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CNN Architectures: Training Neural Networks

Overview

1. One time set up: activation functions, preprocessing, weight initialization, regularization, gradient
checking

2. Training dynamics: babysitting the learning process, parameter updates, hyperparameter
optimization

3. Evaluation: model ensembles, test-time augmentation, transfer learning
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Activation function

A synapse Is a structure that allows information to flow from one neuron
to another in a neural network.
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Activation function

The dendrites are a critical component of the neural network, as they receive input from other neurons
and from the external environment, which is then transformed by the activation function to produce the
neuron's output. The behavior of the dendrites, along with the activation function and the synapses,
determines the overall behavior and output of the neural network.

The synapse In the activation function is a crucial component of the neural network, as it determines how
much influence each input has on the output of the neuron, and ultimately, the output of the network as a
whole.

Activation functions are used to introduce nonlinearity into neural networks, allowing them to model
complex relationships between inputs and outputs. When a neuron receives input from other neurons, It
computes a weighted sum of those Inputs, which iIs then passed through the activation function. The
output of the activation function is the neuron's output, which is then passed on to other neurons via
synapses.

Co-financed by the European Union 5 This Master is run under the context of Action
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Activation function

Every activation function (or non-
Sigmoid Leaky RelLU linearity) takes a single number
() = 1 max(0.1x, ) and performs a certain fixed
d - 14em® - mathematical operation on it.
tanh Maxout
tanh(m) - max(wi x + by, wa x + bo)
ReLU ELU
max (0, x) z &2\
-10 10 a(ex o 1) r < O - il 10
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Activation function: Sigmoid

The sigmoid non-linearity takes a real-valued number and
“squashes’ it into range between 0 and 1. In particular,
large negative numbers become O and large positive
numbers become 1. The sigmoid function has seen
frequent use historically since It has a nice interpretation as
the firing rate of a neuron: from not firing at all (O) to fully-
saturated firing at an assumed maximum frequency (1).

Main Drawbacks
1. Sigmoids saturate and kill gradients. A very undesirable property of the sigmoid neuron is that when the neuron’s

activation saturates at either tail of O or 1, the gradient at these regions is almost zero. Recall that during
backpropagation, this (local) gradient will be multiplied to the gradient of this gate’s output for the whole objective.
Therefore, if the local gradient is very small, it will effectively “kill” the gradient and almost no signal will flow through
the neuron to its weights and recursively to its data. Additionally, one must pay extra caution when initializing the
weights of sigmoid neurons to prevent saturation. For example, if the initial weights are too large then most neurons
would become saturated and the network will barely learn.
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Activation function: Sigmoid
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Activation function: Sigmoid
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Activation function: Sigmoid
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Activation function: Sigmoid

The sigmoid non-linearity takes a real-valued number and
“squashes’ it into range between 0 and 1. In particular,
large negative numbers become O and large positive
numbers become 1. The sigmoid function has seen
frequent use historically since It has a nice interpretation as
the firing rate of a neuron: from not firing at all (O) to fully-
saturated firing at an assumed maximum frequency (1).

Main Drawbacks

2. Sigmoid outputs are not zero-centered. This Is undesirable since neurons in later layers of processing in a Neural
Network would be receiving data that is not zero-centered. This has implications on the dynamics during gradient
descent, because If the data coming into a neuron is always positive, then the gradient on the weights w will during
backpropagation become either all be positive, or all negative (depending on the gradient of the whole expression f).
This could introduce undesirable zig-zagging dynamics in the gradient updates for the weights. However, notice that
once these gradients are added up across a batch of data the final update for the weights can have variable signs,
somewhat mitigating this issue. Therefore, this is an inconvenience but it has less severe consequences compared to
the saturated activation problem above.
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Activation function: Sigmoid
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We know that local gradient of sigmoid is always positive

We are assuming X Is always positive
So!l Sign of gradient for all wils the same as the sign of upstream scalar gradient!
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Activation function: Sigmoid

Consider what happens when the input to a neuron Is
always positive...

f Zwiivi + b

What can we say about the gradients on w?

Always all positive or all negative :(

(For a single element! Minibatches help)

Co-financed by the European Union
Connecting Europe Facility

L0 wo

*@® synapse
axon from a neuron
wopx(

cell body f (Z Wiy + b)
-— Zwixi +b f i =
- output axon
activation
function

W22

This Master is run under the context of Action
No 2020-EU-1A-0087, co-financed by the EU CEF Telecom
under GA nr. INEA/CEF/ICT/A2020/2267423




MAIACAREU Master programmes in Artificial
Intelligence 4 Careers in Europe

Activation function: Sigmoid

Main Drawbacks
3. Exp() is a bit compute expensive...

Co-financed by the European Union
Connecting Europe Facility

The sigmoid non-linearity takes a real-valued number and
“squashes’ it into range between 0 and 1. In particular,
large negative numbers become O and large positive
numbers become 1. The sigmoid function has seen
frequent use historically since It has a nice interpretation as
the firing rate of a neuron: from not firing at all (O) to fully-
saturated firing at an assumed maximum frequency (1).
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Activation function: tanh

The tanh non-linearity squashes a real-valued number to
the range [-1, 1]. Like the sigmoid neuron, Iits activations
saturate, but unlike the sigmoid neuron its output IS zero-
centered. Therefore, in practice the tanh non-linearity Is
always preferred to the sigmoid nonlinearity. Also note that
the tanh neuron is simply a scaled sigmoid neuron.

tanh
tanh(x)

Main Characteristics

« still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation function: tanh

The Rectified Linear Unit has become very popular in the
10 last few years. In other words, the activation is simply

RelLU thresholded at zero (see image above on the left).

max (0, x)

-10 10

Main Advantages

1. It does not saturate
2. Converges much faster than sigmoid/tanh in practice: It was found to greatly accelerate (e.g. a factor of 6

In Krizhevsky et al.) the convergence of stochastic gradient descent compared to the sigmoid/tanh functions. It is
argued that this is due to its linear, non-saturating form.
3. Very computationally efficient: Compared to tanh/sigmoid neurons that involve expensive operations

(exponentials, etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero.
[Krizhevsky et al., 2012]
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Activation function: RelLU

The Rectified Linear Unit has become very popular in the
10 last few years. In other words, the activation is simply
RelLU thresholded at zero (see image above on the left).

max (0, x)

~10 10

Main Drawbacks

1. Not zero-centered output
2. Unfortunately, ReLU units can be fragile during training and can “die”. For example, a large gradient flowing through a

ReLU neuron could cause the weights to update in such a way that the neuron will never activate on any datapoint
again. If this happens, then the gradient flowing through the unit will forever be zero from that point on. That is, the
ReLU units can irreversibly die during training since they can get knocked off the data manifold. For example, you may
find that as much as 40% of your network can be “dead” (i.e. neurons that never activate across the entire training
dataset) If the learning rate Is set too high. With a proper setting of the learning rate this is less frequently an issue.
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Activation function: RelLU

10
X 55 ReLU o(x) = ma,x(O,:c)
< a_ ate <
or| O
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What happens when x = -10?
What happens when x = 0? => people like to initialize
What happens when x = 10? RelLU neurons with slightly

positive biases (e.g. 0.01)
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Activation function: Leaky RelLU

Leaky RelLUs are one attempt to fix the “dying ReLU”
problem. Instead of the function being zero when x <0, a
leaky ReLU will instead have a small positive slope (of 0.01,

or S0).

Leaky RelLU

max(0.1z, x)

Main Advantages

1. It does not saturate
2. Converges much faster than sigmoid/tanh in practice: It was found to greatly accelerate (e.g. a factor of 6

In Krizhevsky et al.) the convergence of stochastic gradient descent compared to the sigmoid/tanh functions. It is
argued that this is due to its linear, non-saturating form.
3. Very computationally efficient: Compared to tanh/sigmoid neurons that involve expensive operations

(exponentials, etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero.
4. It will not “die”. [Mass et al., 2013] [He et al., 2015]
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Activation function: Leaky RelLU

Leaky RelLUs are one attempt to fix the “dying ReLU”
problem. Instead of the function being zero when x < 0, a
leaky ReLU will instead have a small positive slope (of 0.01,

Or S0).

Leaky RelLU

max(0.1z, x)

Parametric Rectifier (PRelLU)
Leaky RelL U f(a:) - max(aaz, m)
f(x) = max(0.01z, x) Vs

backprop into & (parameter)

[Mass et al., 2013] [He et al., 2015]
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Activation function: Exponential Linear Units (ELU)

0 ELUs are similar to other activation functions such as
ELU RelLU. However, ELUs have some advantages over RelLU.
T > () One advantage Is that ELUs can produce negative values,
— which can be important for certain types of data. Another
Oz(ew — 1) r<0 - > o advantage Is that ELUs can help avoid the "dying ReLU"

JIoha is a hvpernarameter that determines the value the problem, which occurs when the output of a ReLU neuron
function approaches for large negative inputs. The parameter becomes stuck at zero and cannot produce meaningful
alpha is usually set to 1.0, but it can be tuned during training. gradients during backpropagation.

Main Advantages

* All benefits of ReLU

 Closer to zero mean outputs

 Negative saturation regime compared with Leaky RelLU, while it adds some robustness to noise

Main Drawbacks
1. Computation more expensive since it requires to compute the exp() [Clevert et al., 2015]

Co-financed by the European Union 71 This Master is run under the context of Action
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Activation function: Scaled Exponential Linear Units (SELU)

AT ifzx >0
Aa(e® — 1) otherwise

a = 1.6732632423543772848170429916717
A = 1.0507009873554804934193349852946 P .

Main Advantages
1. Scaled version of ELU that works better for deep networks

2. “Self-normalizing” property
3. Can train deep SELU networks without BatchNorm

[Klambauer et al. ICLR 2017]
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Activation function: Maxout “Neuron”

Other types of units have been proposed that do not have the

functional form f(wTx+b) where a non-linearity is applied on the dot
Maxout product between the weights and the data. It generalizes the ReLU
max(w,{x + by, wgag + b2) and its leaky version. Notice that both ReLU and Leaky ReLU are a

special case of this form (for example, for ReLU we have w1,b1=0).

Main Advantages

1. Generalizes ReLU and Leaky RelL U

2. Linear Regime! The Maxout neuron therefore enjoys all the benefits of a ReLU unit (linear regime of operation, no
saturation) and does not have its drawbacks (dying ReLU).

Main Drawbacks
1. It doubles the number of parameters for every single neuron, leading to a high total number of parameters.

[Goodfellow et al., 2013]
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Activation function: Summary

“What neuron type should | use?”

Use the RelLU non-linearity, be careful with your learning rates and possibly monitor the
fraction of "dead” units in a network. If this concerns you, give Leaky RelLU or Maxout a try.
Never use sigmoid, and avoid using tanh (you can try tanh, but expect it to work worse than
ReLU/Maxout).
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Data Preprocessing
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Data Pre-processing

original data zero-centered data normalized data

10 10 10

0 - 0 — 0
Y
0 -5 " 0 5 19 RRAT: -5 0 5 10 BT -5 0 5 10
X -= np.mean(X, axis = 0) . X /= np.std(X, axis = 0)
(Assume X [NxD] is data matrix, each example in a row)
Co-financed by the European Union 6 This Master is run under the context of Action
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Data Pre-processing

Remember: Consider what happens when the input to a neuron Is always allowed

positive... gradient
update
directions

f Z’wiwi + b

Zig zag path
allowed
| | o N gradient
We know that local gradient of sigmoid Is always positive update
We are assuming X is always positive directions
hypothetical
optimal w
vector
Co-financed by the European Union This Master is run under the context of Action
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Data Pre-processing

original data decorrelated data whitened data

10 10 10

~10 : ~10 -10
-10 - 0 5 1G -10 -9 0 5 1Q ~10 -3 0 5 10
(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

In practice, you may also see PCA and Whitening of the data

Co-financed by the European Union )8 This Master is run under the context of Action
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Data Pre-processing

Before normalization: classification loss After normalization: less sensitive to small

very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize

Co-financed by the European Union 79 This Master is run under the context of Action
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Data Pre-processing: In practice for Images

For instance, consider CIFAR-10 example with [32,32,3] images
» Subtract the mean image

(mean image = [32,32,3] array)

» Subtract per-channel mean

(mean along each channel = 3 numbers)

» Subtract per-channel mean and Divide by per-channel std Not common
(mean along each channel = 3 numbers) to do PCA or
whitening

Co-financed by the European Union 30 This Master is run under the context of Action
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Welght Initialization
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Weight initialization

Weight initialization I1s an important step in training Convolutional Neural Networks
(CNNSs) because It sets the initial values of the network's weights, which can
significantly affect the learning process and the performance of the network.

When Initializing the weights of a CNN, there are different methods that can be used.
One commonly used method is to initialize the weights randomly, using a Gaussian
distribution with zero mean and a small standard deviation. However, this can lead to
the problem of vanishing or exploding gradients, which can make it difficult for the
network to learn.

W= 0.01 * np.random.randn(Din, Dout)

Works ~okay for small networks, but problems with deeper networks.

Co-financed by the European Union 37 This Master is run under the context of Action
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Weight initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer What will happen to the activations for the
hs = [] net with hidden size 4096 last layer?
X = np.random.randn(16, dims[0]) All activations tend to zero for deeper

for Din, Dout in zip(dims[:-1], dims[1l:]): network layers
W= 0.01 * np.random.randn(Din, Dout)

Q: What do the gradients dL/dW look like?
X = np.tanh(x.dot(W))

hs.append (x) A: All zero, no learning
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

1 -1 0 1 -1 0 1
Co-financed by the European Union 33 This Master is run under the context of Action
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Weight initialization: Activation statistics

dims = [4096] * 7 Increase std of initial What will happen to the activations for the
hs = [] weights from 0.01 to 0.05 last layer?
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims|[:-1], dims[1l: . .
: - What do the gradients dL/dW look like?
W= 0.05 * np.random.randn(Din, Dout) < Jradl |

All activations saturate

X = np.tanh(x.dot(W)) A: Local gradients all zero, no learning
hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87/ std=0.85 std=0.85 | std=0.85 std=0.85 std=0.85

-1 0 1 -] 0 1 -1 0 1 -1 0 1 -1 C 1 -1 0 ]
Co-financed by the European Union 4 This Master is run under the context of Action
Connecting Europe Facility
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Weight initialization: Xavier Initialization

Xavier Initialization: This method initializes the weights using a Gaussian distribution
with zero mean and a standard deviation that is calculated based on the number of
Input and output neurons for each layer. This method ensures that the variance of the
activations and gradients remain roughly the same across layers, which can prevent
the vanishing and exploding gradient problems.

Co-financed by the European Union 35 This Master is run under the context of Action
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Weight initialization: Xavier Initialization

dims = [4096] * 7 “Xavier” Initialization: “Just right”: Activations are
hs = [] std = 1/sqrt(Din) nicely scaled for all layers!
X = np.random.randn(16, dims[0])

for B ] & O ] ’ ] ol e 1 T ® = 1 T B B

W = np.random.randn(Din, Dout) / np.sqrt(Din
X = np.tanh(x.dot(W))

Glorot and Bengio, “Understanding the difficulty of training

hs. append ( X ) deep feedforward neural networks”, AISTAT 2010
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

—1 0 1 -1 0 1 -1 0 1 | 0 1
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Weight initialization: Xavier Initialization

* One potential drawback of Xavier initialization Is that it assumes that the activations of the
Input and output layers are independent and identically distributed (l1ID), which may not
always be the case In practice. If the activation distribution of the input or output layer Is
significantly different from what is assumed by Xavier initialization, it may lead to suboptimal
performance.

* Another potential iIssue with Xavier Initialization Is that it may not work as well for deep
neural networks with many layers, especially when using certain activation functions such as
ReLU. In deep networks, the signal from the input may become very small by the time it
reaches the output, leading to vanishing gradients. While Xavier initialization can help
mitigate this problem, it may not be sufficient in very deep networks, and more advanced
techniques like layer normalization or residual connections may be needed.

Co-financed by the European Union 37 This Master is run under the context of Action
o e No 2020-EU-1A-0087, co-financed by the EU CEF Telecom

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423




MAIACAREU Master programmes in Artificial
Intelligence 4 Careers in Europe

Weight initialization: Xavier Initialization - What about ReLU?

: - Xavier assumes zero centered
ilms [ ] ERE S Change from tanh to Rel U activation function
S —

X = np.random.randn(1l6, dims[0])

. : : 3 . Acti : | in.
for Din, Dout in le(dlmS[ :_1]’ dlms[lz ] ): ctivations collapse to zero again

; : no learning
W = np.random.randn(Din, Dout) / np.sqgrt(Din)
X = np.maximum(0, x.dot(W))
hs.append(x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07
std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10
T | T T ‘ T ‘ Y kv—- T - r
-1 0 1 -1 D 1 -1 D 1 -1 0 1 -1 0 1 -1 0 1
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Weight initialization: Kaiming / MSRA Initialization

Kaiming / MSRA Initialization: This method is similar to Xavier initialization but uses
a different formula for calculating the standard deviation. It is specifically designed for
networks that use Rectified Linear Unit (ReLU) activation functions, which can lead to
sparsity in the network's activations. He initialization helps to counteract this sparsity

and improve the performance of the network.
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Weight initialization: Kaiming / MSRA Initialization

“Just right”: Activations are nicely
scaled for all layers!

di = [4096] * 7 . -
— [][ ] ReLU correction: std = sqrt(2 / Din)
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1 dims[1:1)

= np.random.randn(Din, Dout) * np.sqrt(2/Din
X = np.maximum(0, x.dot(W))

He et al, “Delving Deep into Rectifiers: Surpassing Human-

hs. append ( X ) Level Performance on ImageNet Classification”, ICCV 2015
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55

std=0.83 std=0.83 std=0.83 ~_std=0.81 std=0.81 std=0.81

-1 0 1 -1 0 1 -1 -1 0 1 -1 0 1
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Weight initialization: Summary

Overall, the choice of weight initialization method can depend on the specific network
architecture and problem being solved. The goal is to find a method that helps the
network converge faster and achieve better performance, without introducing other
problems such as vanishing or exploding gradients.

Proper initialization is an active area of research...

 Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

« Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

« Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

 Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015
« Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015

 All you need is a good init, Mishkin and Matas, 2015

* Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

« The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
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Training vs. Testing Error
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Beyond Training Error

Train Loss Accuracy

17.5 09 - —e— train

15.0 val

12.5 0.8 1

10.0

0.7 -

1.5

5.0 06 -

2.5 e s asalh b oo o®®®

0.0 05 {#* S——

bO 7Sb0 10(500 125';00 15600 17.‘;00 20000 0 ZSbO SObO 7Sb0 10(500 5'00 15(;00 17.‘;00 20000

Better optimization algorithms But we really care about error on
help reduce training loss new data - how to reduce the gap?
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Early Stopping: Always do this

Train
Loss Accuracy

Stop training here

lteration lteration

Stop training the model when accuracy on the validation set decreases or train for a long time,
but always keep track of the model snapshot that worked best on validation

Co-financed by the European Union a4 This Master is run under the context of Action
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Model Ensembles

1. Train multiple iIndependent models

2. At test time average their results
(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Co-financed by the European Union 45 This Master is run under the context of Action
o e No 2020-EU-1A-0087, co-financed by the EU CEF Telecom

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423




MAIACAREU Master programmes in Artificial
Intelligence 4 Careers in Europe

How to improve single-model performance?

Train Loss Accuracy
17.5 09 - —— traln
15.0 »— val
12.5 0.8 1
100
0.7 -
15
50
0.6 1
a3 202009 €SO PSP T 200 o
00 0s OQ_H‘H,@&m&w.@&-&w ‘
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Regularization
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Regularization: Add term to loss

L= % Zf\; Zj;éyi max (0, f(zi; W); — f(zi; W)y, +1) +|AR(W)

In common use:

| 2 regularization =~ B(W) =22, Wy, (Weight decay)
L1 regularization R(W) =2 221 Wiy

Elastic net (L1 + L2) R(W) =32, >, W, + Wi
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Regularization: Dropout

The idea behind dropout is to
randomly drop out some of the
neurons in a layer during training,
with a certain probabillity. This has
the effect of preventing any
iIndividual neuron from relying too
heavily on any other neuron in the
layer, forcing the network to learn
more robust and distributed
representations of the data.

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Co-financed by the European Union 48 This Master is run under the context of Action
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Regularization: Dropout

In each forward pass, randomly set
some neurons to zero Probability of
dropping Is a hyperparameter; 0.5
IS common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout

p=0.5 | | * 't Example forward pass with a
3-layer network using
def train_step(X): dropout

"un X contains the data

= np.maximum(©, np.dot(Wl, X) + bl)

H1

Ul = np.random.rand(*Hl.shape) < p

H1 *= Ul

H2 = np.maximum(©, np.dot(W2, Hl) + b2)
U2 = np.random.rand(*H2.shape) < p

H2 *= U2 -

out = np.dot(W3, H2) + b3
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Regularization: Dropout + Scaling

Scaling after dropout Is a technique used in neural network training that involves rescaling the activations
of a layer after applying dropout regularization. The purpose of scaling Is to ensure that the expected
value of the output of a neuron remains the same, regardless of whether dropout was applied or not.

When dropout is applied to a layer during training, some of the neurons in the layer are randomly dropped
out with a certain probability. This has the effect of reducing the capacity of the layer, and can help
prevent overfitting by forcing the network to learn more robust and distributed representations of the data.
However, when neurons are dropped out, the remaining neurons receive a larger input, which can lead to
an increase In the variance of the activations. This can make It difficult to train the network effectively, as
the gradient updates may become unstable.

To address this issue, scaling after dropout can be used to rescale the activations of the remaining
neurons, so that their expected value remains the same as before dropout was applied. This is typically
achieved by dividing the activations by the probability of keeping a neuron during dropout. e.g., If dropout
probabillity is 0.5, then the scaling factor would be 2.
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Regularization: A common pattern

Training: Add some kind
of randomness

Y = fw(i,Z)

Testing: Average out randomness
(sometimes approximate)

y = f(z) = B.[f(x, 2)] = / p(2)f (z, 2)dz

S Co-financed by the European Union 52
Connecting Europe Facility

Example: Batch
Normalization

Training:
Normalize using
stats from random
minibatches

Testing: Use fixed
stats to normalize

This Master is run under the context of Action
No 2020-EU-1A-0087, co-financed by the EU CEF Telecom
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Regularization: Data Augmentation

Load image
and label

Compute

T loss

v
CNN

-

This image by Nikita is
licensed under CC-BY 2.0

Co-financed by the European Union 53 This Master is run under the context of Action
o e No 2020-EU-1A-0087, co-financed by the EU CEF Telecom

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423




MAIACAREU Master programmes in Artificial
Intelligence 4 Careers in Europe

Regularization: Data Augmentation

Load image
and label

Compute

T loss

v
—> CNN

-

Transform image
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Regularization: Data Augmentation

Horizontal Flips
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Regularization: Data Augmentation

Random crops and scales

Training: sample random crops / scales ResNet:
1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners +
center, + flips

Co-financed by the European Union This Master is run under the context of Action
y
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Regularization: Data Augmentation

Color Jitter

Simple: Randomize
contrast and brightness
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Regularization: Data Augmentation

Color Jitter

More Complex:

1. Apply PCAto all [R, G, B]
pixels In training set

2. Sample a “color offset”
along principal component
directions

3. Add offset to all pixels of a
training Image

[Krizhevsky et al. 2012], ResNet
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Regularization: Data Augmentation

Get creative for your problem!
Examples of data augmentations:
- translation

- rotation

- stretching

- shearing,

- lens distortions, ... (go crazy)

Cubuk et al., “AutoAugment: Learning Augmentation Strategies from Data”, CVPR 2019
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout
Batch Normalization
Data Augmentation
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Regularization: DropConnect

Training: Drop connections between neurons (set weights to 0)
Testing: Use all the connections

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
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Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions from several regions

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
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Regularization: Stochastic Depth

Training: Skip some layers in the network
Testing: Use all the layer

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling
Stochastic Depth
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Regularization: Cutout

Training: Set random image regions to zero
Testing: Use full image

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling

Stochastic Depth Works very well for small datasets like CIFAR,
Cutout less common for large datasets like ImageNet
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Regularization: Mixup

Training: Train on random blends of images

Testing: Use original images

. \
Examples: Target label:
Dropout CNN cat: 0.4
Batch Normalization dog: 0.6
Data Augmentation —

DropConnect

Fractional Max Pooling
Stochastic Depth
Cutout

Mixup
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Regularization: In practice

Training: Add random noise

Testing: Marginalize over the noise

Examples:

Dropout * Consider dropout for large fully-connected layers

Batch Normalization  Batch normalization and data augmentation almost always
Data Augmentation a good idea

DropConnect * Try cutout and mixup especially for small classification
Fractional Max Pooling datasets

Stochastic Depth

Cutout

Mixup
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Choosing Hyperparameters

Co-financed by the European Union This Master is run under the context of Action
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Choosing Hyperparameters

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization e.qg. log(C) for softmax with C classes
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of training data (~5-10 minibatches);
fiddle with architecture, learning rate, weight initialization

Loss not going down? LR too low, bad initialization Loss explodes to Inf or NaN? LR too high,
bad initialization
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on small weight decay,
find a learning rate that makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1le-2, 1e-3, 1le-4
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around what worked from Step 3, train
a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 epochs) without learning rate
decay
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at loss and accuracy curves
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Choosing Hyperparameters

Accuracy still going up, you

Accurac
4 need to train longer

Train

time
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Choosing Hyperparameters

A .
Accuracy Huge train / val gap means

overfitting! Increase regularization,

get more data

Train
.
time
Co-financed by the European Union 7 This Master is run under the context of Action

et No 2020-EU-1A-0087, co-financed by the EU CEF Telecom
Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423




MAIACAREU Master programmes in Artificial
Intelligence 4 Careers in Europe

Choosing Hyperparameters

A .
Accuracy No gap between train / val means

underfitting: train longer, use a

bigger model

Train
.
time
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Look at learning curves!

Training Loss Train / Val Accuracy

V.10

0.08 -

0.06 -

0.04 -

Training loss

0.02 -

0.00 *—

D 100000 200000 300000400000 500000600000  ° § 100000 200000 300000 200000 500000 EO0000

lteration lteration

Losses may be noisy, use a
scatter plot and also plot moving
average to see trends better
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Visualizing & Understanding

Co-financed by the European Union This Master is run under the context of Action
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Visualizing what ConvNets learn

Several approaches for understanding and visualizing Convolutional Networks have been
developed In the literature, partly as a response the common criticism that the learned features
IN a Neural Network are not interpretable. In this lecture we briefly survey some of these
approaches and related work.
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First Layer: Visualize Filters
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Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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First Layer: Visualize Filters
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First Layer: Visualize Filters

Visualizing the filters or kernels can be useful for several reasons:
1. Understanding what the network is learning: CNNs are designed to learn features from input data

automatically. By visualizing the filters, we can get an idea of what kind of features the network Is
detecting. For example, If a filter is detecting edges, we might see diagonal lines In the filter
visualization.

Debugging the network: Visualizing the filters can help us understand why a network might not be
performing well. If the filters appear to be detecting irrelevant features or noise in the input data, it may
be an indication that the network Is not learning the correct features.

Transfer learning: When using pre-trained CNNs for transfer learning, visualizing the filters can help us
understand how the network was trained and what kind of features it has learned. This can inform us
on how to fine-tune the network for our specific use case.

Improving network performance: Visualizing the filters can help us identify which filters are most
Important for the network's performance. This can inform us on how to adjust the network architecture,
such as increasing the number of filters or changing the filter size.

Co-financed by the European Union 37 This Master is run under the context of Action
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Last Layer: Nearest Neighbors

Testimage L2 Nearest neighbors in feature space

Recall: Nearest neighbors
In pixel space

A~ R EE
SEA O] B
H-EHEEEE
g > g g & F
e 8= 8

Krizhevsky et al, “lmageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
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Last Layer: Nearest Neighbors
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Last Layer: Dimensionality Reduction
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See high-resolution versions at
http://cs.stanford.edu/people/karpathy/cnnembed/

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
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Last Layer: Dimensionality Reduction

Visualization: Reducing the dimensionality of the feature vectors to 2 dimensions makes it possible to
visualize the high-dimensional feature space in a 2D scatter plot. This can help us gain insight into the

relationship between different features in the space and identify patterns that may not be apparent in the
high-dimensional space.

Interpretability: By visualizing the feature space in 2D, we can gain a better understanding of how different
features are related to each other and identify clusters of similar features. This can help us interpret the
output of the network and understand how it is making its predictions.

Comparison: By visualizing the feature space for different inputs or classes, we can compare the

distribution of features between them. This can help us identify differences between classes and understand
what features the network Is using to distinguish between them.

Optimization: Reducing the dimensionality of the feature vectors can also be useful for optimization
purposes, as it makes it easier to perform operations such as clustering or classification in the feature space.

Co-financed by the European Union 36 This Master is run under the context of Action
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Visualizing Activations

Layer Activations. The most straight-forward visualization technique is to show the activations of the
network during the forward pass. For ReLU networks, the activations usually start out looking relatively
blobby and dense, but as the training progresses the activations usually become sparser and more
localized. One dangerous pitfall that can be easily noticed with this visualization is that some activation
maps may be all zero for many different inputs, which can indicate dead filters, and can be a symptom of
high learning rates.

Co-financed by the European Union 37 This Master is run under the context of Action
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Visualizing Activations

Typical-looking activations on the first
CONYV layer (left), and the 5th CONV
layer (right) of a trained AlexNet
looking at a picture of a cat. Every box
shows an activation map
corresponding to some filter. Notice
that the activations are sparse (most
values are zero, In this visualization
shown In black) and mostly local.

Co-financed by the European Union This Master is run under the context of Action
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Visualizing Activations

Conv/FC Filters. The second common strategy is to visualize the weights. These are usually most
interpretable on the first CONV layer which is looking directly at the raw pixel data, but it is possible to
also show the filter weights deeper in the network. The weights are useful to visualize because well-
trained networks usually display nice and smooth filters without any noisy patterns. Noisy patterns can be
an indicator of a network that hasn't been trained for long enough, or possibly a very low regularization
strength that may have led to overfitting.

Co-financed by the European Union 39 This Master is run under the context of Action
Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423




MAIACAREU Master programmes in Artificial
Intelligence 4 Careers in Europe

Visualizing Activations

ypical-looking filters on the first CONV
layer (left), and the 2nd CONV layer (right)
of a trained AlexNet. Notice that the first-
layer weights are very nice and smooth,
iIndicating nicely converged network. The
color/grayscale features are clustered
because the AlexNet contains two separate
streams of processing, and an apparent
conseqguence of this architecture is that one
stream develops high-frequency grayscale
features and the other low-frequency color
features. The 2nd CONV layer weights are
not as interpretable, but it Is apparent that
they are still smooth, well-formed, and
absent of noisy patterns.

Co-financed by the European Union 90 This Master is run under the context of Action
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Maximally Activating Patches

Pick a layer and a channel; e.g. conv51is 128 x 13 x 13,
pick channel 17/128

Run many images through the network, record values of
chosen channel

Visualize image patches that correspond to maximal
activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
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Saliency maps

Sallency maps are a visualization technique that highlights the most important regions of an input image
that are relevant to a specific output of a neural network. Saliency maps can be used to understand the
features and patterns that a neural network Is using to make its predictions.

Saliency maps are typically generated by backpropagating the gradient of the output with respect to the
iInput Image. This produces a map that indicates how each pixel in the input image contributes to the
output. By highlighting the pixels with the highest contributions, we can generate a saliency map that
shows which regions of the input image are most important for the output.

Saliency maps are a powerful visualization tool that can be used to gain insights into the workings
of neural networks and diagnose problems with their performance.

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Co-financed by the European Union 97 This Master is run under the context of Action
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Saliency maps

Saliency maps can be used for a variety of tasks, including:

Interpretation: Saliency maps can help us understand how a neural network is making its predictions by
highlighting the regions of the input image that are most relevant to the output. This can provide insights
Into the features and patterns that the network Is using to make its predictions.

Debugging: Saliency maps can also be used to diagnose problems with a neural network. For example,
If the saliency map highlights irrelevant regions of the input image, it may be an indication that the
network Is not learning the correct features.

Localization: Saliency maps can be used to identify the location of objects or features in an image. By
highlighting the regions of the input image that are most important for a specific output, we can identify
the regions of the image that contain the relevant objects or features.

Adversarial attacks: Saliency maps can be used to generate adversarial examples that are designed to
fool a neural network. By modifying the input image to maximize the saliency map for a specific output,
we can generate images that are classified incorrectly By &€ty Gykna for Simplicity: The All Convolutional Net', ICLR Workshop 2015

Co-financed by the European Union 93 This Master is run under the context of Action
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Which pixels matter: Saliency via Occlusion

Example of visualization of features in a fully trained model. For layers 2-5 it shows the top 9 activations
INn a random subset of feature maps across the validation data, projected down to pixel space using our
deconvolutional network approach. The reconstructed patterns from the validation set is shown that cause
high activations in a given feature map. For each feature map we also show the corresponding image

patches.

Note: (1) the the strong grouping within each feature map, (i) greater invariance at higher layers and (iii)
exaggeration of discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1).

Zeller and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
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Which pixels matter: Saliency via Occlusion
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Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
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Which pixels matter: Saliency via Occlusion
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Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Co-financed by the European Union This Master is run under the context of Action

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423




MAIACAREU Master programmes in Artificial
Intelligence 4 Careers in Europe

Which pixels matter: Saliency via Occlusion
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Which pixels matter: Saliency via Occlusion
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Zeller and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
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Which pixels matter: Saliency via Occlusion

(c) Layer 5, strongest (d) Classifier, probability (e) Classifier, most
probable class

(a) Input Image (b) Layer 5, strongest feature map feature map projections of correct class
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B Pekinese

W Car wheel i
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B Police van -
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Afghan hound
Gordon setter

Irish setter
Mortarboard
Fur coat
Academic gown
Australian terrier
Ice lolly
Vizsla
Neck brace
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Zeller and Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV 2014

True Label: Afgh‘ar) Hound
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Which pixels matter: Saliency via Occlusion

Three test examples where we systematically cover up different portions of the
scene with a gray square (15t column) and see how the top (layer 5) feature maps
((b) & (c)) and classier output ((d) & (e)) changes.

(b): for each position of the gray scale, we record the total activation in one layer 5
feature map (the one with the strongest response in the un-occluded image).

(c): a visualization of this feature map projected down into the input image (black
square), along with visualizations of this map from other images. The first-row
example shows the strongest feature to be the dog's face. When this is covered-
up the activity in the feature map decreases (blue area in (b)).

(d): a map of correct class probabillity, as a function of the position of the gray square. E.g. when the dog's face is
obscured, the probability for “pomeranian” drops signifficantly. (e): the most probable label as a function of occluder
position. E.g. in the 1st row, for most locations it Is “pomeranian”, but Iif the dog's face Is obscured but not the ball, then it
predicts \tennis ball". In the 2nd example, text on the car Is the strongest feature in layer 5, but the classier is most
sensitive to the wheel. The 3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but
the classier Is sensitive to the dog (blue region in (d)), since It uses multiple feature maps.

Zeller and Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV 2014
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Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities
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Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.

Co-financed by the European Union 101 This Master is run under the context of Action
o e No 2020-EU-1A-0087, co-financed by the EU CEF Telecom

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423




MAIACAREU Master programmes in Artificial
Intelligence 4 Careers in Europe

Which pixels matter: Saliency via Backprop

Forward pass
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Pick a single intermediate neuron, e.g. one
value in 128 x 13 x 13 conv5 feature map

Backward pass: O B O
. _ guided 6 0
Compute gradient of neuron value with respect backpropagation  [57"| 3

to image pixels -
Images come out nicer if you only

backprop positive gradients through

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014 :
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 eaCh ReLU (gl'“ded backprop)
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Intermediate features via (guided) backprop
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Maximally activating patches Guided Backprop
(Each row is a different neuron)
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Intermediate features via (guided) backprop
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Maximally activating patches Guided Backprop
(Each row is a different neuron)
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Gradient Ascent

Gradient ascent Is used to generate images that maximize the activation of a specific neuron or set of
neurons in the network. The basic idea behind gradient ascent is to compute the gradient of the function
with respect to its input, and then update the input in the direction of the gradient. By repeating this
process iteratively, we can gradually increase the output of the function and find an input that maximizes it.

It IS used to generate iImages that maximize the activation of a specific neuron or set of neurons in the
network. To do this, we first select the neuron or set of neurons that we want to maximize the activation of.
We then start with a random image as the input and compute the gradient of the activation of the chosen
neuron(s) with respect to the input image. We then update the input image in the direction of the gradient,
by adding a small fraction of the gradient to the image. This produces a new image that has a slightly
higher activation for the chosen neuron(s). We repeat this process for a certain number of iterations or until
we reach a threshold for the activation of the neuron(s).

Thus, we can generate images that maximize the activation of a specific neuron or set of neurons in a
neural network. This can be useful for visualizing the features and patterns that the neuron(s) are sensitive
to, as well as for generating adversarial examples that are designed to fool the network.

Co-financed by the European Union 105 This Master is run under the context of Action
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Gradient Ascent

(Guided) backprop:. Gradient ascent:
Find the part of an Generate a synthetic
Image that a neuron Image that maximally
responds to activates a neuron

|* = arg max|+
_— \

Neuron value  Natural image regularizer
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score for class c (before Softmax)

1. Initialize image to zeros
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Repeat:

2. Forward image to compute current scores

3. Backprop to get gradient of neuron value with respect to image pixels
4. Make a small update to the image

Co-financed by the European Union 107 This Master is run under the context of Action
o e No 2020-EU-1A-0087, co-financed by the EU CEF Telecom
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Gradient Ascent

arg max Se(I) —| Al Z]];
Simple regularizer: Penalize L2
norm of generated image

washing machine computer keyboard kit fox

ostrich limousine

g00se

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

Co-financed by the European Union 108 This Master is run under the context of Action

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423
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2
arg max 5,(I) ~[ 1]

Better regularizer: Penalize L2 norm of
image; also during optimization periodically

(1) Gaussian blur image
(2) Clip pixels with small values to O
(3) Clip pixels with small gradients to O

Co-financed by the European Union
Connecting Europe Facility

Pelican

Ground Beetle Indian Cobra

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

109
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Gradient Ascent

Layer 5

Use the same
approach to
visualize
Intermediate
features

Layer 4

Layer 3

Layer 2

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

Co-financed by the European Union 110 This Master is run under the context of Action
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Gradient Ascent

bell pepper cardoon strawberry orange pineapple hay alp bubble cliff

beer bottle birdhouse breakwater breastplate broom caldron candle cinema cowboy boot

entertainment gasmask golf ball golfcart gown grand piano hourglass jack-o'-lantern knot

Nguyen et al, “Multifaceted Feature
Visualization: Uncovering the Different Types
of Features Learned By Each Neuron in Deep
Neural Networks”, ICML Visualization for
Deep Learning Workshop 2016.

motor scooter pirate planetarium radio sarong schooner

lampshade monitor mosque

e Co-financed by the European Union 111 This Master is run under the context of Action
" . . . No 2020-EU-|A-0087, co-financed by the EU CEF Telecom

s Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423
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Code Image
: : Forward and backward passes
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s SRV SO N LL, | == banana Optimize in FC6 latent
u9 T e 3 : space Instead of pixel
u2 c2 C c4 cH .
ut \ c == convertible = SPace
fc6 upconvolutional convolutional - Y fc8
‘ Y J fce fc7
Deep generator network ' .
(prior) DNN being visualized
Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
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Gradient Ascent

Optimize In
FC6 latent
space
Instead of

library pixel space

-
i

running shoe

- -

chest water jug pool table broom cellphone aircraft carrier entertainment ctr jean

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016

Co-financed by the European Union 113 This Master is run under the context of Action
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Adversarial perturbations

Adversarial perturbations are small, often imperceptible, changes made to an input (such as an image

or audio signal) that are designed to cause a neural network to misclassify it. These perturbations can be
added to an input In a targeted or untargeted way.

In a targeted attack, the adversarial perturbation is designed to cause the network to misclassify the input
as a specific target class. For example, an image of a panda might be perturbed to cause a neural

network to classify it as a gibbon. In an untargeted attack, the goal is simply to cause the network to
misclassify the input, without specifying a particular target class.

Adversarial perturbations are generated using optimization techniques, such as gradient ascent, to find
the smallest perturbation that causes the network to misclassify the input. The perturbation is typically
constrained to be small and imperceptible, to ensure that it does not significantly alter the input

Moosavi-Dezfooli, Seyed-Mohsen, et al. "Universal adversarial perturbations.” Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017.

Co-financed by the European Union 114 This Master is run under the context of Action
Connecting Europe Facility

under GA nr. INEA/CEF/ICT/A2020/2267423
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Joystick 0 Chihuahua

Adversarial perturbations

Can we find a single small image perturbation that fools a state-
of-the-art deep neural network classifier on all natural images?

— lead to misclassify natural images with high probabillity.

By adding a quasi-imperceptible perturbation to natural images,
the label estimated by the deep neural network Is changed with
high probability. Such perturbations are dubbed universal, as they
are image agnostic. The existence of these perturbations Is
problematic when the classifier is deployed in real-world (and
possibly hostile) environments, as they can be exploited by
adversaries to break the classifier.

Grille 0 Jay

Thresher 0 Labrador

Moosavi-Dezfooli, Seyed-Mohsen, et al. "Universal adversarial perturbations." Proceedings of the IEEE conference

Flagpole Labrador
Tibetan mastiff 0 Tibetan mastiff
Lycaenid 0 Brabancon griffon
- Balloon 0 Labrador

on computer vision and pattern recognition. 2017.

Co-financed by the European Union 115

Whiptail lizard 0 Border terrier
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Feature Inversion

Feature inversion Is a technigue used to reconstruct an image that maximally activates a particular set of
neurons in a neural network. The idea behind feature inversion is to find an image that has similar
features to the set of neurons being targeted, in order to understand what the network is looking for in the
iInput data.

The feature inversion process starts by selecting a set of neurons in the network that we want to
maximize the activation of. We then initialize a random image and feed it forward through the network,
recording the activations of the selected neurons. We then compute the gradient of the activations with
respect to the input image, and adjust the image to increase the activation of the selected neurons. This
process Is repeated iteratively, gradually improving the image until it maximally activates the selected
neurons.

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Co-financed by the European Union 116 This Master is run under the context of Action
o e No 2020-EU-1A-0087, co-financed by the EU CEF Telecom

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423
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Feature Inversion

Feature inversion can be used to visualize what the network is looking for in the input data. By generating
an image that maximally activates a set of neurons, we can gain insight into the features and patterns that
are important for the network's predictions. Feature inversion can also be used for generating
visualizations of the network's internal representations, which can be useful for interpretability and

debugging.

One limitation of feature inversion is that it may not always result in realistic or meaningful images, as it
can be difficult to generate an image that simultaneously maximizes the activations of a set of neurons
and looks realistic. However, with appropriate regularization technigues and additional constraints, such
as style transfer or image reconstruction, feature inversion can be used to generate more realistic and

Interpretable iImages.

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Co-financed by the European Union 117 This Master is run under the context of Action
o e No 2020-EU-1A-0087, co-financed by the EU CEF Telecom

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423
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Feature Inversion

Given a CNN feature vector for an image, find a new image that:
- Matches the given feature vector

- “looks natural” (image prior regularization)

- » Given feature vector
" argmin £(P(x), Pg) + AR(x)

xeRHXVVXC ™

((®(x), o) = [|B(x) — Do

» Features of new image

)

Rys (X) — Z ((-’L‘z',j+1 — fI»’z'j)2 + (-’Ez'+1,j - fIJz‘j)z) ’

\ Total Variation regularizer

1,] .
(encourages spatial smoothness)
Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Co-financed by the European Union 118 This Master is run under the context of Action
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Feature Inversion

relu2 2 relB_B e1u4_3 relub 1 relub 3

..u..’ - — o b -

.

Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016

Co-financed by the European Union 119 This Master is run under the context of Action

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423
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Feature Inversion: DeepDream - Amplify existing features

Rather than synthesizing an image to maximize a specific neuron, instead try to amplify the neuron
activations at some layer In the network.

£ % .‘_:::_ ,;*/ 3
s :-' 5 . :“.-. ’ ..'.::. . ..‘. . F ‘:.:":,"
" o
s 27 128 R e
> / N~ A\,
224 P N R 3} —.
< N 4=
R ’ 27 ) 3|
I\ A ’ | XT
s
] \ 192
224\listrig Max 28 Max
Lof a pooling pooling
3 a8

Choose an image and a layer in a CNN; repeat:

1. Forward: compute activations at chosen layer Equivalent to:

2. Set gradient of chosen layer equal to its activatic % _ p)

3. Backward: Compute gradient on image — |7 =arg max, 2, fi(l)

4. Update image Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural Networks”,

Co-financed by the European Union 120 This Master is run under the context of Action
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Neural Texture Synthesis: Gram Matrix

Neural texture synthesis Is a technique that uses deep neural networks to generate new textures
that have similar visual characteristics to a given input texture. A pre-trained convolutional neural
network Is used to analyze the features of the input texture. The network is typically a variant of VGG
(Visual Geometry Group) network, which is trained on large-scale image recognition tasks. The
network Is used to extract the feature maps from a set of convolutional layers, which can be thought
of as representations of the input texture at different levels of abstraction.

The Gram maitrix is then computed for each set of feature maps. The Gram matrix is a matrix of dot
products between the feature vectors of the original texture. This matrix captures the correlation
between the different features in the texture and Is used as a measure of texture style. To generate a
new texture with a similar style to the input texture, the Gram matrices of the input texture and a
randomly initialized noise image are computed. The algorithm then optimizes the noise image to
minimize the difference between its Gram matrix and the Gram matrix of the input texture, while also
preserving certain statistical properties of the noise image. This optimization process generates a
new Image that has similar texture characteristics as the input texture.

Co-financed by the European Union
Connecting Europe Facility

121 This Master is run under the context of Action
No 2020-EU-1A-0087, co-financed by the EU CEF Telecom
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Neural Texture Synthesis: Gram Matrix

C
; 4 ; ‘27 128 ;3 H
_ o s e O I I w
Ihis image is in the public domain. ’ h
Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors
Co-financed by the European Union 122 This Master is run under the context of Action
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Neural Texture Synthesis: Gram Matrix

:".-,,_.‘_'_. ".':{-
i
R RS
13 -

Max. 128 Max
pooling pooling W

Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors
gives C x C matrix measuring co-occurrence

Co-financed by the European Union 123 This Master is run under the context of Action
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This image is in the public domain.

Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors
gives C x C matrix measuring co-occurrence

Average over all pairs of vectors, giving Gram
matrix of shape C x C

Co-financed by the European Union
Connecting Europe Facility

Gram Matrix

Efficient to compute; reshape features from

CxHxWto =C x HW
then compute G = FFT
This Master is run under the context of Action

124 No 2020-EU-1A-0087, co-financed by the EU CEF Telecom
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Neural Texture Synthesis

| 1 - 2 A L
Neural Texture Synthesis z- > (ci-¢)  c@d=Y wn
V] [=0
1. Pretrain a CNN on ImageNet (VGG-19) N
2. Run input texture forward through CNN, 2y — = - [
record activations on every layer; layer i convs_3, = | g Sl Gl NG 2l
gives feature map of shape C; x H; x W, - O OE Q T
3. At each layer compute the Gram matrix 2, - = g
giving outer product of features: F2convd_3; = = 1 > ‘\_‘/ L1 J
- I3 —
Z k (shape C; x C)) s P [ g T
Zioma_2zzzzi] > N l
4. In|t|al|ze generated image from random e ﬁ T
: pool2
5. Pass generated image through CNN, ' [--cov2_ 2 - — - ——— " - N 1
compute Gram matrix on each layer —pooll =~ £ T
6. Compute loss: weighted sumof L2 - ——————————— S «— ]
distance between Gram matrices - i T =
7. Backprop to get gradient on image _meut —ﬁ descent

8. Make gradient step on image
9. GOTO S5

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.
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Neural Texture Synthesis

Reconstructing texture from higher layers recovers
larger features from the input texture

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Co-financed by the European Union 126 This Master is run under the context of Action
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Neural Texture Synthesis: Texture = Artwork

Texture synthesis
(Gram reconstruction)

Feature
reconstruction

Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016.

Co-financed by the European Union 127 This Master is run under the context of Action
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Neural Texture Synthesis: Style transfer

Content Image

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

Co-financed by the European Union 128 This Master is run under the context of Action
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Neural Texture Synthesis: Style transfer

Style Target gorelul2 y¢,relu2.2 pbrelud 3 yo,relud 3

style style style style
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T Qi utute i Weluluiuits § ity i
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Output P = 79 |
image e y ' :
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y chH'-——— . I IS i |
vy
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Content Target feat
Content
Image Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
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Neural Texture Synthesis: Style transfer

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

Co-financed by the European Union 130 This Master is run under the context of Action
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Neural Texture Synthesis: Style transfer

More weight to More weight to
content loss style loss

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

Co-financed by the European Union 131 This Master is run under the context of Action

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423













MAIACAREU Master programmes in Artificial
Intelligence 4 Careers in Europe

Neural Texture Synthesis: Style transfer

Problem: Style transfer requires many forward / backward passes through VGG;
very slow!

Solution: Train another neural network to perform style transfer for us!

Co-financed by the European Union 135 This Master is run under the context of Action
o e No 2020-EU-1A-0087, co-financed by the EU CEF Telecom

Connecting Europe Facility under GA nr. INEA/CEF/ICT/A2020/2267423
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Neural Texture Synthesis: Style transfer

Fast Style Transfer

(1) Train a feedforward network for each style
(2) Use pretrained CNN to compute same losses as before
(3) After training, stylize images using a single forward pass

Style Target €¢,relu1_2 €¢,relu2_2 g(b,relu3_3 €¢,re1u4_3

style style style style
" ra | - TTTT5 | S AA ('Y A 'Y
- w : St N il N 1 1%
| , | |
I | A : I
| |
| . !
| I ) |
|
_ _Feediorward Net | | " Loss Network gb i
c|y ———f7—"""""="="="=—- o
6@5,1‘91113_3
Content Target feat

Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016
Figure copyright Springer, 2016. Reproduced for educational purposes.
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Neural Texture Synthesis: Fast Style transfer

Style
The Muse,
Pablo Picasso,

Sl g OYY \ ' - '*"
Fast Slow Fast
https://github.com/|cjohnson/fast-neural-style
Co—ﬁnance.d by the European Un|0r| 137 This Master is run under the context of Action
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Remember Normalization Methods?

Batch Norm Layer Norm Instance Norm Group Norm
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“ o, Instance Normalization was developed for style transfer!
Wu and He, “Group Normalization”, ECCV 2018

Co-financed by the European Union 138 This Master is run under the context of Action
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Neural Texture Synthesis: Fast Style transfer

Replacing batch normalization with Instance Normalization
Improves results

Ulyanov et al, “Texture Networks: Feed-forward Synthesis of Textures and Stylized Images”, ICML 2016
Ulyanov et al, “Instance Normalization: The Missing Ingredient for Fast Stylization”, arXiv 2016
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Neural Texture Synthesis: Fast Style transfer

One Network, Many Styles

Dumoulin, Shlens, and Kudlur, “A Learned Representation for Artistic Style”, ICLR 2017.

Co-financed by the European Union 14 This Master is run under the context of Action
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Neural Texture Synthesis: Fast Style transfer
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Dumoulin, Shlens, and Kudlur, “A Learned Representation for Artistic Style”, ICLR 2017. ‘ o’ -
Co-financed by the European Union 141 This Master is run under the context of Action
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Thank you!

Co-financed by the European Union This Master is run under the context of Action
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