

University of Cyprus

MAI645 - Machine Learning for Graphics and Computer Vision

Andreas Aristidou, PhD

Spring Semester 2023

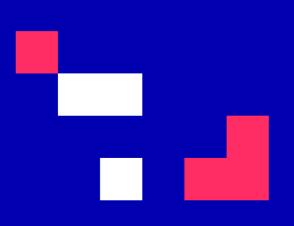


Image Classification & Object Detection

Notes have been prepared in collaboration with Ms. Asfa Jamil Research Associate at Deep Camera MRG, CYENS CoE

Image Classification is a fundamental task in computer vision where a model is trained to assign a specific label or class to an input image.

It involves training a model on a large dataset of images, each labeled with a specific class, and then using that model to make predictions on new, unseen images.

The goal is for the model to accurately categorize the images into their respective classes.

Image classification is used in a variety of applications, such as object recognition, scene understanding, and image retrieval.

Classification

CAT

Image Classification

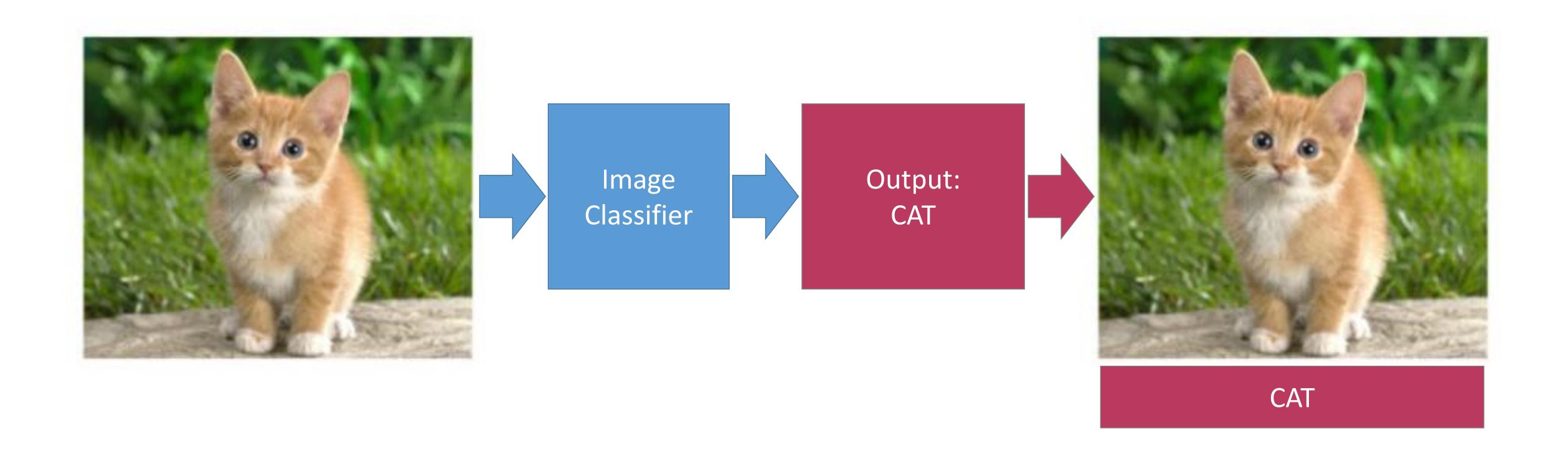


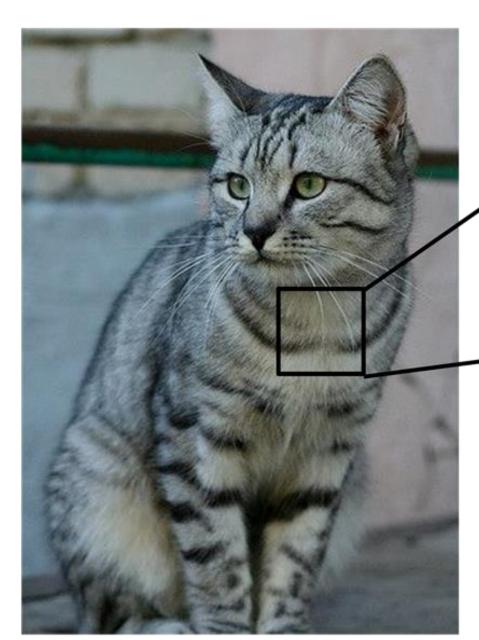
Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

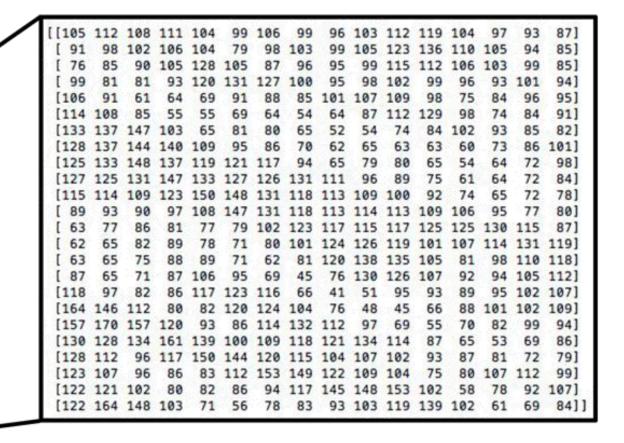
(assume given a set of possible labels) {dog, cat, truck, plane, ...}

cat

The Problem: Semantic Gap



This image by Nikita is licensed under CC-BY 2.0

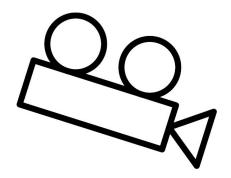


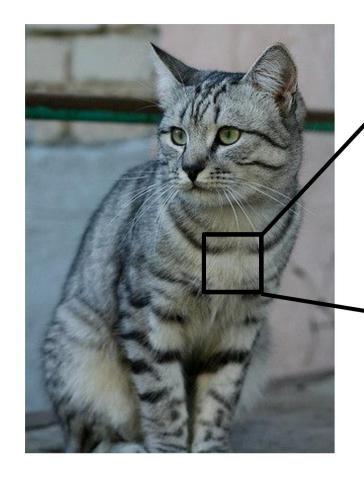
What the computer sees

An image is a tensor of integers between [0, 255]:

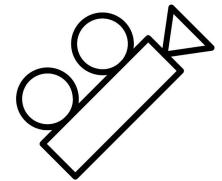
e.g. 800 x 600 x 3 (3 channels RGB)

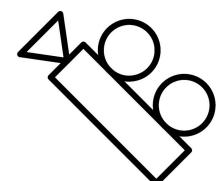
Challenges: Viewpoint variation





[[105	112	108	111	104	99	106	99	96	103	112	119	104	97	93	87]
[91	98	102	106	104	79	98	103	99	105	123	136	110	105	94	85]
[76	85	90	105	128	105	87	96	95	99	115	112	106	103	99	85]
[99	81	81	93	120	131	127	100	95	98	102	99	96	93	101	94]
[106	91	61	64	69	91	88	85	101	107	109	98	75	84	96	95]
[114	108	85	55	55	69	64	54	64	87	112	129	98	74	84	91]
[133	137	147	103	65	81	80	65	52	54	74	84	102	93	85	82]
[128	137	144	140	109	95	86	70	62	65	63	63	60	73	86	101]
[125	133	148	137	119	121	117	94	65	79	80	65	54	64	72	98]
[127	125	131	147	133	127	126	131	111	96	89	75	61	64	72	84]
[115	114	109	123	150	148	131	118	113	109	100	92	74	65	72	78]
[89	93	90	97	108	147	131	118	113	114	113	109	106	95	77	80]
[63	77	86	81	77	79	102	123	117	115	117	125	125	130	115	87]
[62	65	82	89	78	71	80	101	124	126	119	101	107	114	131	119]
[63	65	75	88	89	71	62	81	120	138	135	105	81	98	110	118]
[87	65	71	87	106	95	69	45	76	130	126	107	92	94	105	112]
[118	97	82	86	117	123	116	66	41	51	95	93	89	95	102	107]
[164	146	112	80	82	120	124	104	76	48	45	66	88	101	102	109]
[157	170	157	120	93	86	114	132	112	97	69	55	70	82	99	94]
[130	128	134	161	139	100	109	118	121	134	114	87	65	53	69	86]
[128	112	96	117	150	144	120	115	104	107	102	93	87	81	72	79]
[123	107	96	86	83	112	153	149	122	109	104	75	80	107	112	99]
[122	121	102	80	82	86	94	117	145	148	153	102	58	78	92	107]
[122	164	148	103	71	56	78	83	93	103	119	139	102	61	69	84]

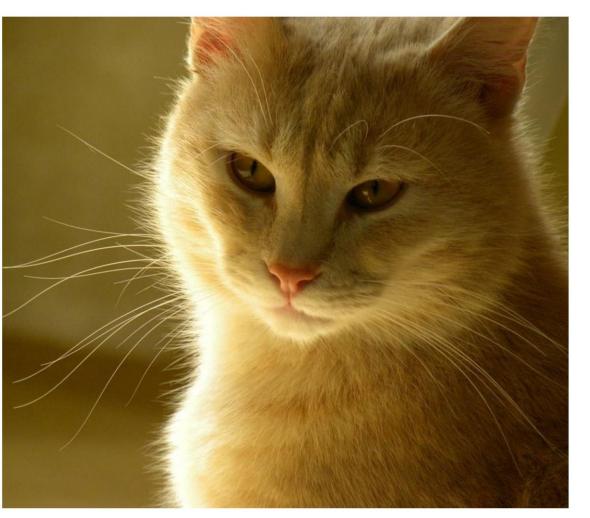




All pixels change when the camera moves!

Challenges: Illumination

This image is CC0 1.0 public domain



This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

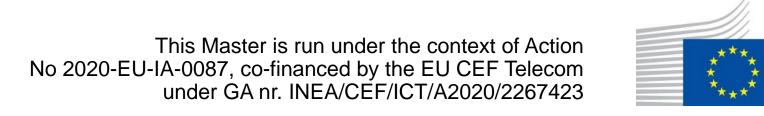


Image Classification

Challenges: Background Clutter

This image is CC0 1.0 public domain

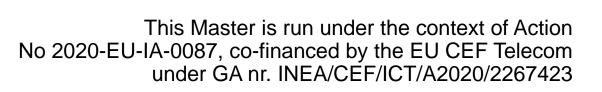


Image Classification

Challenges: Occlusion

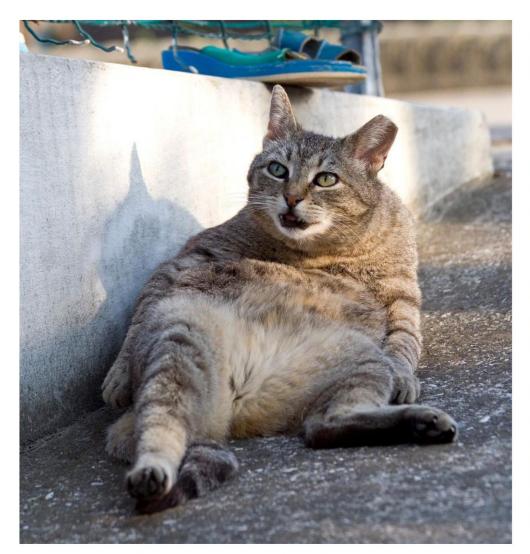
This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

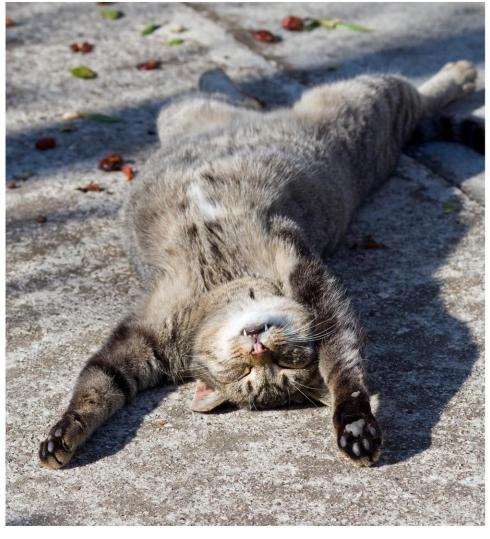
This image by jonsson is licensed under CC-BY 2.0

Image Classification

Challenges: Deformation



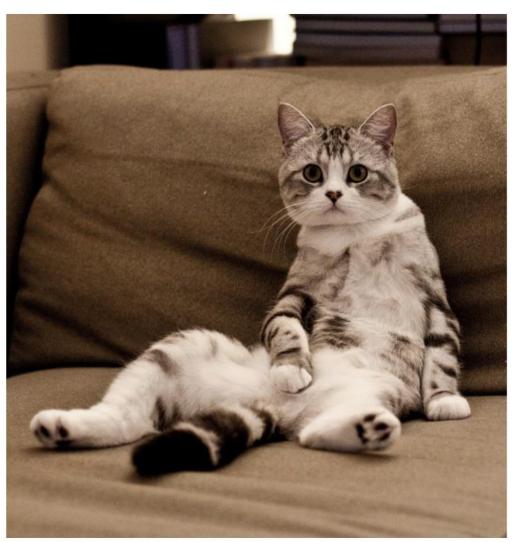
This image by Umberto Salvagnin is licensed under CC-BY 2.0



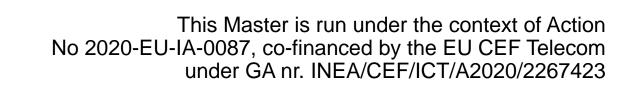
This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by sare bear is licensed under CC-BY 2.0

11



This image by Tom Thai is licensed under CC-BY 2.0

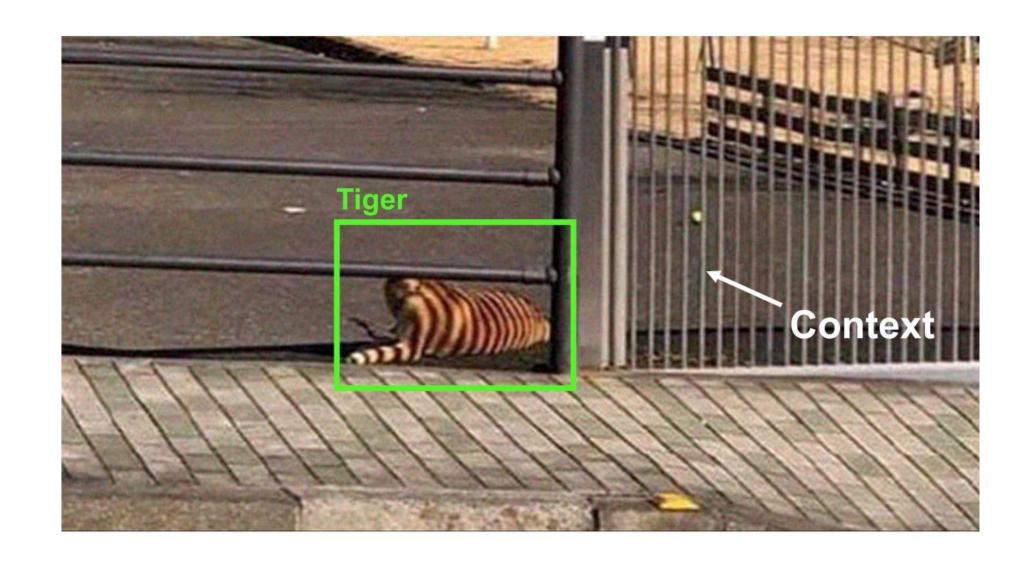


Challenges: Intraclass variation

This image is CC0 1.0 public domain

Image Classification

Challenges: Context



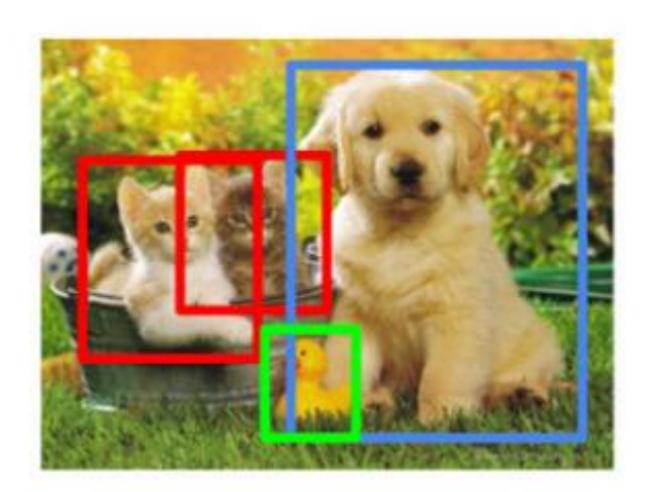
Object detection

Object detection is a fundamental task in computer vision where the goal is to <u>locate</u> and <u>classify</u> objects within an image or video.

It is a more advanced form of image classification, where instead of just identifying the class of an entire image, they identify multiple instances of multiple classes within an image and locate them with a bounding box; in other words, it deals with more realistic cases in which multiple objects may exist in an image

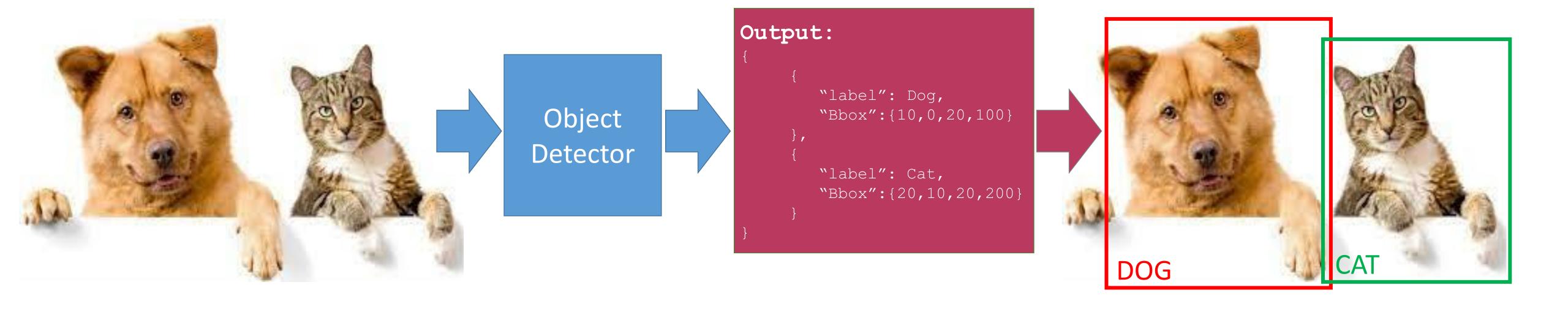
Object detection algorithms can be used in a variety of applications, such as self-driving cars, security systems, and augmented reality.

Object Detection



CAT, DOG, DUCK

Object detection

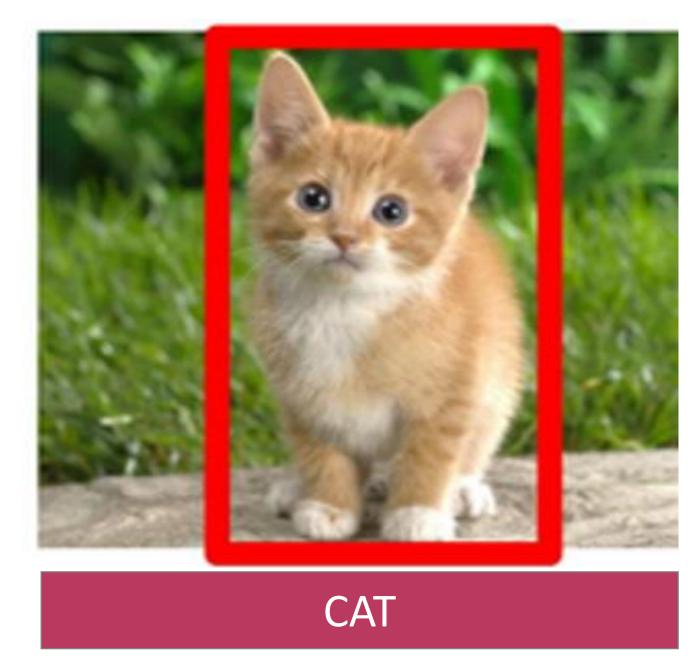


Differences

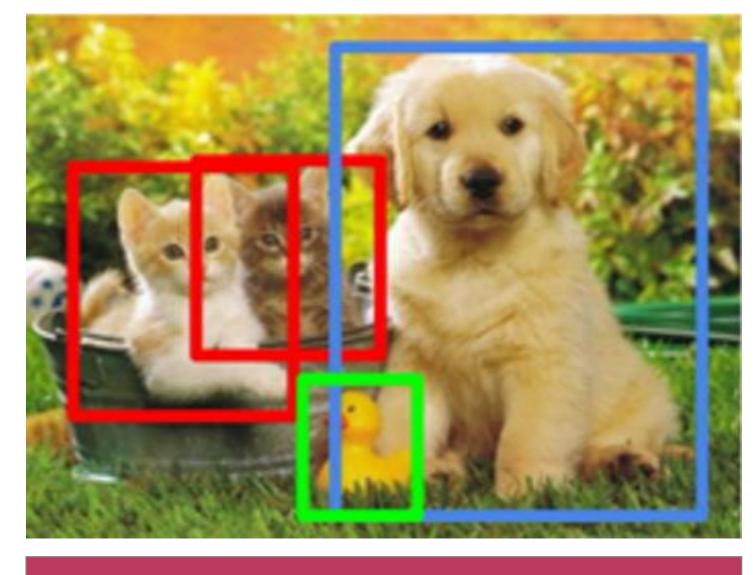
Image Classification

CAT

Localization



Object Detection

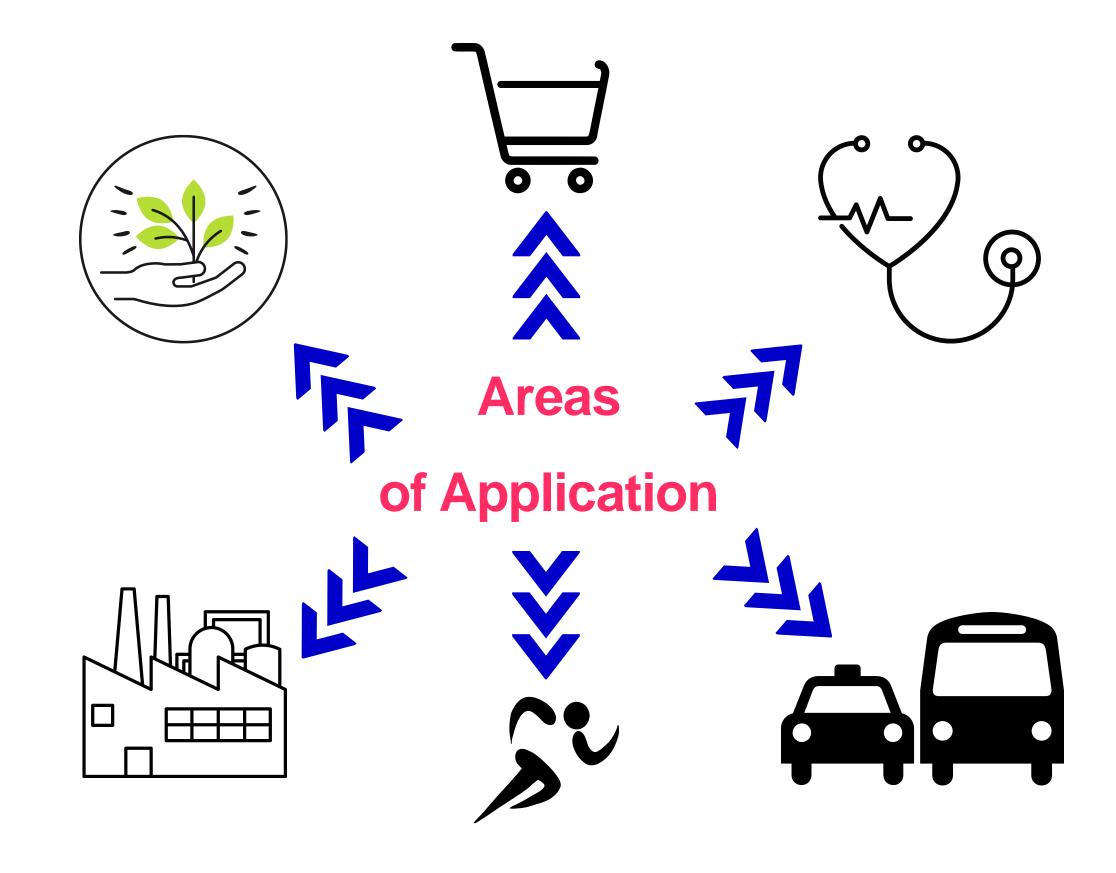


CAT, DUCK, DOG

Importance

Image classification and object detection are important tasks due to their real-world applications, contributions to the advancement of artificial intelligence, improvements in accuracy and efficiency, and facilitation of human-computer interaction. In particular:

- 1. Real-world applications: Image classification and object detection have numerous real-world applications, including self-driving cars, surveillance systems, and image search engines.
- 2. Advancements in artificial intelligence: These tasks play a significant role in advancing the field of artificial intelligence and computer vision by providing a framework for developing and evaluating new algorithms and models.
- 3. Improved accuracy and efficiency: Image classification and object detection algorithms have been constantly improving in terms of accuracy and efficiency. This enables more robust and reliable systems for various applications.
- 4. Facilitation of human-computer interaction: By automating tasks such as recognizing and locating objects in images, these algorithms make it possible to interact with computers in a more natural and intuitive way.



Areas of application of image classification and object detection

Image classification and object detection have a wide range of applications in various fields such as:

- Computer Vision: Image classification and object detection are the fundamental tasks in computer vision and are used in various vision-based applications.
- 2. Surveillance Systems: These technologies are used to detect and classify objects in real-time surveillance systems to improve the accuracy of security and monitoring.
- 3. Autonomous vehicles: Object detection is used in autonomous vehicles for tasks such as lane detection, obstacle detection, and traffic sign recognition.
- 4. Medical Imaging: Image classification and object detection techniques are used in medical imaging for tasks such as lesion detection, tumor segmentation, and diagnosis.
- 5. Agriculture: Object detection is used in agriculture for tasks such as crop counting and monitoring crop growth.
- 6. Robotics: Image classification and object detection are used in robotics for tasks such as object recognition and grasping.
- 7. E-commerce: Image classification and object detection are used in e-commerce for product categorization, image-based search, and automatic tagging.

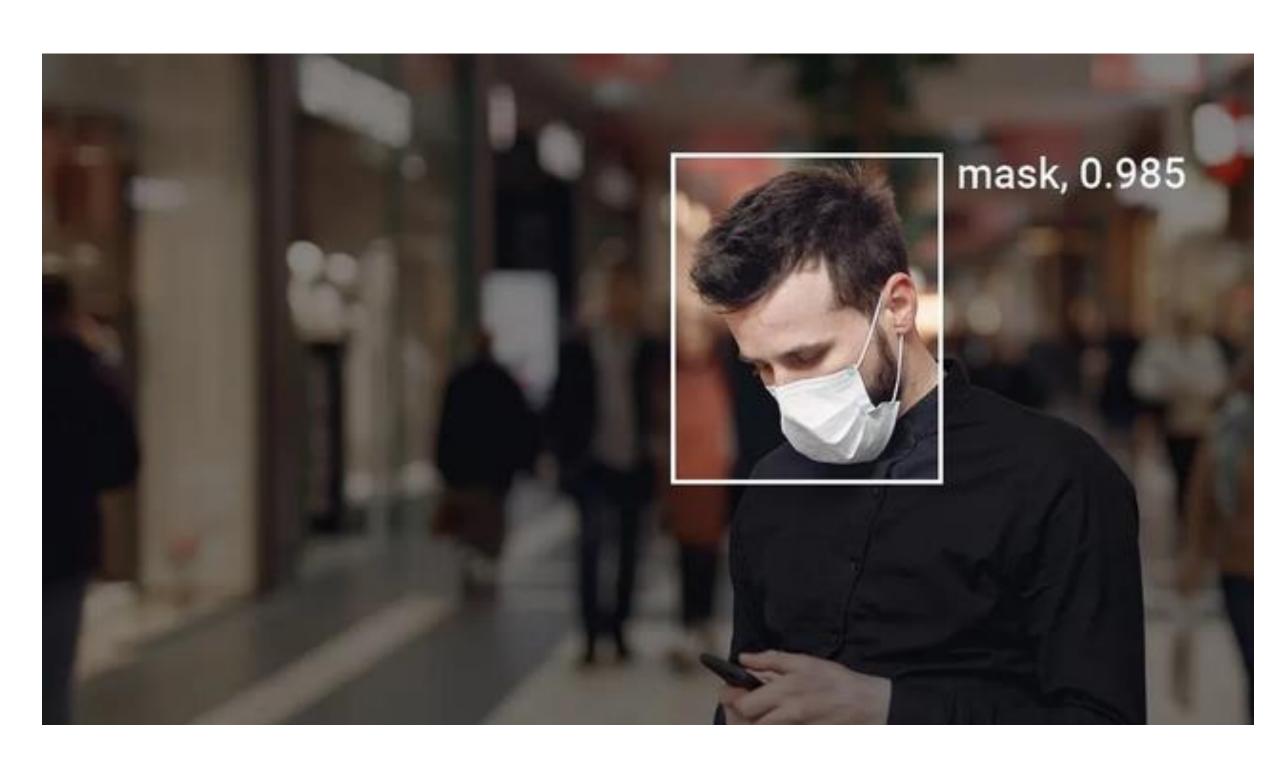
Areas of application of image classification and object detection

Image classification and object detection have a wide range of applications in various fields such as:

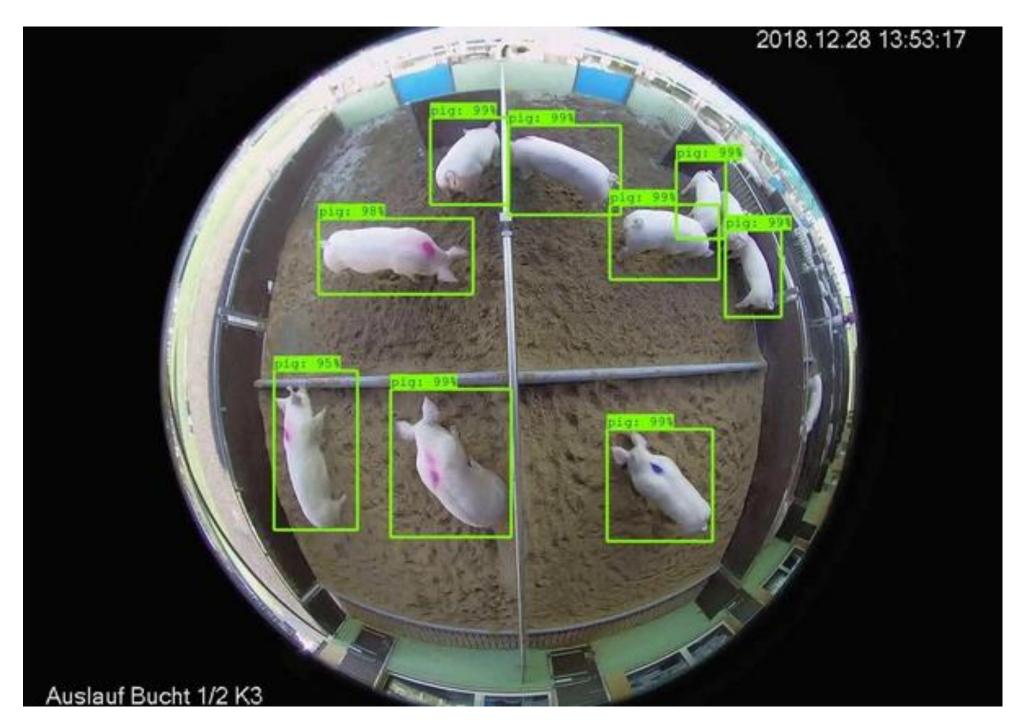
- 8. Augmented Reality (AR) and Virtual Reality (VR): Image classification and object detection are used in AR and VR for tasks such as 3D object recognition and tracking.
- 9. Sports: Object detection is used in sports for tasks such as player tracking and ball detection.
- 10. Marketing and Advertising: Image classification and object detection are used in marketing and advertising for tasks such as image-based recommendations, image-based search, and product categorization.
- 11. Wildlife conservation: Image classification and object detection are used in wildlife conservation for tasks such as animal tracking and species identification.
- 12. Retail: Image classification and object detection are used in retail for tasks such as product recognition, price comparison, and visual search.
- 13. Face recognition: Image classification and object detection are used in face recognition systems for tasks such as facial detection, facial landmarks, and facial verification.
- 14. Natural Language Processing (NLP): Image classification and object detection are used in NLP for tasks such as image captioning, visual question answering, and sentiment analysis.

Visual Inspection of Equipment

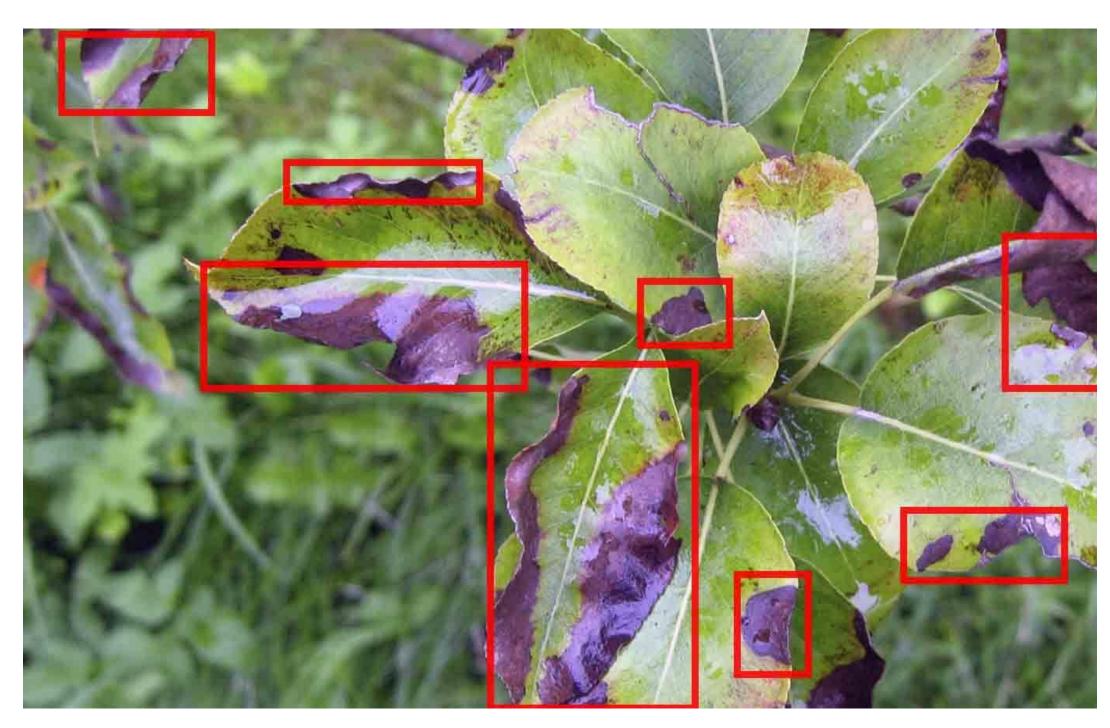
Smart health care: pose detection



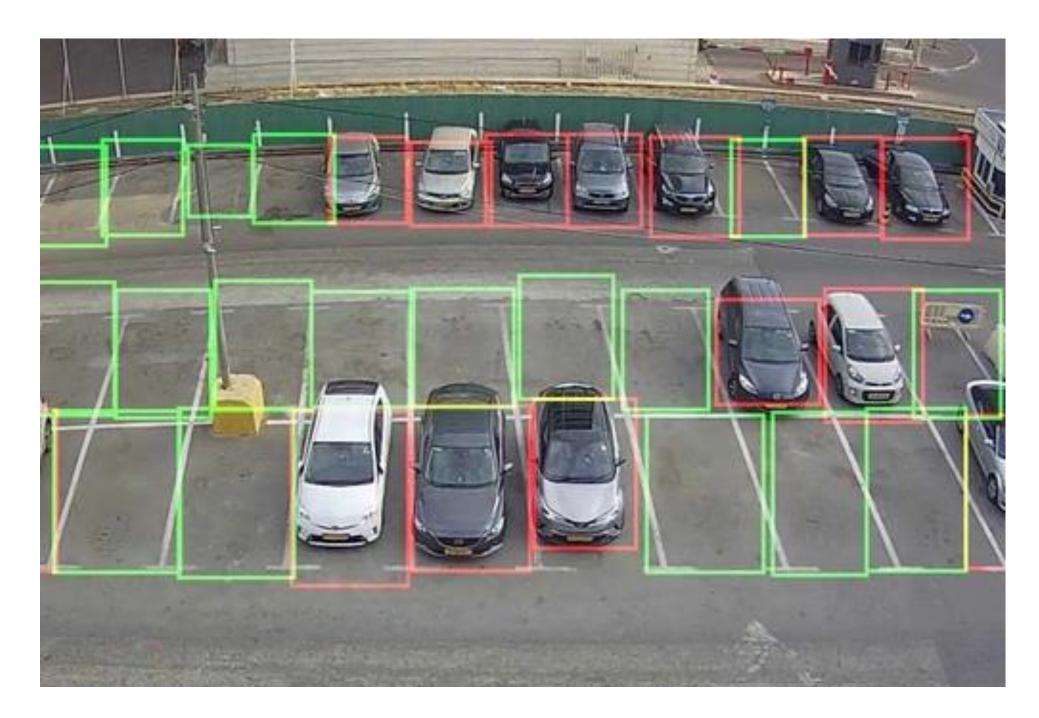
Smart health care: mask detection



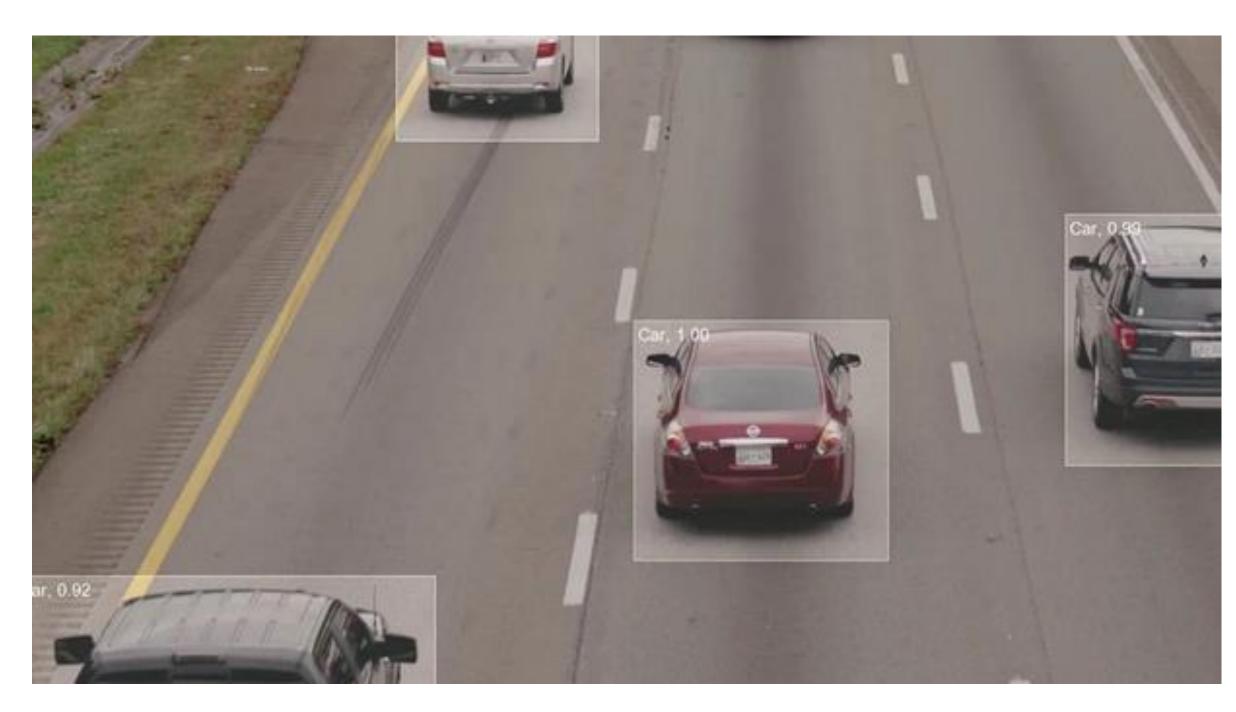
Smart agriculture: animal monitoring



Smart agriculture: Plant Disease Detection



Parking Occupancy Detection



Vehicle Classification

Approaches to the problem

Unsupervised

Unsupervised learning is a type of machine learning where the model is trained on an unlabeled dataset, and the algorithm tries to find patterns or relationships within the data without any prior knowledge of the expected outcome. The goal is to group similar data points together or to find lower-dimensional representations of the data. Examples of unsupervised learning algorithms are clustering and dimensionality reduction.

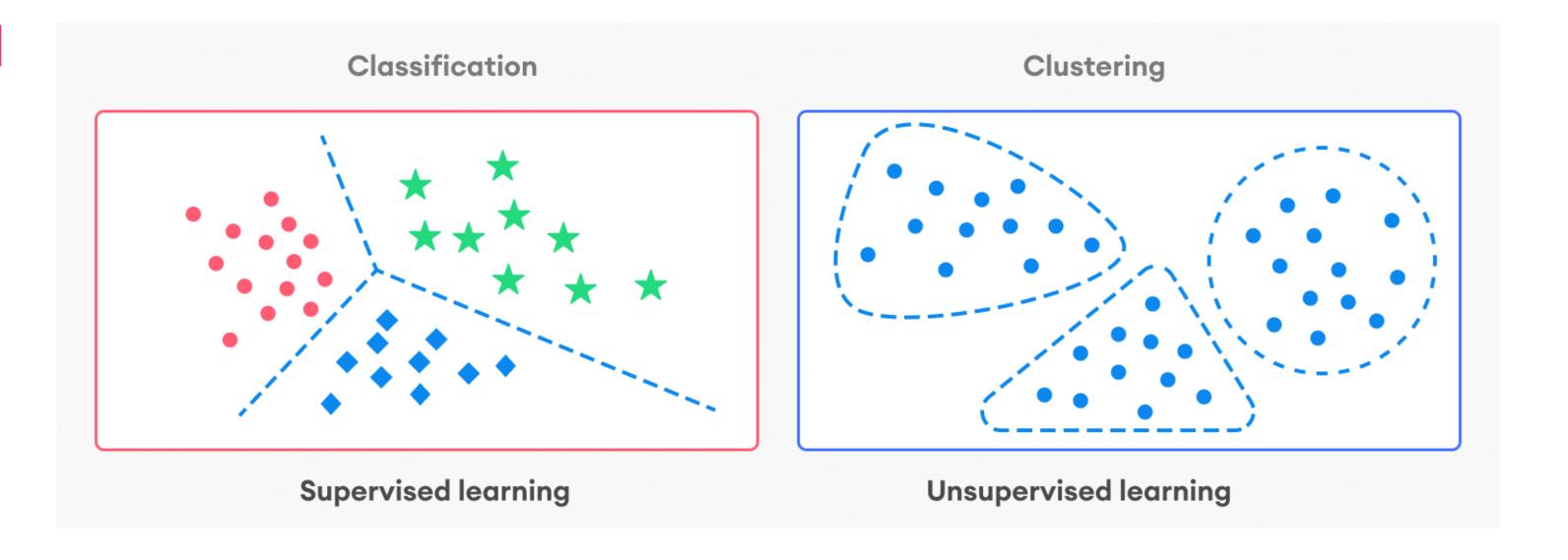
Supervised

Supervised learning, on the other hand, is a type of machine learning where the model is trained on labeled data, where the desired output is already known. The goal is to learn a mapping from inputs to outputs based on the labeled examples. The algorithm uses this mapping to make predictions on new unseen data. Examples of supervised learning algorithms are linear regression, decision trees, and support vector machines.

Approaches to the problem

Unsupervised

Supervised



Unsupervised Image Classification

Unsupervised Image Classification is where the outcomes (groupings of pixels with common characteristics) are based on the software analysis of an image without the user providing sample classes.

Pixel Space

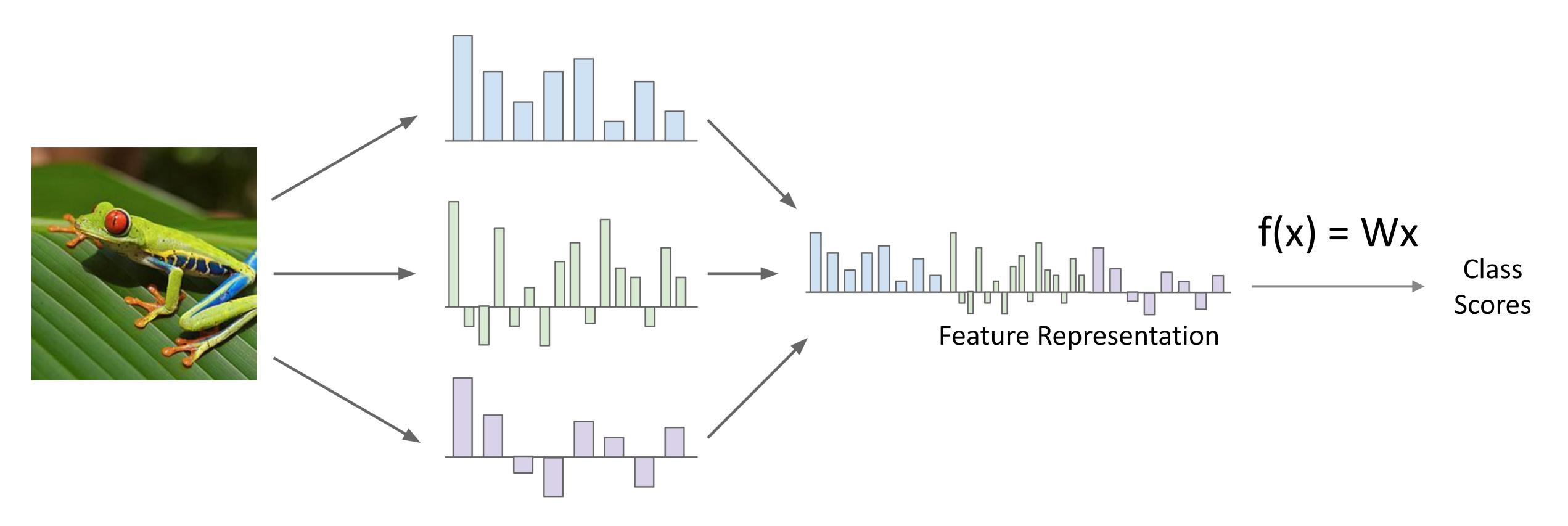
f(x) = Wx

1 = 1/1/2

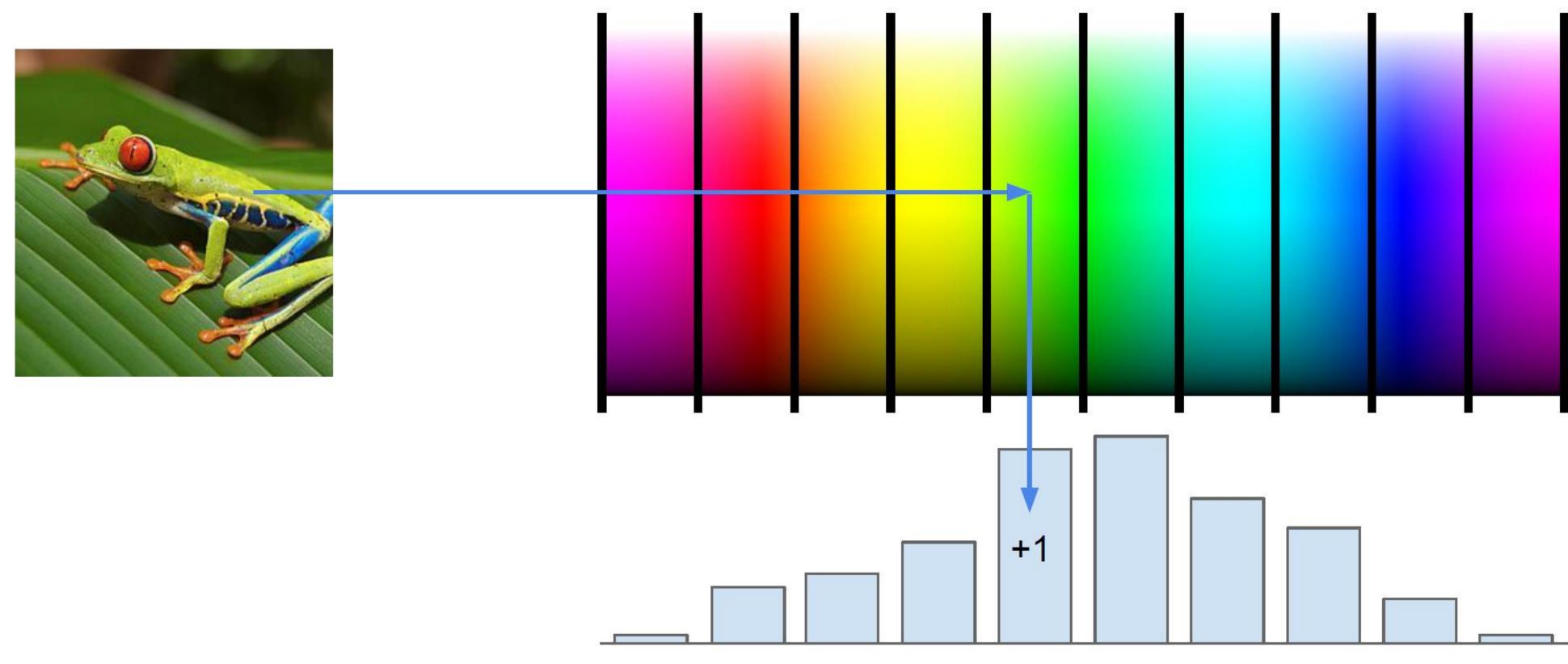
Class

scores

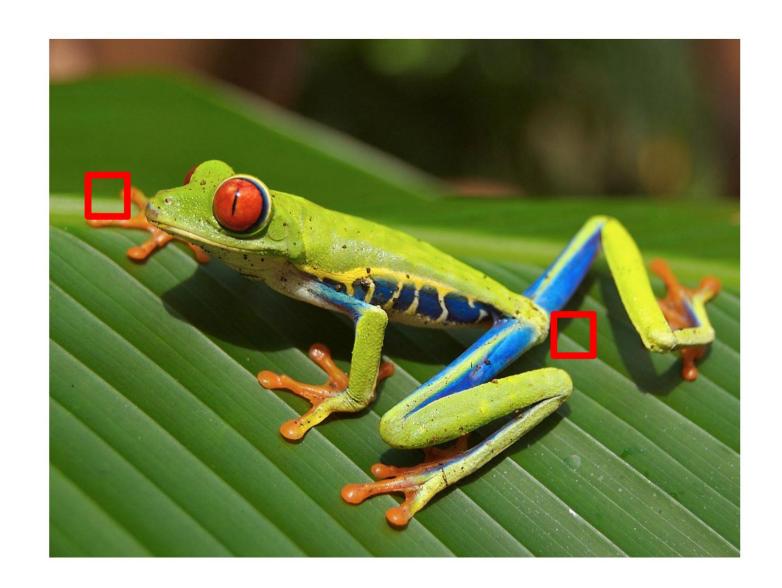
Image Features



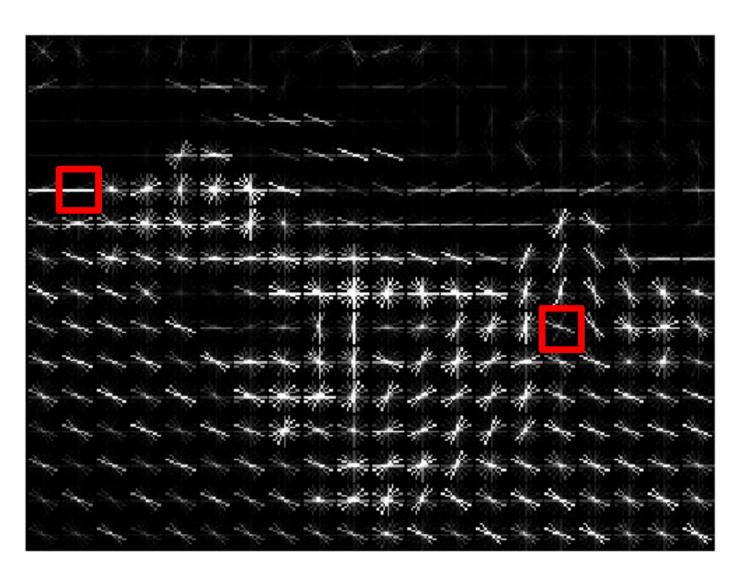
Example: Color Histogram



Example: Histogram of Oriented Gradients (HoG)



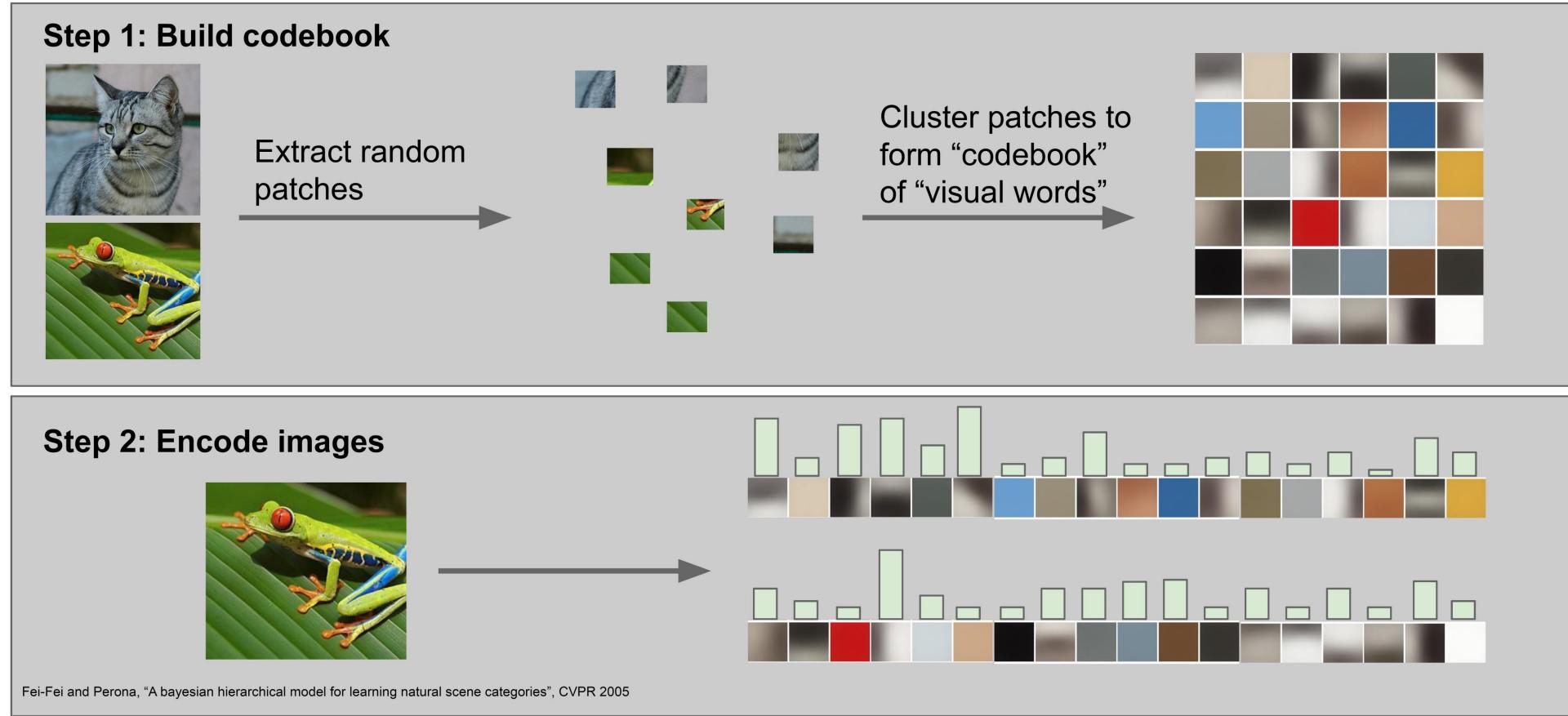
Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins



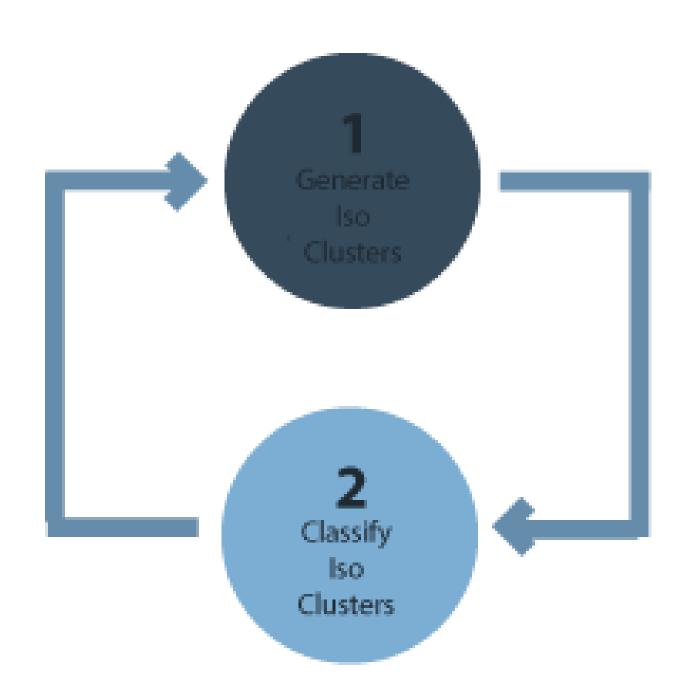
Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Unsupervised Image Classification



Unsupervised Image Classification

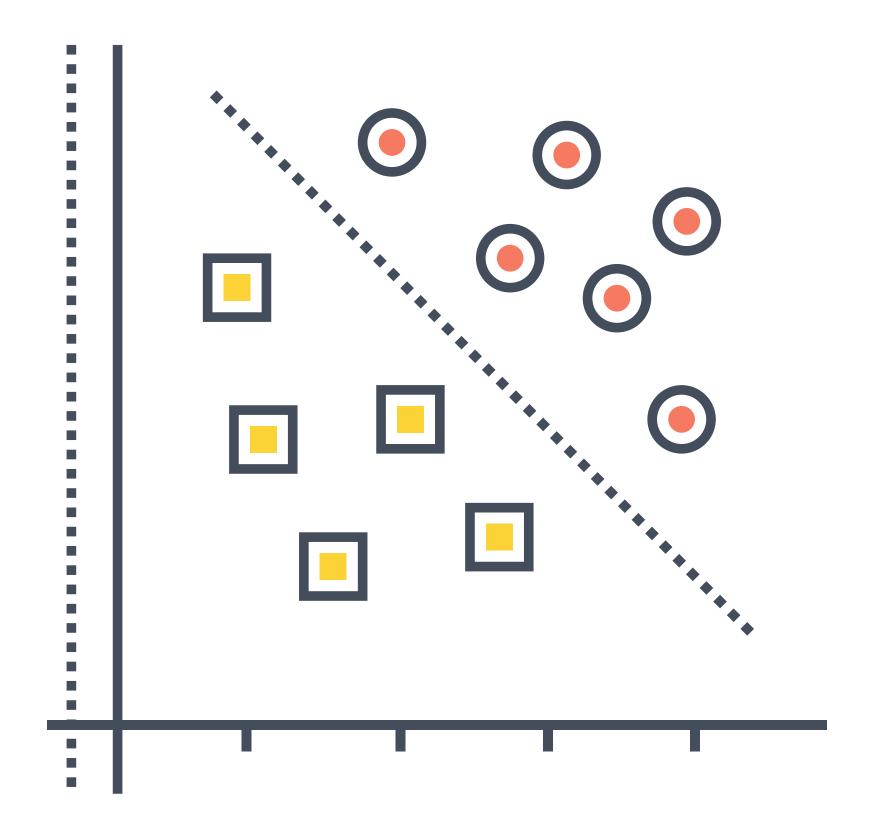


In unsupervised classification, it first groups pixels into "clusters" based on their properties.

Then, you classify each cluster with a class.

Steps for unsupervised image classification

- 1 Choose Clustering Algorithm
- Class Identification
- 3 Edit\Evaluate Signatures
- Class Evaluation



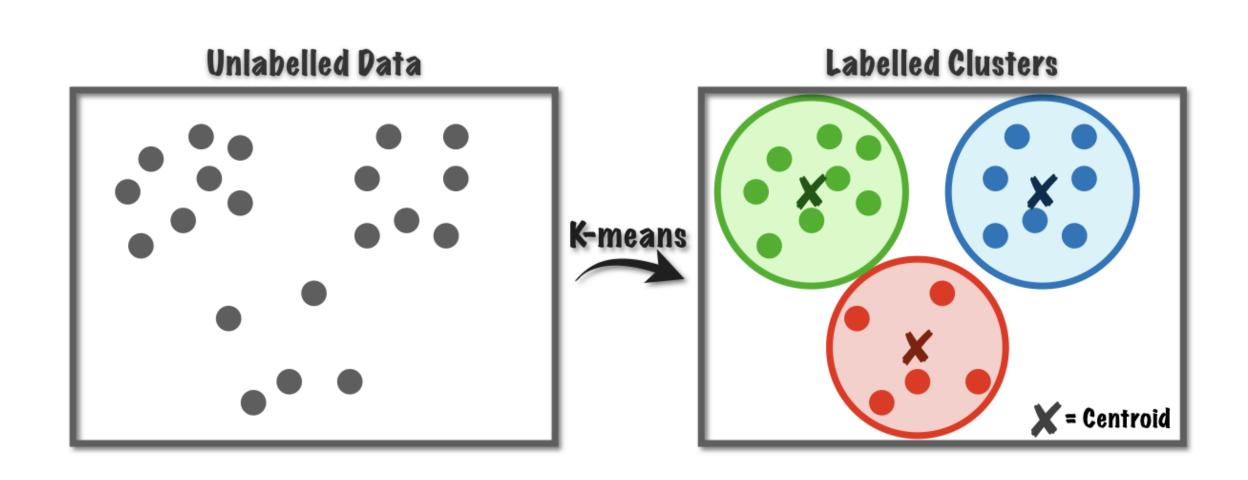
Unsupervised image classification: Clusterization

With unsupervised algorithms, **no pre-existing tags** are given to the system, **only raw data**. The system interprets the data, recognizes patterns, and draws unique conclusions from the data without human interference.

Unsupervised classification makes use of a concept called **clusterization**. Clusterization is the unsupervised, natural locating and grouping (or "clustering") of data into groups. However, you will not give get a class automatically. You'll only have the different clusters, which you'd need to decide a class for in another way. There are a plethora of different clusterization algorithms e.g., K-Means, Agglomerative Clustering, BIRCH, ISODATA, DBSCAN etc.

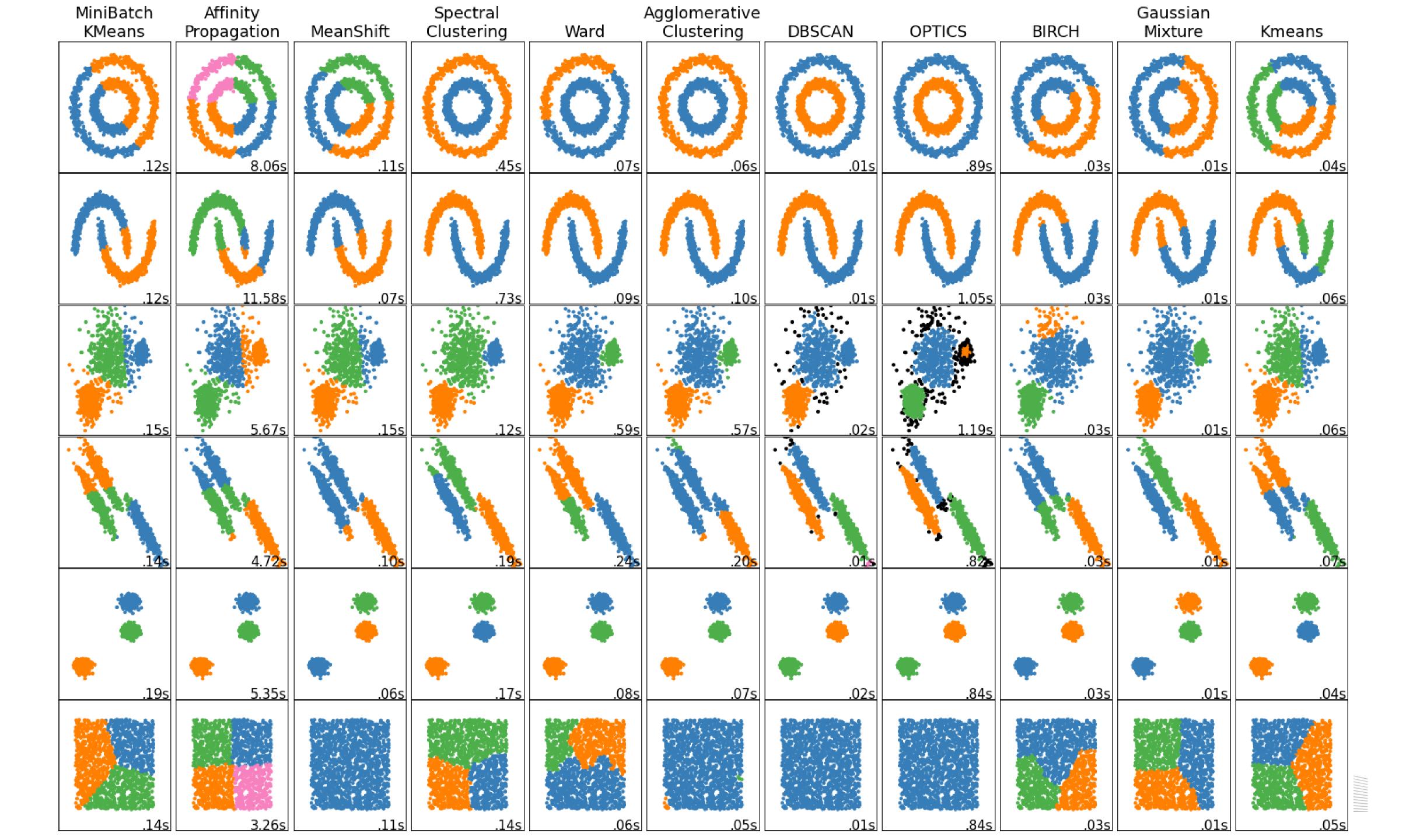
There isn't a single best choice out of these clusterization algorithms. Instead, it is optimal to test various ones until you settle on the one that works best with the specific task at hand.

Unsupervised image classification: Clusterization



ISODATA

K-means



Supervised Image Classification

Supervised classification is based on the idea that a user can select sample pixels in an image that are representative of specific classes and then direct the image processing software to use these training sites as references for the classification of all other pixels in the image.

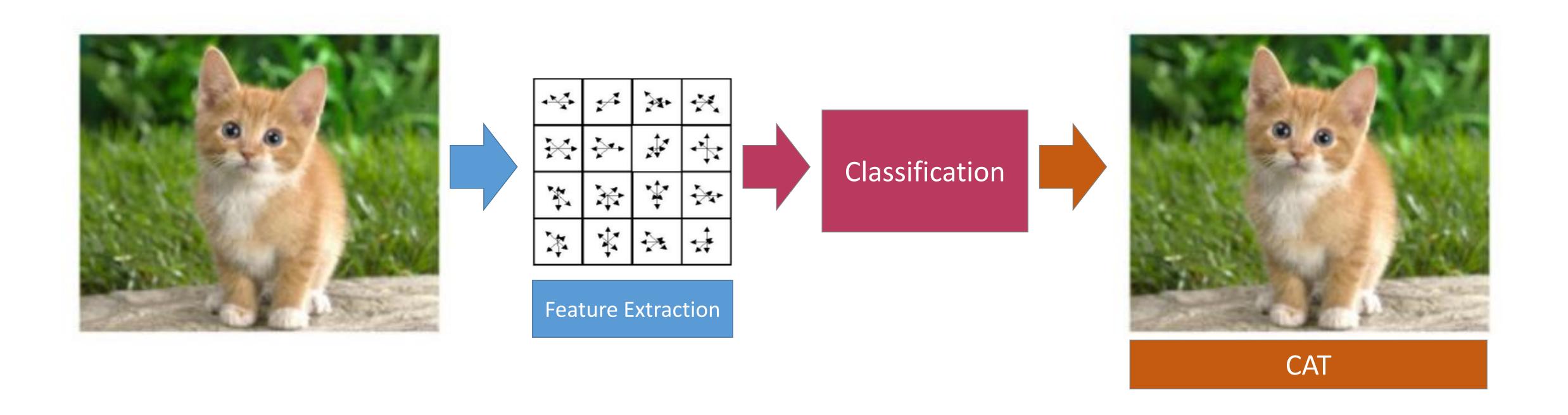
In supervised classification, you select representative samples for each class. The software then uses these "training sites" and applies them to the entire image.

Supervised Image Classification

Supervised classification involves pre-training the system with a set of reference data, allowing it to use the acquired information to classify new visual materials. The algorithm compares the new input with the previously trained data, using the patterns learned from the training data to classify the new images.

Supervised image classification algorithms can be divided into **single-label classification** and **multi-label classification**. Single-label classification refers to a singular label that is assigned to an image as a result of the classification process. While single-label classification assigns an image to a single category, multi-label classification allows an image to be assigned to an unlimited number of categories. Multi-label classification can be particularly useful in cases where an image contains multiple features or attributes. For instance, in medicine, a medical image may reveal multiple diseases or abnormalities in a patient.

Image Classification Using Traditional Machine learning



Again, some feature extraction techniques:

HOG Features

• Histogram of Oriented Gradients (HOG) is a feature descriptor used in computer vision and image processing. It is used to represent the shape and structure of objects in an image. HOG works by dividing an image into small cells and computing the gradient orientation histogram for each cell.

Accelerated segment test (AST)

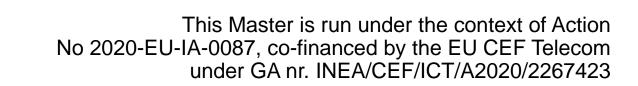
• The Accelerated Segment Test is a fast and efficient algorithm for detecting changes in the mean of a time-series. It is often used in change point detection problems, where the goal is to identify a point in time when the underlying distribution of the time-series changes.

Scale Invariant Feature Transform (SIFT)

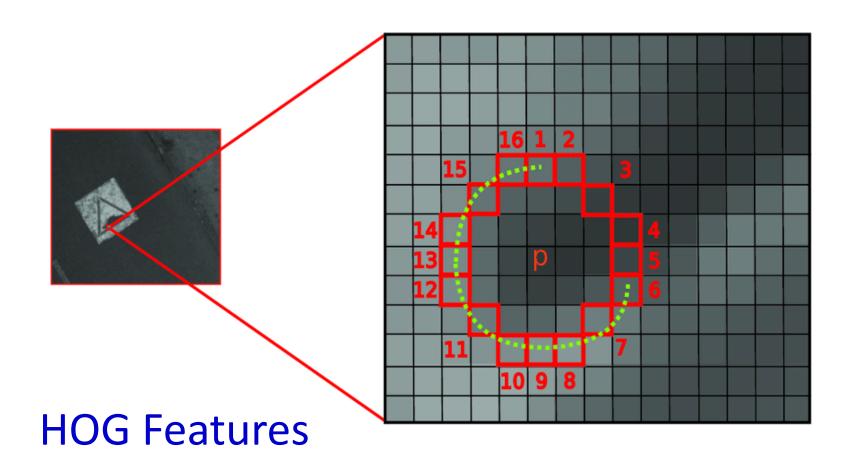
• Scale Invariant Feature Transform (SIFT) is an algorithm for detecting and describing local features in images. It is used for tasks such as object recognition, image matching, and texture classification. SIFT works by detecting distinctive, invariant features in an image that are robust to changes in scale, orientation, and illumination.

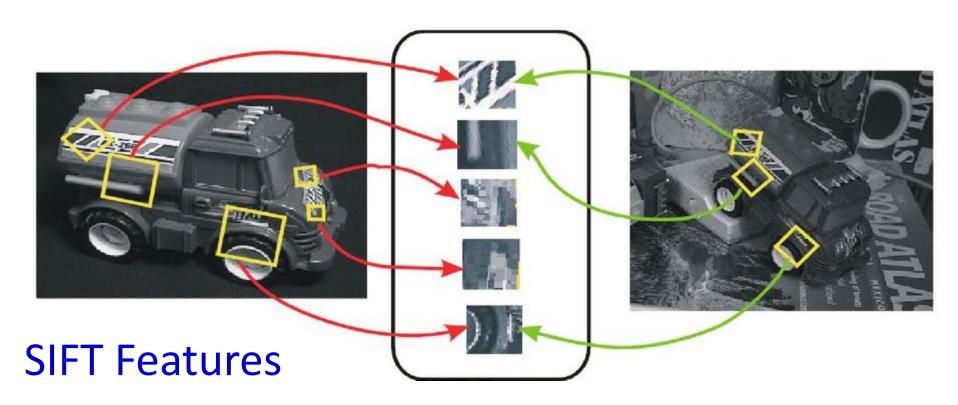
Oriented FAST and Rotated BRIEF (ORB)

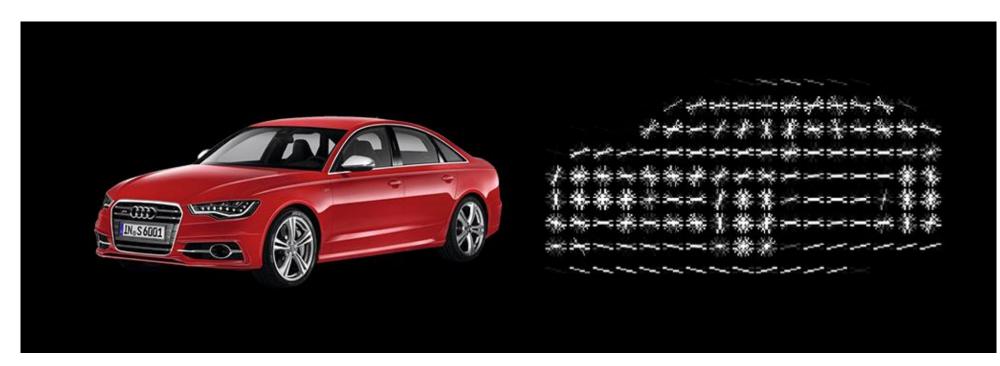
• Oriented FAST and Rotated BRIEF (ORB) is a feature detection and description algorithm in computer vision. It is a combination of the FAST (Features from Accelerated Segment Test) corner detector and the BRIEF (Binary Robust Independent Elementary Features) descriptor. FAST is a fast corner detection algorithm that is used to detect features in an image. BRIEF is a binary feature descriptor that describes the local appearance of a feature using a binary string.



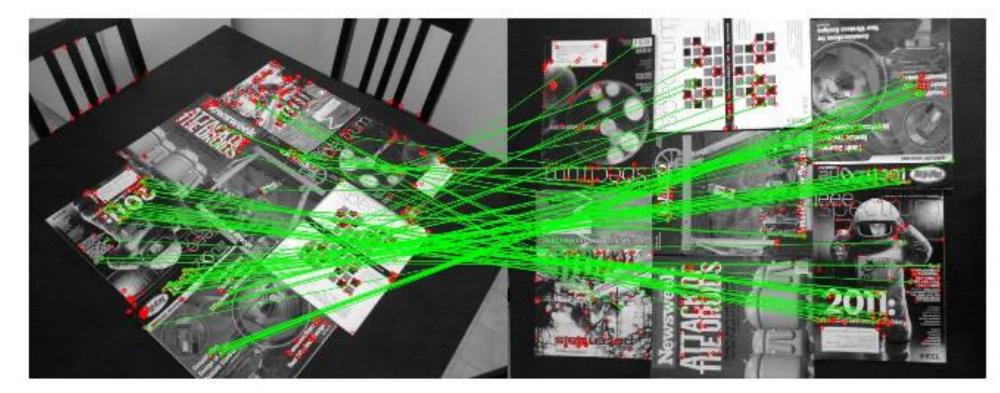
Again, some feature extraction techniques:







AST Features



ORB Features

Example of Classifiers

Decision Tree classifier

• A Decision Tree classifier is a simple and popular machine learning algorithm used for solving classification problems. It is a type of decision tree algorithm, where the tree is used to make predictions by recursively partitioning the data into smaller subsets based on the values of the input features. Each node in the tree represents a feature, and the branches represent the possible values of that feature. The leaves of the tree represent the class labels, and the path from the root to a leaf represents a decision rule for making predictions. To make a prediction for a new input, the algorithm follows the path through the tree that corresponds to the values of the input features.

Random Forest Classifier

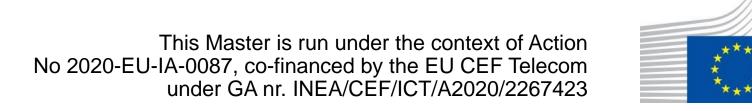
• In a Random Forest Classifier, a large number of decision trees are grown, and each tree is trained on a randomly selected subset of the data. When making a prediction for a new input, the Random Forest Classifier aggregates the predictions made by each individual decision tree and outputs the class label that is predicted by the majority of trees.

Naive Bayes classifier

• The Naive Bayes classifier is a probabilistic machine learning algorithm used for classification problems. It is based on Bayes' theorem, which states that the probability of a hypothesis (e.g., a class label) given some observed evidence (e.g., input features) can be estimated based on prior probabilities of the hypothesis and the probability of the evidence given the hypothesis.

Support vector machine

Support Vector Machine (SVM) is a type of supervised learning algorithm used for classification and regression analysis. It is a boundary-based
algorithm that finds the maximum-margin boundary that separates the classes in the data.



Data-driven approaches

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model
```

```
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set

```
airplane
automobile
bird
cat
deer
```



```
def train(images, labels):
    # Machine learning!
    return model
Memorize all
    data and labels
```


Training data with labels

query data

Distance Metric

 $\to \mathbb{R}$

Distance Metric to compare images

L1 distance:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

test image				
56	32	10	18	
90	23	128	133	
24	26	178	200	
2	0	255	220	

training image				
10	20	24	17	
8	10	89	100	
12	16	178	170	
4	32	233	112	

pixel-wise absolute value differences

46	12	14	1	
82	13	39	33	add
12	10	0	30	→ 456
2	32	22	108	

A good implementation:

https://github.com/facebookresearch/faiss

First classifier: Nearest Neighbor

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
   pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
```

Memorize training data

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

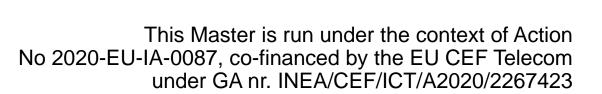
This is bad: we want classifiers that are fast at prediction; **slow** for training is ok

For each test image:

48

- Find closest train image
- Predict label of nearest image

return Ypred



Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on **test** data

BAD: No idea how algorithm will perform on new data

train test

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train test

Idea #3: Split data into train, val; choose hyperparameters on val and evaluate on test

Correct!!!

train validation	test
------------------	------

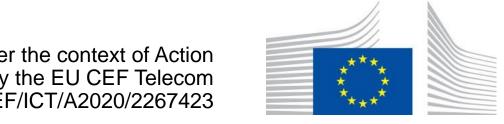
Setting Hyperparameters

train

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

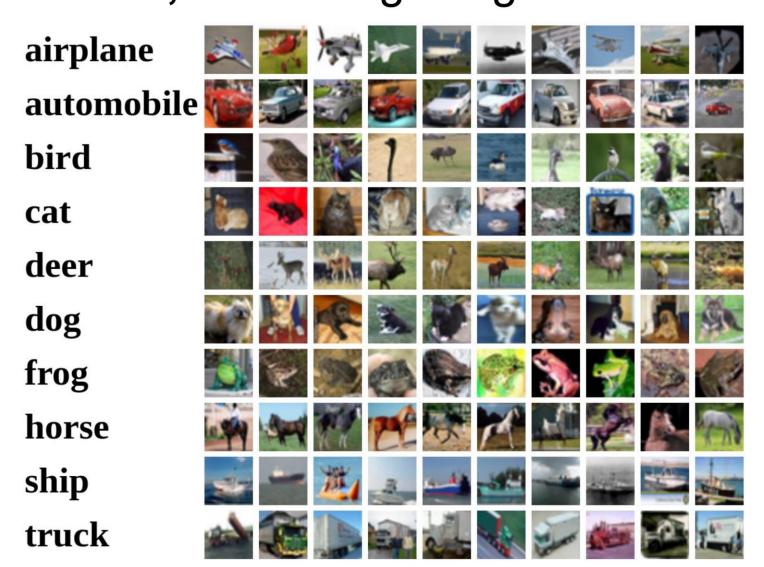
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning



Example Dataset: CIFAR10

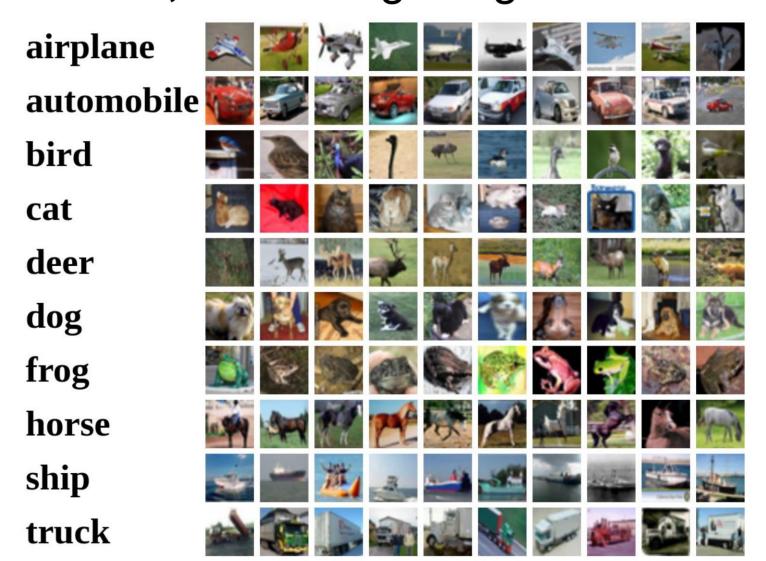
10 classes50,000 training images10,000 testing images



Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images



Test images and nearest neighbors

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

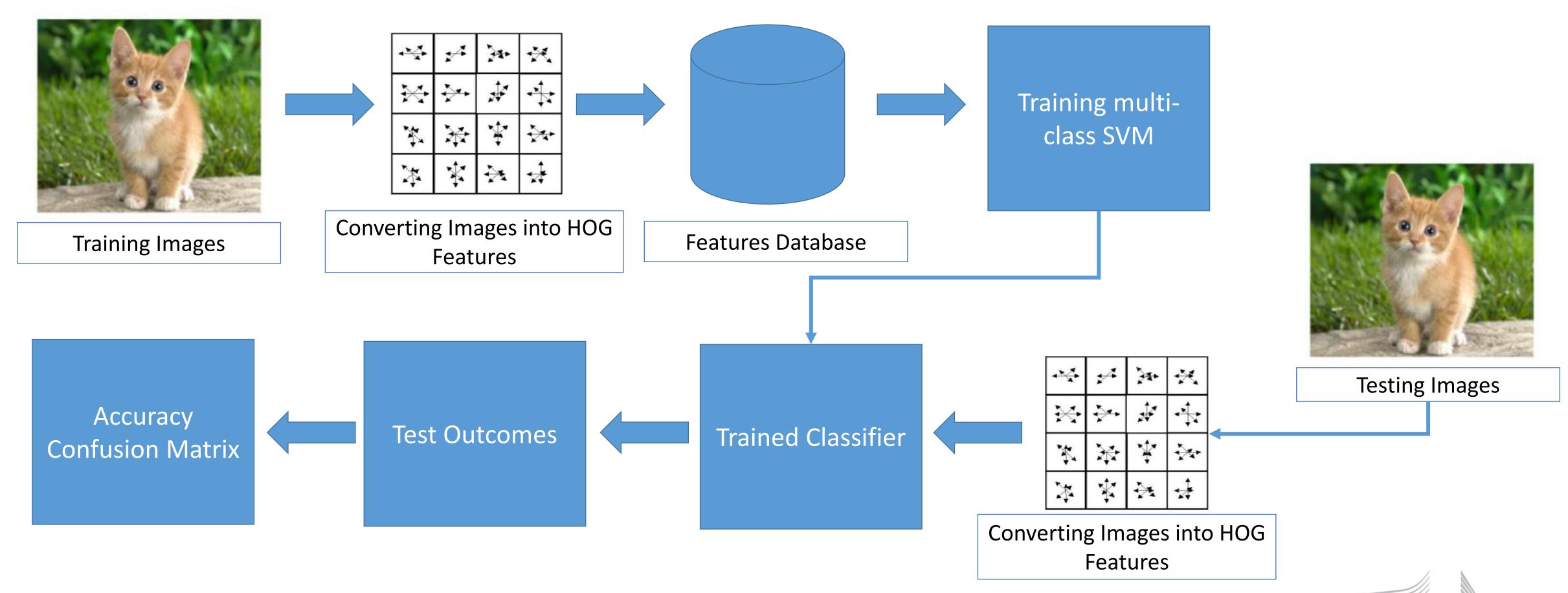
K-Nearest Neighbors: Summary

In **image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

The K-Nearest Neighbors classifier predicts labels based on the K nearest training examples

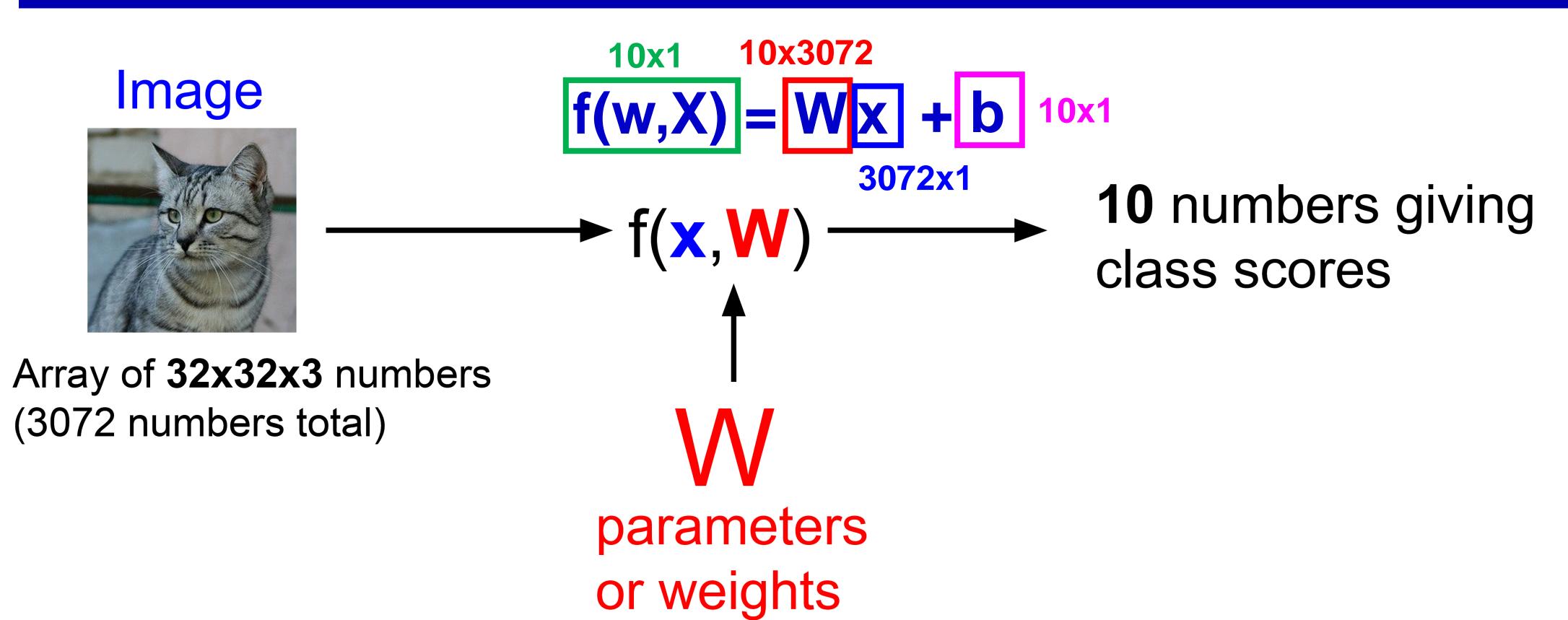
- Distance metric and K are hyperparameters
- Choose hyperparameters using the validation set;
- Only run on the test set once at the very end!

Traditional Image Classification: Example of using HOG and SVM



56

Linear Classifier: Parametric Approach

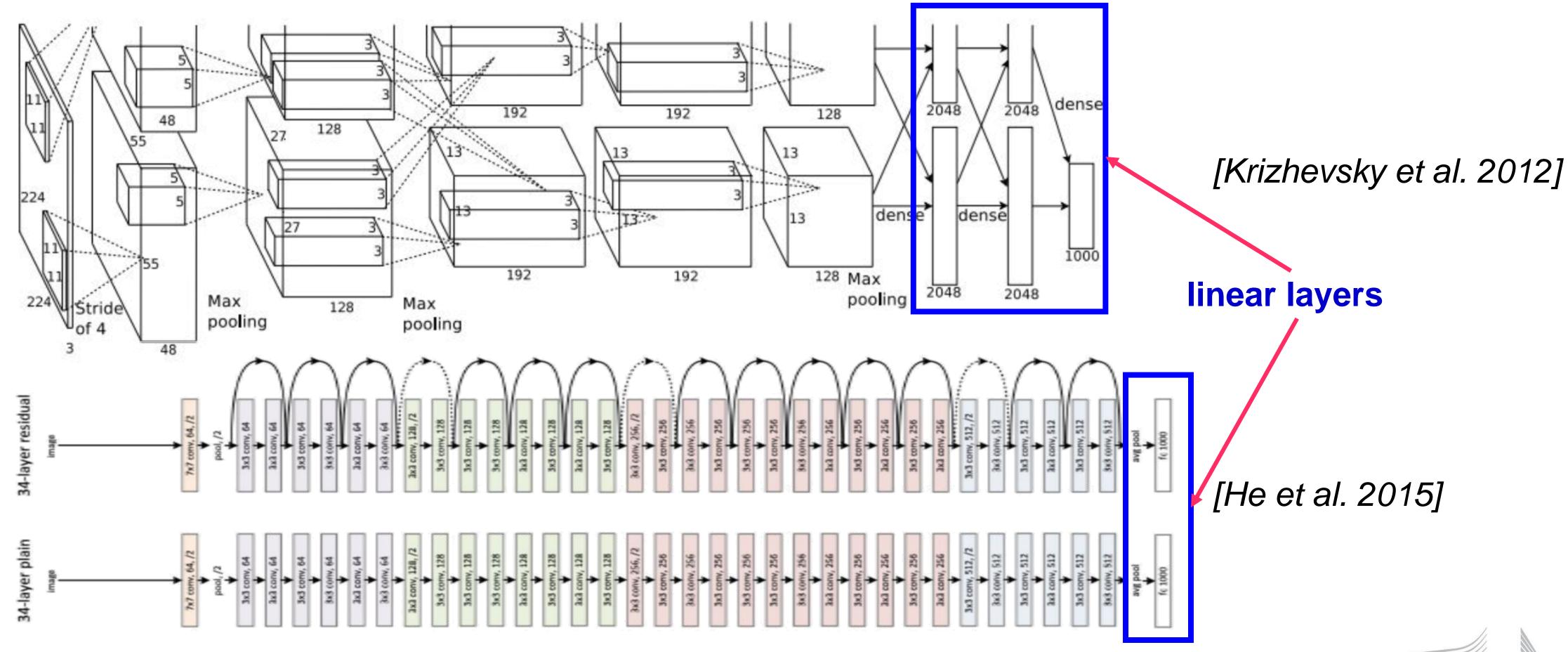


Linear Classifier: Parametric Approach

A neural network consists of several linear classifiers

This image is CC0 1.0 public domain

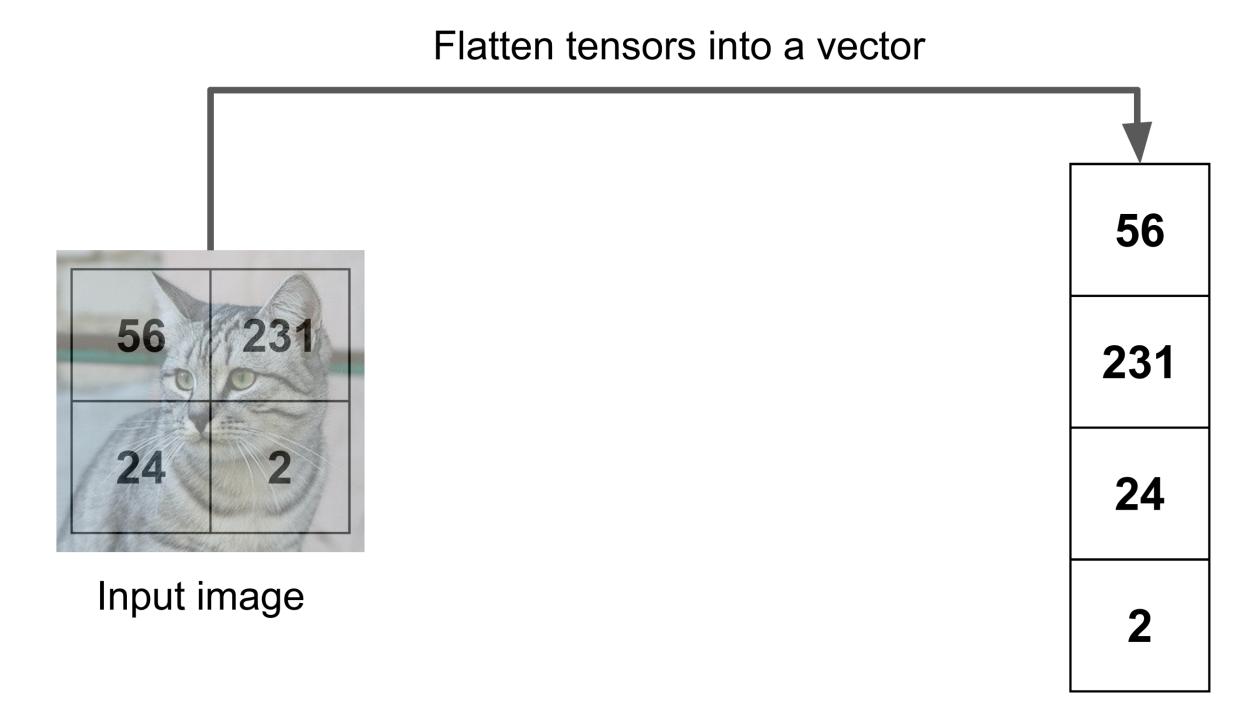
Linear Classifier: Parametric Approach



59

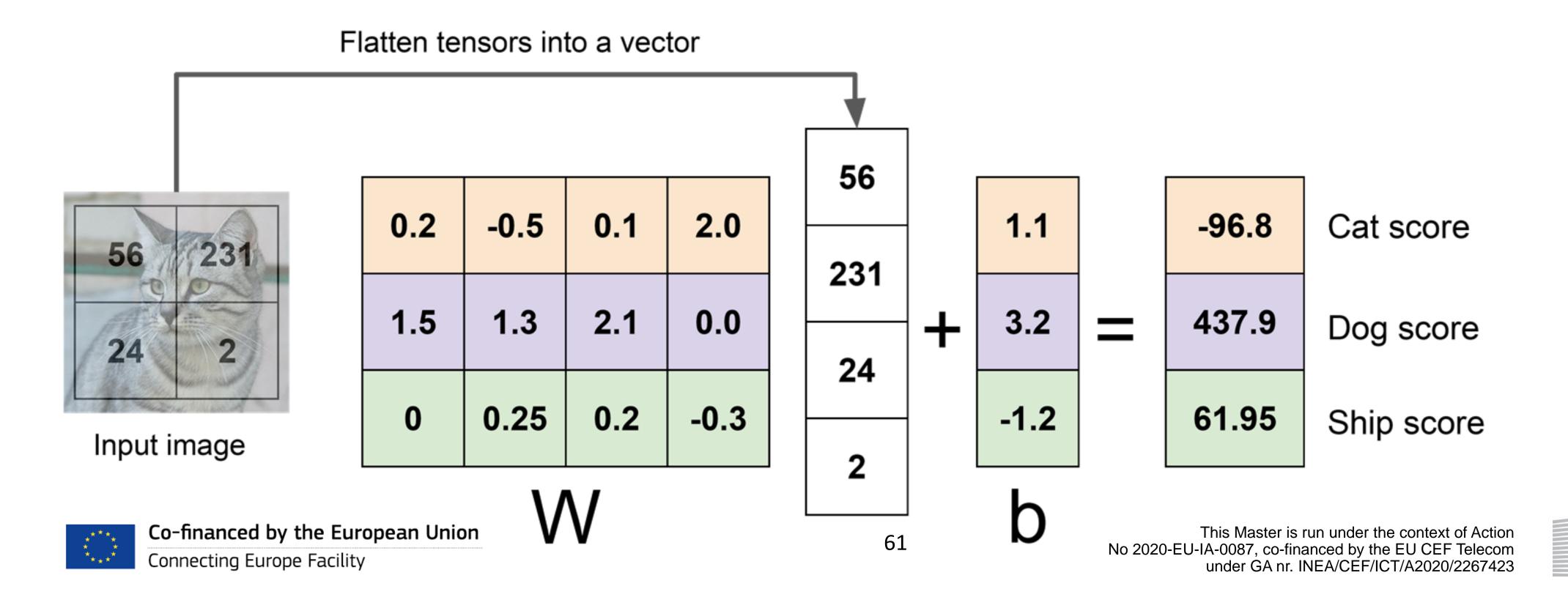
Linear Classifier: Parametric Approach

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



Linear Classifier: Parametric Approach

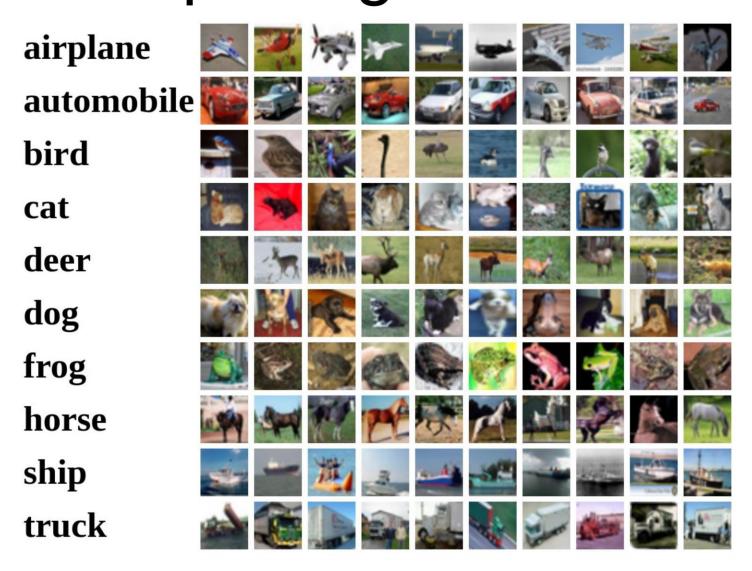
Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Algebraic Viewpoint

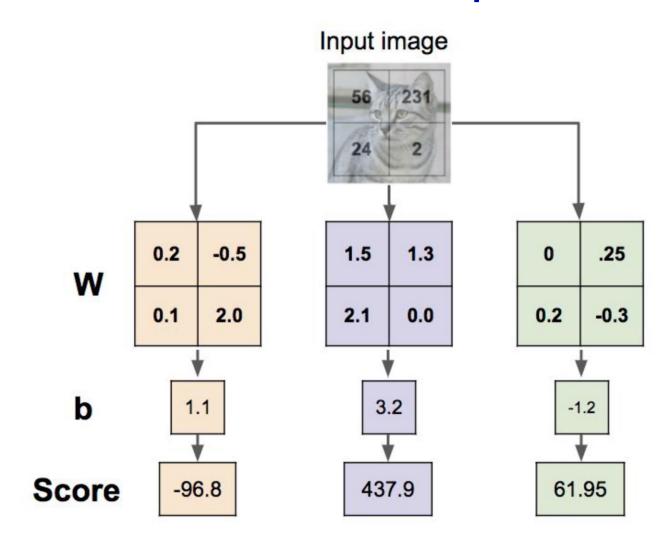


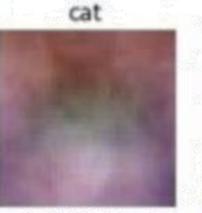
Linear Classifier: Parametric Approach

Interpreting a Linear Classifier

Visual Viewpoint

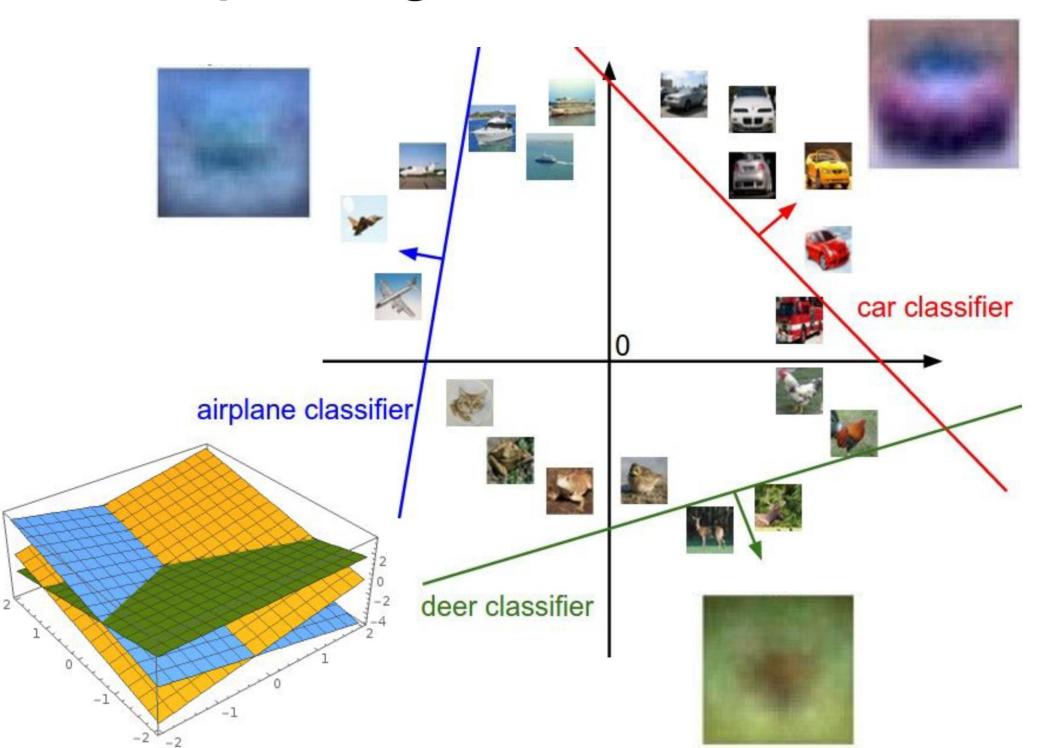






Linear Classifier: Parametric Approach

Interpreting a Linear Classifier: Geometric Viewpoint



$$f(x,W) = Wx + b$$

Array of 32x32x3 numbers (3072 numbers total)

Plot created using Wolfram Cloud

Cat image by Nikita is licensed under CC-BY 2.0

Linear Classifier

Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2

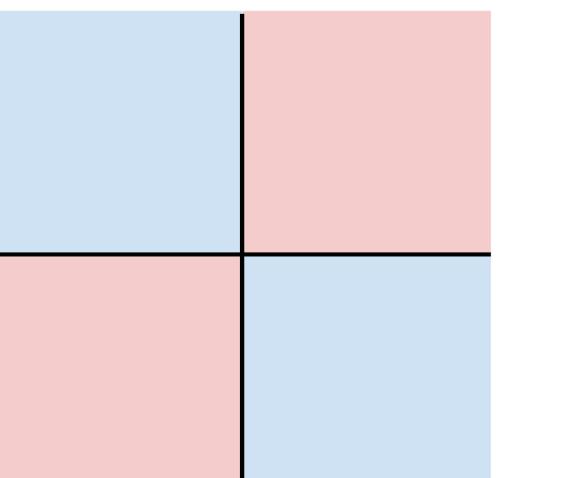
Everything else

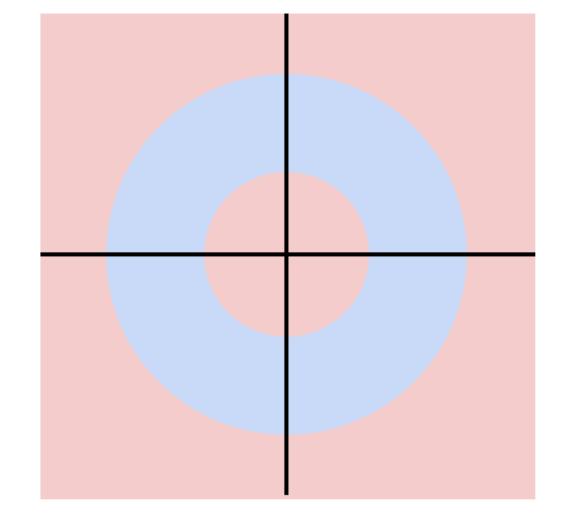
Class 1

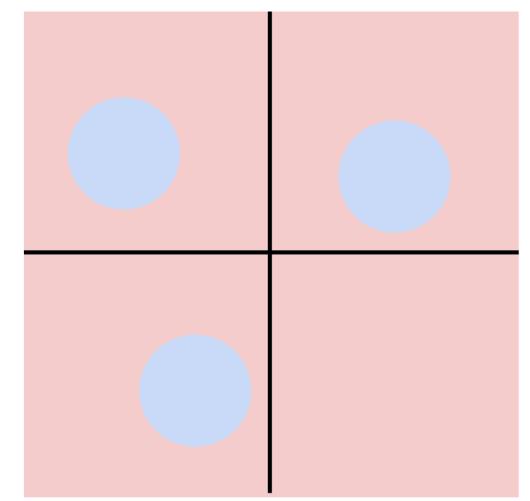
Three modes

Class 2:

Everything else







Linear Classifier: SVM

Linear Classifier – Choose a good W

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function.

 (optimization)

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

A **loss function** tells how good our current classifier is

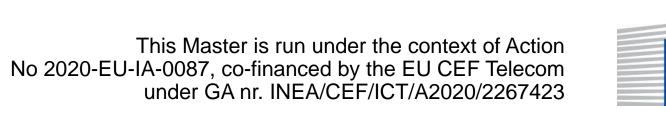
Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a average of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$



Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

2.2

2.5

cat

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

-3.

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

= max(0, 5.1 - 3.2 + 1)

 $+\max(0, -1.7 - 3.2 + 1)$

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

2.2

2.5

cat

3.2

car

frog

Losses:

5.1

2.9

1.3

4.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{split} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 1.3 - 4.9 + 1) \\ &+ \max(0, 2.0 - 4.9 + 1) \\ &= \max(0, -2.6) + \max(0, -1.9) \\ &= 0 + 0 \\ &= 0 \end{split}$$

Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

3.2 cat

car

5.1

4.9

frog

Losses:

2.9

1.3

2.2

2.5

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 2.2 - (-3.1) + 1)$

 $+\max(0, 2.5 - (-3.1) + 1)$

 $= \max(0, 6.3) + \max(0, 6.6)$

= 6.3 + 6.6

= 12.9

Linear Classifier: SVM

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat

1.3

2.2

car

5.1

3.2

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = rac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$

= **5.27**

Linear Classifier: SVM

Multiclass SVM loss:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

1.3

4.9

frog 2.0

Losses:

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

Q2: What is the min/max possible SVM loss Li?

Q3: At initialization W is small so all s ≈ 0. What is the loss L_i, assuming N examples and C classes?

Q4: What if the sum was over all classes?

(including $j = y_i$)

Q5: What if we used the mean instead of sum?

Q6: What if we used $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)^2$

Linear Classifier: SVM

Multiclass SVM loss:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

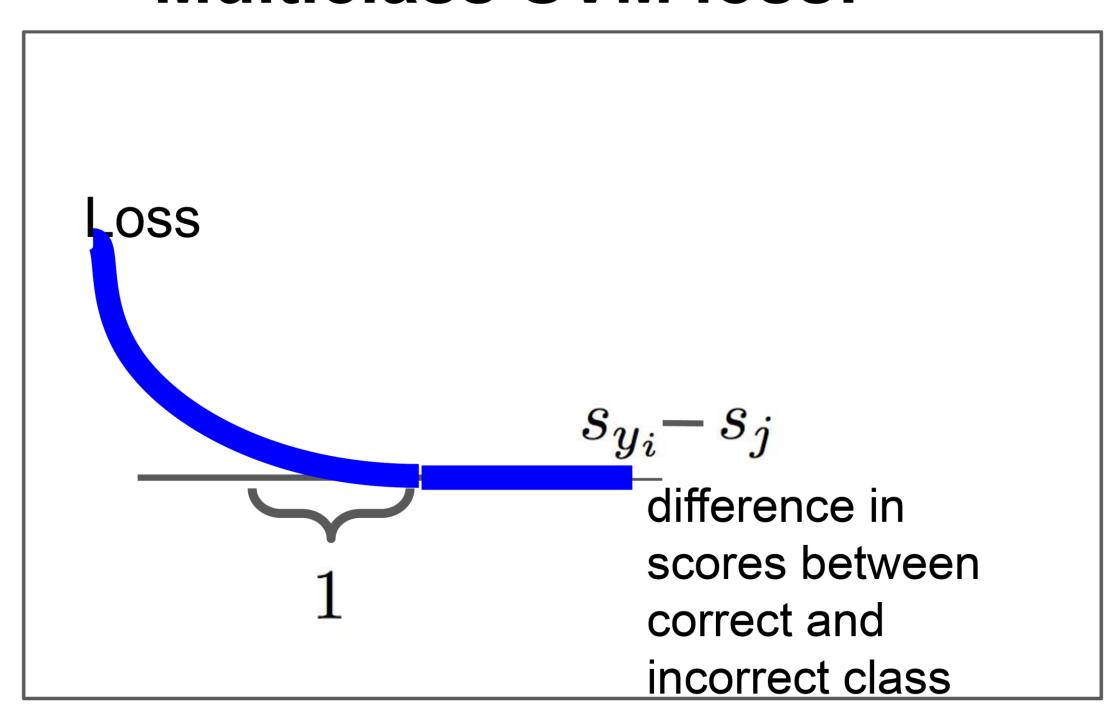
1.3

4.9

frog 2.0

Losses:

Multiclass SVM loss:



Q6: What if we used $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)^2$

Softmax Classifier (Multinomial Logistic Regression)

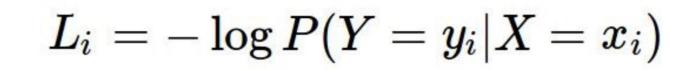
Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Probab must be

Probabilities Probabilities must be >= 0 must sum to 1



cat

car

frog

3.2

5.1

-1.7

Unnormalized log-probabilities / logits

24.5
1 exp 164.0

unnormalized probabilities

normalize 0.13
0.13

probabilities

0.00

 $\rightarrow L_i = -\log(0.13)$ = **2.04**

Maximum Likelihood Estimation

Choose weights to maximize the likelihood of the observed data

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

Probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

compare

Softmax **Function**

cat

car

frog

3.2

5.1

Unnormalized log-probabilities / logits

exp

unnormalized probabilities

Probabilities

must be $\geq = 0$

24.5

|64.0

must sum to 1 0.13 normalize 0.87

probabilities

Kullback-Leibler divergence

$$D_{KL}(P||Q) =$$

$$\sum_{y} P(y) \log \frac{P(y)}{Q(y)}$$

Correct probs

1.00

0.00

0.00

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

compare

Softmax **Function**

cat

car

frog

3.2

5.1

Unnormalized log-probabilities / logits

exp

unnormalized probabilities

Probabilities

must be $\geq = 0$

24.5

64.0

Probabilities must sum to 1

0.13

0.87

normalize

probabilities

1.00

0.00

0.00

Cross Entropy

$$H(P,Q) =$$

$$H(p) + D_{KL}(P||Q)$$

Correct probs

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

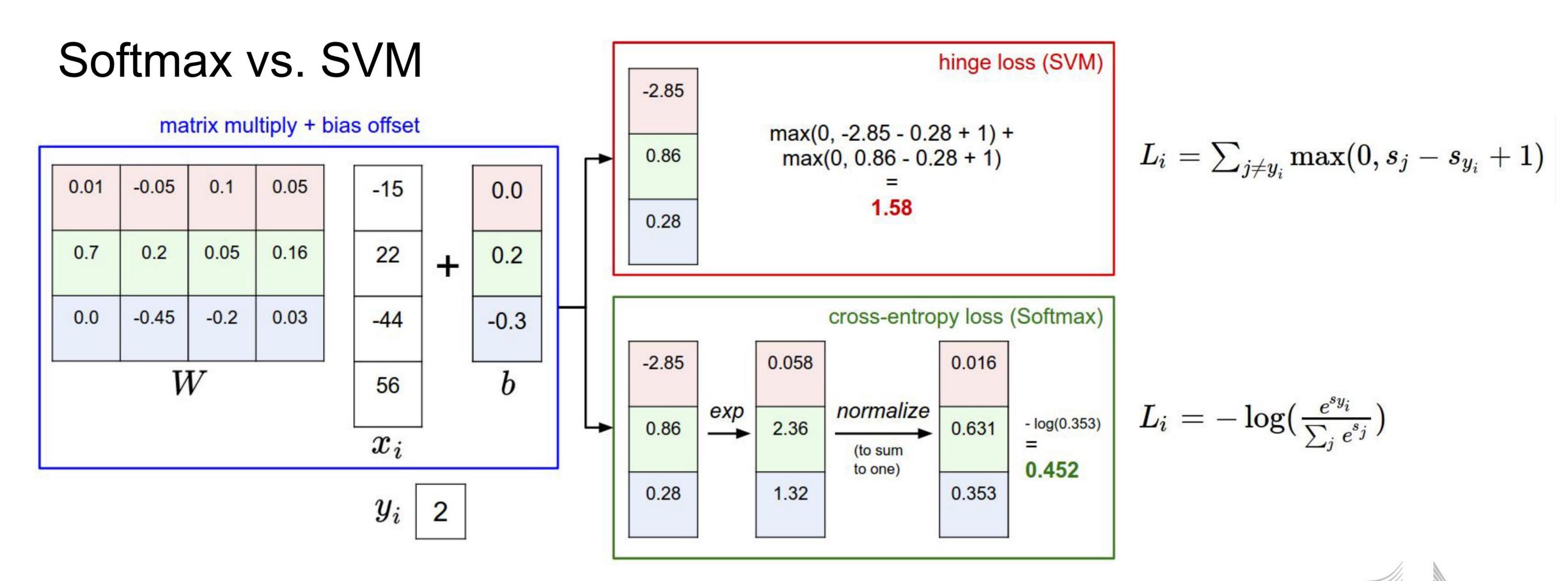
$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

car 5.1



78

Next Courses

- Brief discussion on regularization & optimization techniques
- Image Classification with CNNs
 - Training, Visualizing and Understanding
- Object Detection and Image Classification
 - Recurrent Neural Networks
 - Attention and Transformers

Research in Deep Camera

Deep Camera

Alessandro Artusi
Team Leader
DeepCamera Group

email: a.artusi@cyens.org.cy

Research Interests:

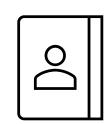
Machine Learning, Deep Learning and its applications in Computer Vision, High Dynamic Range Imaging, Image Processing applied on Computer Graphics and Color Science

https://www.cyens.org.cy/en-gb/research/pillarsgroups/visual-sciences/deepcamera/people/alessandro-artusi/

https://deepcamera.cyens.org.cy/about-us/

deepcamera.ai@gmail.com

+357 227 475 81



Dimarchias Square 23 STOA, Nicosia Nicosia, Nicosia 1016, Cyprus

Thank you!

See you next week