪ TP,3(D) ∪ ⋯

Theorem: For every Datalog program P and database D of EDB(P), P(D) = TP,∞(D)



Complexity of DATALOG

QOT(DATALOG)

Input: a database D, a Datalog query Q/k, a tuple of constants t ∈ adom(D)k

Question: t ∈ Q(D)? (i.e., whether Answer(t) ∈ P(D))

Theorem: It holds that:

• QOT(DATALOG) is EXPTIME-complete (combined complexity)

• QOT[Q](DATALOG) is PTIME-complete, for a fixed Datalog query Q (data complexity)



Complexity of DATALOG

• Recall that P(D) = TP,∞(D)

• Computing TP,i (D) takes time

O(|P| ⋅ |adom(D)|maxvar ⋅ maxbody ⋅ |TP,i-1 (D)|)

• where maxvar is the maximum number of variables in a rule-body, and maxbody is the 

maximum number of atoms in a rule-body

• It is clear that |TP,i-1 (D)| ≤ |TP,∞(D)|, and thus, computing TP,i (D) takes time

O(|P| ⋅ |adom(D)|maxvar ⋅ maxbody ⋅ |TP,∞(D)|)

• Consequently, computing TP,∞(D) takes time 

O(|P| ⋅ |adom(D)|maxvar ⋅ maxbody ⋅ |TP,∞(D)|2)

• It is not difficult to verify that

|TP,∞(D)| ≤ |SCH(P)| ⋅ |adom(D)|maxarity

• where maxarity is the maximum arity over all relations of SCH(P)

• Consequently, TP,∞(D) can be computed in time

O(|P| ⋅ |adom(D)|maxvar ⋅ maxbody ⋅ |SCH(P)|2  ⋅ |adom(D)|2maxarity)



Complexity of DATALOG

QOT(DATALOG)

Input: a database D, a Datalog query Q/k, a tuple of constants t ∈ adom(D)k

Question: t ∈ Q(D)? (i.e., whether Answer(t) ∈ P(D))

Theorem: It holds that:

• QOT(DATALOG) is EXPTIME-complete (combined complexity)

• QOT[Q](DATALOG) is PTIME-complete, for a fixed Datalog query Q (data complexity)

P(D) can be computed in time

O(|P| ⋅ |adom(D)|maxvar ⋅ maxbody ⋅ |SCH(P)|2  ⋅ |adom(D)|2maxarity)



What About Optimization of Datalog?

EQUIV(DATALOG)

Input: two queries Q1 ∈ DATALOG and Q2 ∈ DATALOG

Question: Q1 ≡ Q2?  or  Q1(D) = Q2(D) for every database D?

SAT(DATALOG)

Input: a query Q ∈ DATALOG

Question: is there a (finite) database D such that Q(D) is non-empty? 

CONT(DATALOG)

Input: two queries Q1 ∈ DATALOG and Q2 ∈ DATALOG

Question: Q1 ⊆ Q2?  or  Q1(D) ⊆ Q2(D) for every database D?



What About Optimization of Datalog?

EQUIV(DATALOG)

Input: two queries Q1 ∈ DATALOG and Q2 ∈ DATALOG

Question: Q1 ≡ Q2?  or  Q1(D) = Q2(D) for every database D?

SAT(DATALOG)

Input: a query Q ∈ DATALOG

Question: is there a (finite) database D such that Q(D) is non-empty? 

CONT(DATALOG)

Input: two queries Q1 ∈ DATALOG and Q2 ∈ DATALOG

Question: Q1 ⊆ Q2?  or  Q1(D) ⊆ Q2(D) for every database D?

UNDECIDABLE



What About Optimization of Datalog?

SAT(DATALOG)

Input: a query Q ∈ DATALOG

Question: is there a (finite) database D such that Q(D) is non-empty? 

Theorem: SAT(DATALOG) is in EXPTIME

Lemma: Given a Datalog query Q = (P, Answer), Q is satisfiable iff Q(DP) ≠ ∅, 

where DP = {R(b1,…,bm) | R ∈ EDB(P) and bi ∈ {⋆,a1,…,an}}, with a1,…,an being the 

constants occurring in the rules of P, and ⋆ being a new constant not in {a1,…,an }



Recap

• Recursive queries are not expressible via relational algebra or calculus

• Adding recursion to CQs → Datalog

• Fixpoint semantics of Datalog based on the immediate consequence operator

• Evaluating Datalog queries is EXPTIME-complete in combined complexity and 

PTIME-complete in data complexity

• We can check for satisfiability of Datalog queries, but equivalence and 

containment are undecidable (perfect query optimization not possible)
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Learning Outcomes

• Syntax and semantics of existential rules

• Ontological query answering and universal models

• Ontology-based data access



Querying Relational Databases

Course code organiser
CS100 2
CS200 1
CS300 5

Lecturer id Name
1 Alice
2 Bob
3 Tom
4 Mary

List the codes of teaching staff

Q(x)  :- TeachingStaff(x,y)



Querying Relational Databases

Course code organiser
CS100 2
CS200 1
CS300 5

Lecturer id Name
1 Alice
2 Bob
3 Tom
4 Mary

List the codes of teaching staff

Q(x)  :- TeachingStaff(x,y)

Lecturers are teaching staff

Course organisers are teaching staff



Querying Relational Databases

Course code organiser
CS100 2

CS200 1

CS300 5

Lecturer id Name
1 Alice

2 Bob

3 Tom

4 Mary

List the codes of teaching staff

Q(x)  :- TeachingStaff(x,y)

∀x∀y (Lecturer(x,y) → TeachingStaff(x,y))

∀x∀y (Course(x,y) → ∃z TeachingStaff(y,z))



Querying Relational Databases

Course code organiser
CS100 2

CS200 1

CS300 5

Lecturer id Name
1 Alice

2 Bob

3 Tom

4 Mary

List the codes of teaching staff

Q(x)  :- TeachingStaff(x,y)

{1, 2, 3, 4, 5}
∀x∀y (Lecturer(x,y) → TeachingStaff(x,y))

∀x∀y (Course(x,y) → ∃z TeachingStaff(y,z))



Some Terminology

• Our basic vocabulary:

‒ A countable set Const of constants - domain of a database

‒ A countable set Nulls of marked nulls - globally ∃-quantified variables

‒ A countable set Vars of variables - used in rules and queries

• A term is a constant, marked null, or variable

• An atom has the form R(t1,…,tn)  - R is an n-ary relation and ti’s are terms

• An instance is a (possibly infinite) set of atoms with constants and nulls

• A database is a finite instance with only constants



Syntax of Existential Rules

• x,y and z are tuples of variables of Vars

• !(x,y) and "(x,z) are (constant-free) conjunctions of atoms

An existential rule is an expression

body head

∀x∀y (!(x,y) → ∃z "(x,z))

…also known as tuple-generating dependencies



Semantics of Existential Rules

• An instance J is a model of the rule

written as J ⊨ σ, if the following holds: 

whenever there exists a homomorphism h such that h("(x,y)) ⊆ J, 

then there exists g ⊇ h|x such that g(%(x,z)) ⊆ J

• Given a set Σ of existential rules, J is a model of Σ, written as J ⊨ Σ,  if, for each σ ∈ Σ, J ⊨ σ

σ = ∀x∀y ("(x,y) → ∃z %(x,z))

{t ↦ h(t) | t ∈ x}  - the restriction of h to x



Ontological Query Answering (OQA)

Q(x)  :- R1(v1),…,Rm(vm)

D

Σ

(D,Σ)

D

database

ontology 

Q

ontological database

existential rules

∀x∀y ("(x,y) → ∃z %(x,z))

conjunctive query



Ontological Query Answering (OQA)

D

Σ

(D,Σ)

D

database

ontology 

Q

ontological database

models(D,Σ)   = {J | J ⊇ D and  J ⊨ Σ}



Ontological Query Answering (OQA)

D

Σ

(D,Σ)

D

database

ontology 

Q

ontological database

Answer(Q,D,Σ) =  ⋂ Q(J)
J ∈ models(D,Σ)



Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

Σ = {∀x (Person(x) → ∃y hasFather(x,y)),

∀x∀y (hasFather(x,y) → Person(x) ∧ Person(y))}

Q1(x,y) :- hasFather(x,y)

Q2(x) :- hasFather(x,y)

Q3(x) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

Q4(x,w)  :- hasFather(x,y), hasFather(y,z), hasFather(z,w)



Exercise: Compute the Certain Answers

{(john,bob), (bob,tom)}

Q1(x,y) :- hasFather(x,y)

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

Σ = {∀x (Person(x) → ∃y hasFather(x,y)),

∀x∀y (hasFather(x,y) → Person(x) ∧ Person(y))}



{(john), (bob), (tom)}

Q2(x) :- hasFather(x,y)

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

Σ = {∀x (Person(x) → ∃y hasFather(x,y)),

∀x∀y (hasFather(x,y) → Person(x) ∧ Person(y))}



Q3(x) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

{(john), (bob), (tom)}

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

Σ = {∀x (Person(x) → ∃y hasFather(x,y)),

∀x∀y (hasFather(x,y) → Person(x) ∧ Person(y))}



Q4(x,w) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

{ }

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

Σ = {∀x (Person(x) → ∃y hasFather(x,y)),

∀x∀y (hasFather(x,y) → Person(x) ∧ Person(y))}



Ontological Query Answering (OQA)

D

Σ

(D,Σ)

D

database

ontology 

Q

ontological database

Answer(Q,D,Σ) =  ⋂ Q(J)
J ∈ models(D,Σ)

keep only tuples 
with constants



(≡L means logspace-equivalent)

Theorem: OQA(L) ≡L BOQA(L) for every language L

BOQA(L)

Input: a database D, a set of existential rules Σ ∈ L, a Boolean query Q

Question: is Answer(Q,D,Σ) non-empty? 

OQA(L)

Input: a database D, a set of existential rules Σ ∈ L, a CQ Q/k, a tuple of constants t ∈ adom(D)k

Question: t ∈ Answer(Q,D,Σ)? 

Ontological Query Answering (OQA)

ontology language based on existential rules



Data Complexity of BOQA
input D, fixed Σ and Q

BOQA[Σ,Q](L)

Input: a database D

Question: is Answer(Q,D,Σ) non-empty?



Why is OQA technically challenging?

What is the right tool for tackling this problem?



The Two Dimensions of Infinity

Consider a database D, and a set of existential rules Σ

model of (D,Σ)

size

…

…

(D,Σ) admits infinitely many models, of possibly infinite size



model of (D,Σ)

The Two Dimensions of Infinity

D  =  {P(c)} Σ = {∀x (P(x) → ∃y (R(x,y) ∧ P(y)))} 

size

…

P(c)

R(c,⊥1)

P(⊥1)

R(⊥1,⊥1)

P(c)

R(c,c)

P(c)

R(c,⊥1)

P(⊥1)

R(⊥1,⊥2)

P(⊥2)

R(⊥2,⊥2)

P(c)

R(c,⊥1)

P(⊥1)

R(⊥1,⊥2)

P(⊥2)

R(⊥2,⊥3)
…

P(⊥k)

R(⊥k,⊥k)

…

P(c)

R(c,⊥1)

P(⊥1)

R(⊥1,⊥2)

P(⊥2)

R(⊥2,⊥3)
…

P(⊥k)

R(⊥k,⊥k+1)
…

⊥1, ⊥2, ⊥3, … are marked nulls from Nulls



model of (D,Σ)

The Two Dimensions of Infinity

size

…

P(c)

R(c,⊥1)

P(⊥1)

R(⊥1,⊥1)

P(c)

R(c,c)

P(c)

R(c,⊥1)

P(⊥1)

R(⊥1,⊥2)

P(⊥2)

R(⊥2,⊥2)

P(c)

R(c,⊥1)

P(⊥1)

R(⊥1,⊥2)

P(⊥2)

R(⊥2,⊥3)

…

P(⊥k)

R(⊥k,⊥k)

…

P(c)

R(c,⊥1)

P(⊥1)

R(⊥1,⊥2)

P(⊥2)

R(⊥2,⊥3)

…

P(⊥k)

R(⊥k,⊥k+1)

…Key Idea: Focus on a representative, a 

model that is as general as possible  

O

P

O

O

O

D  =  {P(c)} Σ = {∀x (P(x) → ∃y (R(x,y) ∧ P(y)))} 



Universal Models (a.k.a. Canonical Models)

U

J1 J2

. . . 

Jn

. . . 

h1
h2

hn

An instance U is a universal model of (D,Σ) if the following holds:

1. U is a model of (D,Σ)

2. for each J ∈ models(D,Σ), there exists a homomorphism h such that h(U) ⊆ J



Query Answering via Universal Models

Theorem: Answer(Q,D,Σ) is non-empty iff Q(U) is non-empty, where U a universal model of (D,Σ)

Proof: (⇒) Trivial since, for every J ∈ models(D,Σ), Q(J) is non-empty

(⇐) By exploiting the universality of U

U

J1 J2

. . . 

Jn

. . . 

h1 h2
hn

Q by hypothesis

by universality of U

g

∀J ∈ models(D,Σ), ∃h such that h(g(Q)) ⊆ J ⇒ ∀J ∈ models(D,Σ), Q(J) is non-empty

⇒ Answer(Q,D,Σ) is non-empty



Ontology-based Data Access: Architecture

D1

Ontology

Mapping

D2 D3

Queries

• Ontology: provides a unified conceptual “global view” of the data

• Data Sources: external and independent (possibly multiple and heterogeneous)

• Mapping: semantically link data at the sources with the ontology

OBDA



Query Answering in OBDA

D1

Ontology Σ

Mapping M

D2 D3

OBDA

Virtual
Data Layer

D

M(D)

• The sources and the mapping define a virtual data layer M(D)



Query Answering in OBDA

• The sources and the mapping define a virtual data layer M(D)

• Queries are answered against the ontological database (M(D), Σ)

D1

Ontology Σ

Mapping M

D2 D3

Query Q

OBDA

Virtual
Data Layer

D

M(D)



Query Answering in OBDA

Ontology Σ

Query Q

OBDA

Virtual
Data Layer M(D)

Ontological Query Answering 
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Learning Outcomes

• Ontological query answering via the chase procedure - forward-chaining

• Ontological query answering via query rewriting - backward-chaining

• Linear existential rules



Ontological Query Answering (OQA)

Q(x)  :- R1(v1),…,Rm(vm)

D

Σ

(D,Σ)

D

database

ontology 

Q

ontological database

existential rules

∀x∀y ("(x,y) → ∃z %(x,z))

conjunctive query



Ontological Query Answering (OQA)

D

Σ

(D,Σ)

D

database

ontology 

Q

ontological database

models(D,Σ)   = {J | J ⊇ D and  J ⊨ Σ}



Ontological Query Answering (OQA)

D

Σ

(D,Σ)

D

database

ontology 

Q

ontological database

Answer(Q,D,Σ) =  ⋂ Q(J)
J ∈ models(D,Σ)



(≡L means logspace-equivalent)

Theorem: OQA(L) ≡L BOQA(L) for every language L

BOQA(L)

Input: a database D, a set of existential rules Σ ∈ L, a Boolean query Q

Question: is Answer(Q,D,Σ) non-empty? 

OQA(L)

Input: a database D, a set of existential rules Σ ∈ L, a CQ Q/k, a tuple of constants t ∈ adom(D)k

Question: t ∈ Answer(Q,D,Σ)? 

Ontological Query Answering (OQA)

ontology language based on existential rules



Data Complexity of BOQA
input D, fixed Σ and Q

BOQA[Σ,Q](L)

Input: a database D

Question: is Answer(Q,D,Σ) non-empty?



Query Answering via Universal Models

Theorem: Answer(Q,D,Σ) is non-empty iff Q(U) is non-empty, where U a universal model of (D,Σ)

Proof: (⇒) Trivial since, for every J ∈ models(D,Σ), Q(J) is non-empty

(⇐) By exploiting the universality of U

U

J1 J2

. . . 

Jn

. . . 

h1 h2
hn

Q by hypothesis

by universality of U

g

∀J ∈ models(D,Σ), ∃h such that h(g(Q)) ⊆ J ⇒ ∀J ∈ models(D,Σ), Q(J) is non-empty

⇒ Answer(Q,D,Σ) is non-empty



The Chase Procedure

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪



The Chase Procedure

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1)



The Chase Procedure

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1),

hasParent(⊥1,⊥2), Person(⊥2)



The Chase Procedure

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1),

hasParent(⊥1,⊥2), Person(⊥2),

hasParent(⊥2,⊥3), Person(⊥3)



The Chase Procedure

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1),

hasParent(⊥1,⊥2), Person(⊥2),

hasParent(⊥2,⊥3), Person(⊥3), …

infinite instance



The Chase Procedure: Formal Definition

J = {R(a), P(a,b)}

∀x (R(x) → ∃y P(x,y))

h = {x ↦ a} g = {x ↦ a, y ↦ b}

O

J = {R(a), P(b,a)}

∀x (R(x) → ∃y P(x,y))

h = {x ↦ a}

P

×

• Chase step - the building block of the chase procedure

• A rule σ = ∀x∀y (&(x,y) → ∃z '(x,z)) is applicable to an instance J if:

1. There exists a homomorphism h such that h(&(x,y)) ⊆ J

2. There is no g ⊇ h|x such that g('(x,z)) ⊆ J



The Chase Procedure: Formal Definition

• Chase step - the building block of the chase procedure

• A rule σ = ∀x∀y ("(x,y) → ∃z %(x,z)) is applicable to an instance J if:

1. There exists a homomorphism h such that h("(x,y)) ⊆ J

2. There is no g ⊇ h|x such that g(%(x,z)) ⊆ J

• Let J+ = J ∪ {g(%(x,z))}, where g ⊇ h|x and g(z) are “fresh” nulls not in J

• The result of applying σ to J is J+, denoted J[σ,h]J+  - single chase step



The Chase Procedure: Formal Definition

• A finite chase of D w.r.t. Σ is a finite sequence

D[σ1,h1]J1[σ2,h2]J2[σ3,h3]J3  ⋯ Jn-1[σn,hn]Jn

and chase(D,Σ) is defined as the instance Jn

• An infinite chase of D w.r.t. Σ is a fair finite sequence

D[σ1,h1]J1[σ2,h2]J2[σ3,h3]J3  ... Jn-1[σn,hn]Jn ...  

and chase(D,Σ) is defined as the instance D ∪ J1 ∪ J2 ∪ J3 ∪⋯∪ Jn ∪⋯

all applicable rules will eventually be applied

least fixpoint of a monotonic operator - chase step



Chase: A Universal Model

Theorem: chase(D,Σ) is a universal model of (D,Σ)

Proof:

• By construction, chase(D,Σ) ∈ models(D,Σ) 

• It remains to show that chase(D,Σ) can be mapped into every other model of (D,Σ)

• Fix an arbitrary instance J ∈ models(D,Σ). We need to show that there exists h such that 

h(chase(D,Σ)) ⊆ J

• By induction on the number of applications of the chase step, we show that for every k ≥ 0, 

there exists hk such that hk(chase[k](D,Σ)) ⊆ J, and hk is compatible with hk-1

• Clearly, h0 ∪ h1 ∪⋯∪ hn ∪⋯ is a well-defined homomorphism that maps chase(D,Σ) to J

• The claim follows with h = h0 ∪ h1 ∪⋯∪ hn ∪⋯

the result of the chase after k ≥ 0 applications of the chase step 



Chase: Uniqueness Property

• The result of the chase is not unique - depends on the order of rule application

• But, it is unique up to homomorphic equivalence

• Thus, it is unique for query answering purposes

D = {P(a)} σ1 = ∀x (P(x) → ∃y R(y))

Result1 = {P(a), R(⊥), R(a)}

Result2 = {P(a), R(a)}

σ1 then σ2 

σ2 then σ1 

σ2 = ∀x (P(x) → R(x))

Result1

h12

h21

h23

h32

Result2 Result3



Query Answering via the Chase

Theorem: Answer(Q,D,Σ) is non-empty iff Q(U) is non-empty, where U a universal model of (D,Σ) 

&

Theorem: chase(D, Σ) is a universal model of (D,Σ)

⇓

Corollary: Answer(Q,D,Σ) is non-empty iff Q(chase(D,Σ)) is non-empty

• We can tame the first dimension of infinity by exploiting the chase procedure

• What about the second dimension of infinity? - the chase may be infinite



Can we tame the second dimension of infinity?



Undecidability of Ontological Query Answering

Theorem: OBQA(∃RULES) is undecidable

Proof Idea : By simulating a deterministic Turing machine with an empty tape.

Encode the computation of a DTM M with an empty tape using a database D, a set Σ of 

existential rules, and a Boolean CQ Q such that Answer(Q,D,Σ) is non-empty iff M accepts

arbitrary existential rules



Gaining Decidability

By restricting the database
• Answer(Q,{Start(c)},Σ) is non-empty iff the DTM M accepts

• The problem is undecidable even for singleton databases

• No much to do in this direction

By restricting the query language

• Answer(Q :- Accept(x),D,Σ) is non-empty iff the DTM M accepts

• The problem is undecidable already for atomic queries

• No much to do in this direction

By restricting the ontology language
• Achieve a good trade-off between expressive power and complexity

• Field of intense research

• Any ideas?



Source of Non-termination

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

infinite instance
1. Existential quantification

2. Recursive definitions

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1),

hasParent(⊥1,⊥2), Person(⊥2),

hasParent(⊥2,⊥3), Person(⊥3), …



Termination of the Chase

• Drop the existential quantification

‒ We obtain the class of full existential rules

‒ Very close to Datalog

• Drop the recursive definitions

‒ We obtain the class of acyclic existential rules

‒ Also known as non-recursive existential rules



Our Simple Example

person(john)

∀x (Person(x) → ∃y (hasParent(x,y) ∧ Person(y)))

D

Σ

chase(D,Σ) = D ∪ {hasParent(john,⊥1), Person(⊥1),

hasParent(⊥1,⊥2), Person(⊥2),

hasParent(⊥2,⊥3), Person(⊥3), …

Existential quantification  &  recursive definitions 

are key features for modelling ontologies



Key Question

We need classes of existential rules such that 

• Existential quantification and recursive definition coexist

⇒ the chase may be infinite

• BOQA is decidable, and tractable w.r.t. the data complexity

⇓

Tame the infinite chase:

Deal with infinite structures without explicitly building them



Linear Existential Rules

• A linear existential rule is an existential rule of the form

• We denote LINEAR the class of linear existential rules

• But, is this a reasonable ontology language?

∀x∀y (P(x,y) → ∃z $(x,z))

single atom



https://www.w3.org/TR/owl2-profiles/#OWL_2_QL



Chase Graph

The chase can be naturally seen as a graph  - chase graph

D = {R(a,b), S(b)}

∀x∀y (R(x,y) ∧ S(y) → ∃z R(z,x))

∀x∀y (R(x,y) → S(x))
Σ =

R(a,b) S(b)

R(z1,a) S(a)

R(z2,z1) S(z1)

R(z3,z2) S(z2)

For LINEAR the chase graph is a forest



Bounded Derivation-Depth Property
D

Q

depth k that does not depend on D

Q(chase(D,Σ)) is non-empty ⇒ Q(chasek(D,Σ)) is non-empty

h

chase(D,Σ)

chase graph up to depth k

For LINEAR, k = |Q|⋅ m

with m = |sch(Σ)|⋅ (2 ⋅ maxarity)maxarity



The Blocking Algorithm for LINEAR

D

Q

h

chase(D,Σ)

k = |Q| ⋅ |sch(Σ)| ⋅ (2 ⋅ maxarity)maxarity

Theorem: BOQA[Σ,Q](LINEAR) is in PTIME for a fixed set Σ, and a Boolean CQ Q



The Blocking Algorithm for LINEAR

Theorem: BOQA[Σ,Q](LINEAR) is in PTIME for a fixed set Σ, and a Boolean CQ Q

but, we can do better

Theorem: BOQA[Σ,Q](LINEAR) is in LOGSPACE for a fixed set Σ, and a Boolean CQ Q



Scalability in OQA

D

Σ

(D,Σ)

D

database

ontology

Q

knowledge base
But in the OQA setting 

we have to query a 

knowledge base, not just a 

relational database

Exploit standard RDBMSs  - efficient technology for answering CQs



Query Rewriting

D

ΣQ

evaluation

for every database D,  Answer(Q,D,Σ) is non-empty iff QΣ(D) is non-empty

compilation

Relational Calculus
Relational Algebra

SQL query
…

QΣ



Query Rewriting: Formal Definition

Consider a class of existential rules L, and a query language Q.

BOQA(L) is Q-rewritable if, for every Σ ∈ L and Boolean CQ Q, 

we can construct a Boolean query QΣ∈ Q such that, 

for every database D, Answer(Q,D,Σ) is non-empty iff QΣ(D) is non-empty

NOTE: The construction of QΣ is database-independent



An Example

Σ = {∀x (P(x) ® T(x)), ∀x∀y (R(x,y) ® S(x))}

Q :- S(x), U(x,y), T(y)

QΣ =  {Q :- S(x), U(x,y), T(y),

Q1 :- S(x), U(x,y), P(y),

Q2 :- R(x,z), U(x,y), T(y),

Q3 :- R(x,z), U(x,y), P(y)}



An Example

Σ = {∀x∀y (R(x,y) ∧ P(y) ® P(x))}

Q :- P(c)

QΣ =   {Q :- P(c),

Q1 :- R(c,y1), P(y1),   

Q2 :- R(c,y1), R(y1,y2), P(y2),

Q3 :- R(c,y1), R(y1,y2), R(y2,y3), P(y3),

… }

• This cannot be written as a finite first-order query

• It can be written as Q :- R(c,x), R*(x,y), P(y), but transitive closure is not FO-expressible



Query Rewriting for LINEAR

Theorem: LINEAR is UCQ-rewritable

⇓

Theorem: BOQA[Σ,Q](LINEAR) is in LOGSPACE for a fixed set Σ, and a Boolean CQ Q

…it also tells us that for answering CQs in the presence of LINEAR ontologies,

we can exploit standard database technology

union of conjunctive queries



UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive 

application of the following two steps:

1. Rewriting

2. Minimization

• We are going to see the version of the algorithm that assumes normalized existential 

rules, where only one atom appears in the head



Normalization Procedure

∀x∀y ("(x,y) → ∃z (P1(x,z) ∧ ⋯ ∧ Pn(x,z)))

∀x∀y ("(x,y) → ∃z Auxiliary(x,z))

∀x∀z (Auxiliary(x,z) → P1(x,z))

∀x∀z (Auxiliary(x,z) → P2(x,z))

…

∀x∀z (Auxiliary(x,z) → Pn(x,z))

NOTE : Linearity is preserved, and we obtain an equivalent ontology w.r.t. query answering



UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive 

application of the following two steps:

1. Rewriting

2. Minimization

• We are going to see the version of the algorithm that assumes normalized existential 

rules, where only one atom appears in the head



Rewriting Step

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(u,db,v)

hasCollaborator(u,db,v)

g = {x ↦ v, y ↦ db, z ↦ u}

Thus, we can simulate a chase step by applying a backward resolution step

QΣ = {Q :- hasCollaborator(u,db,v),

Q1 :- project(v), inArea(v,db)}



Unsound Rewritings

After applying the rewriting step we obtain the following UCQ

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

hasCollaborator(c,db,v)

g = {x ↦ v, y ↦ db, z ↦ c}
(c is a constant)



Unsound Rewritings

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

• Consider the database D  =  {project(a), inArea(a,db)}

• Clearly, QΣ(D) is non-empty

• However, Answer(Q,D,Σ) is empty since there is no way to obtain an atom of the form 
hasCollaborator(c,db,_) during the chase

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)



Unsound Rewritings

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

the information about the constant c in the original query is lost after the 

application of the rewriting step since c is unified with an ∃-variable



Unsound Rewritings

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

hasCollaborator(v,db,v)

g = {x ↦ v, y ↦ db, z ↦ v}

After applying the rewriting step we obtain the following UCQ

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}



Unsound Rewritings

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}

• Consider the database D  =  {project(a), inArea(a,db)}

• Clearly, QΣ(D) is non-empty

• However, Answer(Q,D,Σ) is empty since there is no way to obtain an atom of the form 
hasCollaborator(t,db,t) during the chase

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)



the fact that v in the original query participates in a join is lost after the 

application of the rewriting step since v is unified with an ∃-variable

Unsound Rewritings

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}



Applicability Condition

Consider a Boolean CQ Q, an atom α in Q, and a (normalized) rule σ.

We say that σ is applicable to α if the following conditions hold:

1. head(σ) and α unify via h 

2. For every variable x in head(σ):

1. If h(x) is a constant, then x is a ∀-variable

2. If h(x) = h(y), where y is a shared variable of α, then x is a ∀-variable

3. If x is an ∃-variable of head(σ), and y is a variable in head(σ) such that x ≠ y, then h(x) ≠ h(y)

...but, although it is crucial for soundness, may destroy completeness



Incomplete Rewritings

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x)),

∀x∀y∀z (hasCollaborator(x,y,z) → collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

• Consider the database D  =  {project(a), inArea(a,db)}

• Clearly, Q over chase(D,Σ) = D ∪ {hasCollaborator(z,db,a), collaborator(z)} is non-empty

• However, QΣ(D) is empty

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),   

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)



Incomplete Rewritings

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x)),

∀x∀y∀z (hasCollaborator(x,y,z) → collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

but, we cannot obtain the last query due to the applicablity condition

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),   

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)

Q2 :- project(u),  inArea(u,v)



Incomplete Rewritings

Σ = {∀x∀y (project(x) ∧ inArea(x,y) → ∃z hasCollaborator(z,y,x)),

∀x∀y∀z (hasCollaborator(x,y,z) → collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),   

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)

Q2 :- hasCollaborator(u,v,w)  - by minimization

Q3 :- project(w),  inArea(w,v)  - by rewriting

QΣ(D) is  non-empty, where D = {project(a), inArea(a,db)}



UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive 

application of the following two steps:

1. Rewriting

2. Minimization

• We are going to see the version of the algorithm that assumes normalized existential 

rules, where only one atom appears in the head



The Rewriting Algorithm

QΣ := {Q}

repeat
Qaux := QΣ

foreach disjunct q of Qaux do
//Rewriting Step

foreach atom α in q do
foreach rule σ in Σ do

if σ is applicable to α then
qrew := rewrite(q,α,σ)   //we resolve α using σ

if qrew does not appear in QΣ (modulo variable renaming) then
QΣ := QΣ ∪ {qrew}

//Minimization Step

foreach pair of atoms α,β in q that unify do
qmin := minimize(q,α,β)   //we apply the most general unifier of α and β on q

if qmin does not appear in QΣ (modulo variable renaming) then
QΣ := QΣ ∪ {qmin}

until Qaux = QΣ

return QΣ



Termination

Theorem: The rewriting algorithm terminates under LINEAR

Proof Idea:

• Key observation: the size of each partial rewriting is at most the size of the given CQ Q

• Thus, each partial rewriting can be transformed into an equivalent query that contains 
at most (|Q| ⋅ maxarity) variables

• The number of queries that can be constructed using a finite number of predicates and 
a finite number of variables is finite

• Therefore, only finitely many partial rewritings can be constructed - in general, 
exponentially many



Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewritng algorithm produces rewritings of exponential size

• Can we do better? NO!!!

Σ = {∀x (Rk(x) ® Pk(x))}  for k ∈ {1,...,n} Q :- P1(x), …, Pn(x)

Q :- P1(X), …, Pn(X)

P1(X) ∨ R1(X) Pn(X) ∨ Rn(X)

thus, we need to consider 2n disjuncts



Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewritng algorithm produces rewritings of exponential size

• Can we do better? NO!!!

• Although the standard rewriting algorithm is worst-case optimal, it can be 

significantly improved

• Optimization techniques can be applied in order to compute efficiently small 

rewritings  - field of intense research



Recap

Q(x)  :- R1(v1),…,Rm(vm)

D

Σ

(D,Σ)

D

database

ontology 

Q

knowledge base

existential rules

∀x∀y ("(x,y) → ∃z %(x,z))

conjunctive query

in general, this is an undecidable problem, but well-behaved ontology languages exists - LINEAR
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A Crash Course on Complexity Theory

we recall some fundamental notions from complexity theory that will be heavily used in 

the context of MAI649  - further details can be found in the standard textbooks 



Deterministic Turing Machine (DTM)

M   =   (S, Λ, Γ, δ, s0, saccept, sreject)

• S is the set of states

• Λ is the input alphabet, not containing the blank symbol ⊔
• Γ is the tape alphabet, where ⊔ ∈ Γ and Λ ⊆ Γ

• δ : S × Γ → S × Γ × {L,R}

• s0 is the initial state

• saccept is the accept state

• sreject is the reject state, where saccept≠ sreject



Deterministic Turing Machine (DTM)

δ(s1, α) = (s2, β, R)

IF at some time instant τ the machine is in sate s1, the cursor points to 

cell κ, and this cell contains α

THEN at instant τ+1 the machine is in state s2, cell κ contains β, 

and the cursor points to cell κ+1

M   =   (S, Λ, Γ, δ, s0, saccept, sreject)



Nondeterministic Turing Machine (NTM)

M   =   (S, Λ, Γ, δ, s0, saccept, sreject)

• S is the set of states

• Λ is the input alphabet, not containing the blank symbol ⊔
• Γ is the tape alphabet, where ⊔ ∈ Γ and Λ ⊆ Γ

• δ : S × Γ → power set of S × Γ × {L,R}

• s0 is the initial state

• saccept is the accept state

• sreject is the reject state, where saccept≠ sreject



Turing Machine Configuration

A perfect description of the machine at a certain point in the computation

1 0 1 1 0 1 1 ⊔ ⊔

s

is represented as a string: 1011s011

• Initial configuration on input w1,…,wn - s0w1,…,wn

• Accepting configuration   - u1,…,uksacceptuk+1,…,uk+m

• Rejecting configuration   - u1,…,uksrejectuk+1,…,uk+m



Turing Machine Computation

Deterministic Nondeterministic

s0w1,…,wn

the next configuration is unique computation tree

s0w1,…,wn

computation path



Deciding a Problem

(recall that an instance of a decision problem Π is encoded as a word over a certain 

alphabet Λ - thus, Π is a set of words over Λ, i.e., Π ⊆ Λ*)

A DTM M = (S, Λ, Γ, δ, s0, saccept, sreject) decides a problem Π if, for every w ∈ Λ*:

• M on input w halts in saccept if w ∈ Π

• M on input w halts in sreject if w ∉ Π

s0w

…
usacceptv

w ∈ Π

s0w

…

usrejectv

w ∉ Π



w ∉ Π

A NTM M = (S, Λ, Γ, δ, s0, saccept, sreject) decides a problem Π if, for every w ∈ Λ*:

• The computation tree of M on input w is finite

• There exists at least one accepting computation path if w ∈ Π

• There is no accepting computation path if w ∉ Π

w ∈ Π

s0w

usacceptv

s0w

usrejectv

usrejectv

usrejectv

usrejectv

Deciding a Problem



Consider a function f : N → N

Complexity Classes

TIME(f(n)) = {Π | Π is decided by some DTM in time O(f(n))}

NTIME(f(n)) = {Π | Π is decided by some NTM in time O(f(n))}

SPACE(f(n)) = {Π | Π is decided by some DTM using space O(f(n))}

NSPACE(f(n)) = {Π | Π is decided by some NTM using space O(f(n))}



PTIME = ⋃k>0 TIME(nk)

NP = ⋃k>0 NTIME(nk)

EXPTIME = ⋃k>0 TIME(2nk)

NEXPTIME = ⋃k>0 NTIME(2nk)

LOGSPACE = SPACE(log n)

NLOGSPACE = NSPACE(log n)

PSPACE = ⋃k>0 SPACE(nk)

EXPSPACE = ⋃k>0 SPACE(2nk)

Complexity Classes

• We can now recall the standard time and space complexity classes:

these definitions are relying on two-

tape Turing  machines with a read-

only and a read/write tape

• For every complexity class C we can define its complementary class coC

coC  =  {Λ* ∖ Π | Π ∈ C}



An Alternative Definition for NP

Theorem: Consider a problem Π ⊆ Λ*. The following are equivalent:

• Π ∈ NP 

• There is a relation R ⊆ Λ* × Λ* that is polynomially decidable such that 

Π = {u | there exists w such that |w| ≤ |u|k and (u,w) ∈ R}

{xy ∈ Λ* | (x,y) ∈ R } ∈ PTIMEwitness or certificate

Example:

3SAT = {φ | φ is a 3CNF formula that is satisfiable}

3SAT = {φ | φ is a 3CNF for which there is an assignment α such that |α| ≤ |φ| and (φ,α) ∈ R}

where R = {(φ,α) | α is a satisfying assignment for φ} ∈ PTIME



Relationship Among Complexity Classes

LOGSPACE  ⊆ NLOGSPACE  ⊆ PTIME  ⊆ NP, coNP ⊆

PSPACE  ⊆ EXPTIME  ⊆ NEXPTIME, coNEXPTIME ⊆⋯

Some useful notes:

• For a deterministic complexity class C, coC = C

• coNLOGSPACE = NLOGSPACE

• It is generally believed that PTIME ≠ NP, but we don’t know

• PTIME  ⊂ EXPTIME  ⇒ at least one containment between them is strict

• PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, etc.

• But, we don’t know whether LOGSPACE = NLOGSPACE



Complete Problems

• These are the hardest problems in a complexity class

• A problem that is complete for a class C, it is unlikely to belong in a lower class

• A problem Π is complete for a complexity class C, or simply C-complete, if:

1. Π ∈ C

2. Π is C-hard, i.e., every problem Π’ ∈ C can be efficiently reduced to Π

• To show that Π is C-hard it suffices to reduce some C-hard problem Π’ to it

there exists a logspace algorithm that computes a function f such that

w ∈ Π’ iff f(w) ∈ Π - in this case we write Π’ ≤L Π



Some Complete Problems

• NP-complete

‒ SAT (satisfiability of propositional formulas)

‒ Many graph-theoretic problems (e.g., 3-colorability)

‒ Traveling salesman

‒ etc.

• PSPACE-complete

‒ Quantified SAT (or simply QSAT)

‒ Equivalence of two regular expressions

‒ Many games (e.g., Geography)

‒ etc.
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A Crash Course on First-Order Logic

we recall the syntax and the semantics of first-order logic, and we discuss how first-order 

logic can be used to define a query language (that is, relational calculus) that will play a 

crucial role in the context of MAI649



Schemas and Databases

• We assume a countably infinite set Rel of relation symbols

• We assume a countably infinite set Const of constant values

Definition: A relational schema (or simply schema) is a finite set S = {R1,...,Rn}, where each 

Ri, for i ∈ {1,…,n}, is a relation symbol from Rel of some fixed arity denoted arityS(Ri)

Definition: A database instance (or simply database) of a schema S is a finite set of 

relational atoms R(c1,…,ck), where R ∈ S, arityS(Ri) = k, and ci ∈ Const for each i ∈ {1,…,k} 



Syntax of First-Order Logic

• We assume a countably infinite set Var of variables

• We call the elements of Const and Var terms

Definition: First-order (FO) formulae over a schema S are inductively defined as follows:

• If a ∈ Const and x,y ∈ Var, then x = a and x = y are atomic formulae (equational atoms)

• If u1,…,uk are (not necessarily distinct) terms, and R ∈ S with arityS(R) = k, then 

R(u1,…,uk) is an atomic formula (relational atom)

• If "1 and "2 are FO formulae, then ("1 ∧ "2), ("1 ∨ "2) and (¬"1) are FO formulae

• If " is an FO formula and x ∈ Var, then (∃x ") and (∀x ") are FO formulae



Syntax of First-Order Logic: Example

(for brevity, we may omit the outermost brackets)

(!1 ∧ !2)

((!1 ∧ !2)  ∧ !3)

(((!1 ∧ !2)  ∧ !3)  ∧ !4)

((((!1 ∧ !2)  ∧ !3)  ∧ !4)  ∧ !5)

((((Airport(x,u)  ∧ u = London)  ∧ Airport(y,v))  ∧ v = Glasgow)  ∧ Flight(x,y,z))

Airport(x,u)  ∧ u = London  ∧ Airport(y,v)  ∧ v = Glasgow  ∧ Flight(x,y,z)

!1 !2 !3 !4 !5

Airport(x,u)  ∧ u = London  ∧ Airport(y,v)  ∧ v = Glasgow  ∧ Flight(x,y,z)



Free Variables

essentially, the variables in a formula that are not quantified

Definition: Given an FO formula !, the set of free variables of !, denoted FV(!), is:

• FV(x = a) = {x}

• FV(x = y) = {x,y}

• FV(R(u1,…,uk)) = {u1,…,uk} ∩ Var

• FV(!1 ∧ !2) = FV(!1 ∨ !2) = FV(!1) ∪ FV(!2)

• FV(¬!) = FV(!)

• FV(∃x !) = FV(∀x !) = FV(!) ∖ {x}



Free Variables: Example

! = Airport(x,u)  ∧ u = London  ∧ Airport(y,v)  ∧ v = Glasgow  ∧ Flight(x,y,z)

FV(!) = {x,y,z,u,v}

! = ∃x∃y∃u∃v (Airport(x,u)  ∧ u = London  ∧ Airport(y,v)  ∧ v = Glasgow  ∧ Flight(x,y,z))

FV(!) = {z}

! = ∃x∃y∃z∃u∃v (Airport(x,u)  ∧ u = London  ∧ Airport(y,v)  ∧ v = Glasgow  ∧ Flight(x,y,z))

FV(!) = ∅



Semantics of First-Order Logic

• Given a database D of a schema S, and an FO formula ! over S, an assignment for !
over D is a total function of the form " : FV(!) → Dom(D) ∪ Dom(!)

• We write "[x/u], where x ∈ Var and u ∈ Const ∪ Var, for the assignment that modifies 

" by setting "(x) = u

constants occurring in D and !



Semantics of First-Order Logic

Definition: Given a database D of a schema S, an FO formula ! over S, and an assignment 

" for ! over D, we define when ! is satisfied in D under ", denoted (D,") ⊨ !, as follows:

• If ! is x = y, then (D,") ⊨ ! when "(x) = "(y)

• If ! is x = a, then (D,") ⊨ ! when "(x) = a

• If ! is R(u1,…,uk), then (D,") ⊨ ! when R("(u1),…,"(uk)) ∈ D

• If ! is !1 ∧ !2, then (D,") ⊨ ! when (D,") ⊨ !1 and (D,") ⊨ !2

• If ! is !1 ∨ !2, then (D,") ⊨ ! when (D,") ⊨ !1 or (D,") ⊨ !2

• If ! is ¬(, then (D,") ⊨ ! when (D,") ⊨ ( does not hold

• If ! is ∃x (, then (D,") ⊨ ! when (D,"[x/a]) ⊨ ( for some value a ∈ Dom(D) ∪ Dom(!)

• If ! is ∀x (, then (D,") ⊨ ! when (D,"[x/a]) ⊨ ( for each value a ∈ Dom(D) ∪ Dom(!)



Semantics of First-Order Logic

∃x ¬R(x) ∧ S(x)          we mean ∃x((¬R(x)) ∧ S(x))

notice the difference with ∃x ¬(R(x) ∧ S(x))

The standard priority is

¬ ∧ ∨ ∃,∀



Relational Calculus: Syntax

• We can now use FO formulae to define queries

• We need to specify together with an FO formula a tuple of variables x1,…,xk
that indicates how the output of the query is formed

Definition: A relational calculus (RC) query over a schema S is an expression of the form

!(x1,…,xk)

where ! is an FO formula over S, {x1,…,xk} ⊆ FV(!), and each free variable of ! occurs at 

least once in x1,…,xk

note that the syntax {(x1,…,xk) | !} is also used



Relational Calculus: Semantics

Consider an RC query !(x1,…,xk) over a schema S. A database D of a schema S

satisfies !(x1,…,xk) using the values a1,…,ak, denoted D ⊨ !(a1,…,ak), if there exists 

an assignment # for ! over D such that (#(x1),…,#(xk)) = (a1,…,ak) and (D,#) ⊨ !

Definition: Given a database D of a schema S, and an RC query Q = !(x1,…,xk) over S, 

the output of Q on D, denoted Q(D), is defined as the set of tuples

{ (a1,…,ak) ∈ (Dom(D) ∪ Dom(!))k |  D ⊨ !(a1,…,ak) }



Relational Calculus: Example

Flight origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

List the airlines that fly directly from London to Glasgow

Q = !(z)

! = ∃x∃y∃u∃v (Airport(x,u)  ∧ u = London  ∧ Airport(y,v)  ∧ v = Glasgow  ∧ Flight(x,y,z))

Q(D) = { (U2) }



Algebra = Calculus

A fundamental relative expressiveness result:

Theorem: Relational Algebra  =  Relational Calculus

The proof can be found in Chapter 6 of PDB



∃x∃y∃z∃w∃v  Airport(x,Vienna)  ∧ Airport(y,Glasgow)  ∧
Flight(x,z,w)  ∧ Flight(z,y,v)

Quiz!

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is Glasgow reachable from Vienna?

London

Vienna

Larnaca

Glasgow

Edinburgh

YES



Quiz!

London

Vienna

Larnaca

Glasgow

Edinburgh

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Is Glasgow reachable from Vienna?

NO

∃x∃y∃z∃w∃v  Airport(x,Vienna)  ∧ Airport(y,Glasgow)  ∧
Flight(x,z,w)  ∧ Flight(z,y,v)

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh



∃x∃y∃z∃w∃v  Airport(x,Vienna)  ∧ Airport(y,Glasgow)  ∧
Flight(x,z,w)  ∧ Flight(z,y,v)

Quiz!

London

Vienna

Larnaca

Glasgow

Edinburgh

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Is Glasgow reachable from Vienna?

YES∧ Flight(z,z1,w1)  ∧

∃z1∃w1

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh



Quiz!

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is Glasgow reachable from Vienna?

NO

London

Vienna

Larnaca

Glasgow

Edinburgh

∃x∃y∃z∃w∃v  Airport(x,Vienna)  ∧ Airport(y,Glasgow)  ∧
Flight(x,z,w)  ∧ Flight(z,y,v)

∧ Flight(z,z1,w1)  ∧

∃z1∃w1



Quiz!

Flight origin destination airline
VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is Glasgow reachable from Vienna?

London

Vienna

Larnaca

Glasgow

Edinburgh

Recursive query - not expressible in calculus/algebra

(unless we bound the number of intermediate stops)
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