
This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

University of Cyprus

Spring Semester 2023

MAI645 - Machine Learning for
Graphics and Computer Vision

Andreas Aristidou, PhD

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Image Classification: CNN Architectures

2

These notes are based on the work of Fei-Fei Li, Jiajun Wu, Ruohan Gao,

CS231 - Deep Learning for Computer Vision

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

CNN Architectures: Training Neural Networks

3

Overview

1. One time set up: activation functions, preprocessing, weight initialization, regularization, gradient

checking

2. Training dynamics: babysitting the learning process, parameter updates, hyperparameter

optimization

3. Evaluation: model ensembles, test-time augmentation, transfer learning

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

4

Activation function

A synapse is a structure that allows information to flow from one neuron

to another in a neural network.

A dendrite is a branch-like

extension of a neuron that receives

input from other neurons or from

the external environment.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

5

Activation function

The dendrites are a critical component of the neural network, as they receive input from other neurons

and from the external environment, which is then transformed by the activation function to produce the

neuron's output. The behavior of the dendrites, along with the activation function and the synapses,

determines the overall behavior and output of the neural network.

The synapse in the activation function is a crucial component of the neural network, as it determines how

much influence each input has on the output of the neuron, and ultimately, the output of the network as a

whole.

Activation functions are used to introduce nonlinearity into neural networks, allowing them to model

complex relationships between inputs and outputs. When a neuron receives input from other neurons, it

computes a weighted sum of those inputs, which is then passed through the activation function. The

output of the activation function is the neuron's output, which is then passed on to other neurons via

synapses.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

6

Activation function

Every activation function (or non-

linearity) takes a single number

and performs a certain fixed

mathematical operation on it.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

7

Activation function: Sigmoid

The sigmoid non-linearity takes a real-valued number and

“squashes” it into range between 0 and 1. In particular,

large negative numbers become 0 and large positive

numbers become 1. The sigmoid function has seen

frequent use historically since it has a nice interpretation as

the firing rate of a neuron: from not firing at all (0) to fully-

saturated firing at an assumed maximum frequency (1).

Main Drawbacks

1. Sigmoids saturate and kill gradients. A very undesirable property of the sigmoid neuron is that when the neuron’s

activation saturates at either tail of 0 or 1, the gradient at these regions is almost zero. Recall that during

backpropagation, this (local) gradient will be multiplied to the gradient of this gate’s output for the whole objective.

Therefore, if the local gradient is very small, it will effectively “kill” the gradient and almost no signal will flow through

the neuron to its weights and recursively to its data. Additionally, one must pay extra caution when initializing the

weights of sigmoid neurons to prevent saturation. For example, if the initial weights are too large then most neurons

would become saturated and the network will barely learn.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

8

Activation function: Sigmoid

What happens when x = -10?

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

9

Activation function: Sigmoid

What happens when x = -10?

What happens when x = 0?
What happens when x = 10?

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

10

Activation function: Sigmoid

Why is this a problem?

If all the gradients flowing back will be zero and

weights will never change

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

11

Activation function: Sigmoid

The sigmoid non-linearity takes a real-valued number and

“squashes” it into range between 0 and 1. In particular,

large negative numbers become 0 and large positive

numbers become 1. The sigmoid function has seen

frequent use historically since it has a nice interpretation as

the firing rate of a neuron: from not firing at all (0) to fully-

saturated firing at an assumed maximum frequency (1).

Main Drawbacks

2. Sigmoid outputs are not zero-centered. This is undesirable since neurons in later layers of processing in a Neural

Network would be receiving data that is not zero-centered. This has implications on the dynamics during gradient

descent, because if the data coming into a neuron is always positive, then the gradient on the weights w will during

backpropagation become either all be positive, or all negative (depending on the gradient of the whole expression f).

This could introduce undesirable zig-zagging dynamics in the gradient updates for the weights. However, notice that

once these gradients are added up across a batch of data the final update for the weights can have variable signs,

somewhat mitigating this issue. Therefore, this is an inconvenience but it has less severe consequences compared to

the saturated activation problem above.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

12

Activation function: Sigmoid

Consider what happens when the input to a neuron is

always positive...

What can we say about the gradients on w?

We know that local gradient of sigmoid is always positive

We are assuming x is always positive

So!! Sign of gradient for all wi is the same as the sign of upstream scalar gradient!

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Activation function: Sigmoid

Consider what happens when the input to a neuron is

always positive...

What can we say about the gradients on w?

Always all positive or all negative :(

(For a single element! Minibatches help)

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

14

Activation function: Sigmoid

The sigmoid non-linearity takes a real-valued number and

“squashes” it into range between 0 and 1. In particular,

large negative numbers become 0 and large positive

numbers become 1. The sigmoid function has seen

frequent use historically since it has a nice interpretation as

the firing rate of a neuron: from not firing at all (0) to fully-

saturated firing at an assumed maximum frequency (1).

Main Drawbacks

3. Exp() is a bit compute expensive…

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

15

Activation function: tanh

The tanh non-linearity squashes a real-valued number to

the range [-1, 1]. Like the sigmoid neuron, its activations

saturate, but unlike the sigmoid neuron its output is zero-

centered. Therefore, in practice the tanh non-linearity is

always preferred to the sigmoid nonlinearity. Also note that

the tanh neuron is simply a scaled sigmoid neuron.

Main Characteristics

• zero centered (nice)

• still kills gradients when saturated :(

[LeCun et al., 1991]

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

16

Activation function: tanh

The Rectified Linear Unit has become very popular in the

last few years. In other words, the activation is simply

thresholded at zero (see image above on the left).

[Krizhevsky et al., 2012]

Main Advantages

1. It does not saturate

2. Converges much faster than sigmoid/tanh in practice: It was found to greatly accelerate (e.g. a factor of 6

in Krizhevsky et al.) the convergence of stochastic gradient descent compared to the sigmoid/tanh functions. It is

argued that this is due to its linear, non-saturating form.

3. Very computationally efficient: Compared to tanh/sigmoid neurons that involve expensive operations

(exponentials, etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero.

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

17

Activation function: ReLU

The Rectified Linear Unit has become very popular in the

last few years. In other words, the activation is simply

thresholded at zero (see image above on the left).

Main Drawbacks

1. Not zero-centered output

2. Unfortunately, ReLU units can be fragile during training and can “die”. For example, a large gradient flowing through a

ReLU neuron could cause the weights to update in such a way that the neuron will never activate on any datapoint

again. If this happens, then the gradient flowing through the unit will forever be zero from that point on. That is, the

ReLU units can irreversibly die during training since they can get knocked off the data manifold. For example, you may

find that as much as 40% of your network can be “dead” (i.e. neurons that never activate across the entire training

dataset) if the learning rate is set too high. With a proper setting of the learning rate this is less frequently an issue.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

18

Activation function: ReLU

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

=> people like to initialize

ReLU neurons with slightly
positive biases (e.g. 0.01)

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

19

Activation function: Leaky ReLU

Leaky ReLUs are one attempt to fix the “dying ReLU”

problem. Instead of the function being zero when x < 0, a

leaky ReLU will instead have a small positive slope (of 0.01,

or so).

Main Advantages

1. It does not saturate

2. Converges much faster than sigmoid/tanh in practice: It was found to greatly accelerate (e.g. a factor of 6

in Krizhevsky et al.) the convergence of stochastic gradient descent compared to the sigmoid/tanh functions. It is

argued that this is due to its linear, non-saturating form.

3. Very computationally efficient: Compared to tanh/sigmoid neurons that involve expensive operations

(exponentials, etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero.

4. It will not “die”. [Mass et al., 2013] [He et al., 2015]

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

20

Activation function: Leaky ReLU

Leaky ReLUs are one attempt to fix the “dying ReLU”

problem. Instead of the function being zero when x < 0, a

leaky ReLU will instead have a small positive slope (of 0.01,

or so).

[Mass et al., 2013] [He et al., 2015]

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

21

Activation function: Exponential Linear Units (ELU)

ELUs are similar to other activation functions such as

ReLU. However, ELUs have some advantages over ReLU.

One advantage is that ELUs can produce negative values,

which can be important for certain types of data. Another

advantage is that ELUs can help avoid the "dying ReLU"

problem, which occurs when the output of a ReLU neuron

becomes stuck at zero and cannot produce meaningful

gradients during backpropagation.

[Clevert et al., 2015]

Main Advantages

• All benefits of ReLU

• Closer to zero mean outputs

• Negative saturation regime compared with Leaky ReLU, while it adds some robustness to noise

Main Drawbacks

1. Computation more expensive since it requires to compute the exp()

alpha is a hyperparameter that determines the value that the
function approaches for large negative inputs. The parameter
alpha is usually set to 1.0, but it can be tuned during training.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

22

Activation function: Scaled Exponential Linear Units (SELU)

[Klambauer et al. ICLR 2017]

Main Advantages

1. Scaled version of ELU that works better for deep networks

2. “Self-normalizing” property

3. Can train deep SELU networks without BatchNorm

SELU

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

23

Activation function: Maxout “Neuron”

[Goodfellow et al., 2013]

Main Advantages

1. Generalizes ReLU and Leaky ReLU

2. Linear Regime! The Maxout neuron therefore enjoys all the benefits of a ReLU unit (linear regime of operation, no

saturation) and does not have its drawbacks (dying ReLU).

Other types of units have been proposed that do not have the

functional form f(wTx+b) where a non-linearity is applied on the dot

product between the weights and the data. It generalizes the ReLU

and its leaky version. Notice that both ReLU and Leaky ReLU are a

special case of this form (for example, for ReLU we have w1,b1=0).

Main Drawbacks

1. It doubles the number of parameters for every single neuron, leading to a high total number of parameters.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

24

Activation function: Summary

“What neuron type should I use?”

Use the ReLU non-linearity, be careful with your learning rates and possibly monitor the

fraction of “dead” units in a network. If this concerns you, give Leaky ReLU or Maxout a try.

Never use sigmoid, and avoid using tanh (you can try tanh, but expect it to work worse than

ReLU/Maxout).

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Data Preprocessing

25

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

26

Data Pre-processing

(Assume X [NxD] is data matrix, each example in a row)

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

27

Data Pre-processing

Remember: Consider what happens when the input to a neuron is always

positive...

We know that local gradient of sigmoid is always positive

We are assuming x is always positive

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

28

Data Pre-processing

In practice, you may also see PCA and Whitening of the data

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

29

Data Pre-processing

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

30

Data Pre-processing: In practice for Images

For instance, consider CIFAR-10 example with [32,32,3] images

• Subtract the mean image (e.g. AlexNet)

(mean image = [32,32,3] array)

• Subtract per-channel mean (e.g. VGGNet)

(mean along each channel = 3 numbers)

• Subtract per-channel mean and Divide by per-channel std (e.g. ResNet)

(mean along each channel = 3 numbers)

Not common

to do PCA or
whitening

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Weight Initialization

31

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

32

Weight initialization

Weight initialization is an important step in training Convolutional Neural Networks

(CNNs) because it sets the initial values of the network's weights, which can

significantly affect the learning process and the performance of the network.

When initializing the weights of a CNN, there are different methods that can be used.

One commonly used method is to initialize the weights randomly, using a Gaussian

distribution with zero mean and a small standard deviation. However, this can lead to

the problem of vanishing or exploding gradients, which can make it difficult for the

network to learn.

Works ~okay for small networks, but problems with deeper networks.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

33

Weight initialization: Activation statistics

All activations tend to zero for deeper

network layers

Q: What do the gradients dL/dW look like?

A: All zero, no learning

What will happen to the activations for the
last layer?

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

34

Weight initialization: Activation statistics

All activations saturate

Q: What do the gradients dL/dW look like?

A: Local gradients all zero, no learning

What will happen to the activations for the
last layer?

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

35

Weight initialization: Xavier Initialization

Xavier Initialization: This method initializes the weights using a Gaussian distribution

with zero mean and a standard deviation that is calculated based on the number of

input and output neurons for each layer. This method ensures that the variance of the

activations and gradients remain roughly the same across layers, which can prevent

the vanishing and exploding gradient problems.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

36

Weight initialization: Xavier Initialization

“Just right”: Activations are
nicely scaled for all layers!

Glorot and Bengio, “Understanding the difficulty of training

deep feedforward neural networks”, AISTAT 2010

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

37

Weight initialization: Xavier Initialization

• One potential drawback of Xavier initialization is that it assumes that the activations of the

input and output layers are independent and identically distributed (IID), which may not

always be the case in practice. If the activation distribution of the input or output layer is

significantly different from what is assumed by Xavier initialization, it may lead to suboptimal

performance.

• Another potential issue with Xavier initialization is that it may not work as well for deep

neural networks with many layers, especially when using certain activation functions such as

ReLU. In deep networks, the signal from the input may become very small by the time it

reaches the output, leading to vanishing gradients. While Xavier initialization can help

mitigate this problem, it may not be sufficient in very deep networks, and more advanced

techniques like layer normalization or residual connections may be needed.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

38

Weight initialization: Xavier Initialization - What about ReLU?

Xavier assumes zero centered

activation function

Activations collapse to zero again,
no learning

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

39

Weight initialization: Kaiming / MSRA Initialization

Kaiming / MSRA Initialization: This method is similar to Xavier initialization but uses

a different formula for calculating the standard deviation. It is specifically designed for

networks that use Rectified Linear Unit (ReLU) activation functions, which can lead to

sparsity in the network's activations. He initialization helps to counteract this sparsity

and improve the performance of the network.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

40

Weight initialization: Kaiming / MSRA Initialization

“Just right”: Activations are nicely
scaled for all layers!

He et al, “Delving Deep into Rectifiers: Surpassing Human-

Level Performance on ImageNet Classification”, ICCV 2015

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

41

Weight initialization: Summary

Overall, the choice of weight initialization method can depend on the specific network

architecture and problem being solved. The goal is to find a method that helps the

network converge faster and achieve better performance, without introducing other

problems such as vanishing or exploding gradients.

Proper initialization is an active area of research…

• Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

• Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

• Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

• Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

• Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

• All you need is a good init, Mishkin and Matas, 2015

• Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Training vs. Testing Error

42

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

43

Beyond Training Error

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

44

Early Stopping: Always do this

Stop training the model when accuracy on the validation set decreases or train for a long time,
but always keep track of the model snapshot that worked best on validation

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

45

Model Ensembles

1. Train multiple independent models

2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

46

How to improve single-model performance?

Regularization

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

47

Regularization: Add term to loss

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

48

Regularization: Dropout

The idea behind dropout is to

randomly drop out some of the

neurons in a layer during training,

with a certain probability. This has

the effect of preventing any

individual neuron from relying too

heavily on any other neuron in the

layer, forcing the network to learn

more robust and distributed

representations of the data.

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

49

Regularization: Dropout

In each forward pass, randomly set

some neurons to zero Probability of

dropping is a hyperparameter; 0.5

is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

50

Regularization: Dropout

Example forward pass with a

3-layer network using
dropout

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

51

Regularization: Dropout + Scaling

Scaling after dropout is a technique used in neural network training that involves rescaling the activations

of a layer after applying dropout regularization. The purpose of scaling is to ensure that the expected

value of the output of a neuron remains the same, regardless of whether dropout was applied or not.

When dropout is applied to a layer during training, some of the neurons in the layer are randomly dropped

out with a certain probability. This has the effect of reducing the capacity of the layer, and can help

prevent overfitting by forcing the network to learn more robust and distributed representations of the data.

However, when neurons are dropped out, the remaining neurons receive a larger input, which can lead to

an increase in the variance of the activations. This can make it difficult to train the network effectively, as

the gradient updates may become unstable.

To address this issue, scaling after dropout can be used to rescale the activations of the remaining

neurons, so that their expected value remains the same as before dropout was applied. This is typically

achieved by dividing the activations by the probability of keeping a neuron during dropout. e.g., if dropout

probability is 0.5, then the scaling factor would be 2.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

52

Regularization: A common pattern

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

53

Regularization: Data Augmentation

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

54

Regularization: Data Augmentation

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

55

Regularization: Data Augmentation

Horizontal Flips

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

56

Regularization: Data Augmentation

Random crops and scales

Training: sample random crops / scales ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners +

center, + flips

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

57

Regularization: Data Augmentation

Color Jitter

Simple: Randomize
contrast and brightness

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

58

Regularization: Data Augmentation

Color Jitter

More Complex:

1. Apply PCA to all [R, G, B]

pixels in training set

2. Sample a “color offset”

along principal component

directions

3. Add offset to all pixels of a
training image

[Krizhevsky et al. 2012], ResNet

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

59

Regularization: Data Augmentation

Get creative for your problem!

Examples of data augmentations:

- translation

- rotation

- stretching

- shearing,

- lens distortions, … (go crazy)

Cubuk et al., “AutoAugment: Learning Augmentation Strategies from Data”, CVPR 2019

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

60

Regularization: A common pattern

Training: Add random noise

Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization

Data Augmentation

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

61

Regularization: DropConnect

Training: Drop connections between neurons (set weights to 0)

Testing: Use all the connections

Examples:

Dropout

Batch Normalization

Data Augmentation

DropConnect

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

62

Regularization: Fractional Pooling

Training: Use randomized pooling regions

Testing: Average predictions from several regions

Examples:

Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

63

Regularization: Stochastic Depth

Training: Skip some layers in the network

Testing: Use all the layer

Examples:

Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

64

Regularization: Cutout

Training: Set random image regions to zero

Testing: Use full image

Examples:

Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout
Works very well for small datasets like CIFAR,
less common for large datasets like ImageNet

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

65

Regularization: Mixup

Training: Train on random blends of images

Testing: Use original images

Examples:

Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout

Mixup

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

66

Regularization: In practice

Training: Add random noise

Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout

Mixup

• Consider dropout for large fully-connected layers

• Batch normalization and data augmentation almost always

a good idea

• Try cutout and mixup especially for small classification
datasets

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Choosing Hyperparameters

67

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

68

Choosing Hyperparameters

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization e.g. log(C) for softmax with C classes

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

69

Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of training data (~5-10 minibatches);

fiddle with architecture, learning rate, weight initialization

Loss not going down? LR too low, bad initialization Loss explodes to Inf or NaN? LR too high,

bad initialization

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

70

Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on small weight decay,

find a learning rate that makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

71

Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around what worked from Step 3, train

a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

72

Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 epochs) without learning rate

decay

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

73

Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss and accuracy curves

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

74

Choosing Hyperparameters

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

75

Choosing Hyperparameters

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

76

Choosing Hyperparameters

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

77

Look at learning curves!

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Visualizing & Understanding

78

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

79

Visualizing what ConvNets learn

Several approaches for understanding and visualizing Convolutional Networks have been

developed in the literature, partly as a response the common criticism that the learned features

in a Neural Network are not interpretable. In this lecture we briefly survey some of these

approaches and related work.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

80

First Layer: Visualize Filters

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

81

First Layer: Visualize Filters

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

82

First Layer: Visualize Filters

Visualizing the filters or kernels can be useful for several reasons:

1. Understanding what the network is learning: CNNs are designed to learn features from input data

automatically. By visualizing the filters, we can get an idea of what kind of features the network is

detecting. For example, if a filter is detecting edges, we might see diagonal lines in the filter

visualization.

2. Debugging the network: Visualizing the filters can help us understand why a network might not be

performing well. If the filters appear to be detecting irrelevant features or noise in the input data, it may

be an indication that the network is not learning the correct features.

3. Transfer learning: When using pre-trained CNNs for transfer learning, visualizing the filters can help us

understand how the network was trained and what kind of features it has learned. This can inform us

on how to fine-tune the network for our specific use case.

4. Improving network performance: Visualizing the filters can help us identify which filters are most

important for the network's performance. This can inform us on how to adjust the network architecture,

such as increasing the number of filters or changing the filter size.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

83

Last Layer: Nearest Neighbors

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

84

Last Layer: Nearest Neighbors

Visualize the “space” of FC7

feature vectors by reducing

dimensionality of vectors from

4096 to 2 dimensions

Simple algorithm: Principal

Component Analysis (PCA)

More complex: t-SNE

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

85

Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.

See high-resolution versions at
http://cs.stanford.edu/people/karpathy/cnnembed/

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

86

Last Layer: Dimensionality Reduction

Visualization: Reducing the dimensionality of the feature vectors to 2 dimensions makes it possible to

visualize the high-dimensional feature space in a 2D scatter plot. This can help us gain insight into the

relationship between different features in the space and identify patterns that may not be apparent in the

high-dimensional space.

Interpretability: By visualizing the feature space in 2D, we can gain a better understanding of how different

features are related to each other and identify clusters of similar features. This can help us interpret the

output of the network and understand how it is making its predictions.

Comparison: By visualizing the feature space for different inputs or classes, we can compare the

distribution of features between them. This can help us identify differences between classes and understand

what features the network is using to distinguish between them.

Optimization: Reducing the dimensionality of the feature vectors can also be useful for optimization

purposes, as it makes it easier to perform operations such as clustering or classification in the feature space.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

87

Visualizing Activations

Layer Activations. The most straight-forward visualization technique is to show the activations of the
network during the forward pass. For ReLU networks, the activations usually start out looking relatively
blobby and dense, but as the training progresses the activations usually become sparser and more
localized. One dangerous pitfall that can be easily noticed with this visualization is that some activation
maps may be all zero for many different inputs, which can indicate dead filters, and can be a symptom of
high learning rates.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

88

Visualizing Activations

Typical-looking activations on the first

CONV layer (left), and the 5th CONV

layer (right) of a trained AlexNet

looking at a picture of a cat. Every box

shows an activation map

corresponding to some filter. Notice

that the activations are sparse (most

values are zero, in this visualization

shown in black) and mostly local.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

89

Visualizing Activations

Conv/FC Filters. The second common strategy is to visualize the weights. These are usually most
interpretable on the first CONV layer which is looking directly at the raw pixel data, but it is possible to
also show the filter weights deeper in the network. The weights are useful to visualize because well-
trained networks usually display nice and smooth filters without any noisy patterns. Noisy patterns can be
an indicator of a network that hasn’t been trained for long enough, or possibly a very low regularization
strength that may have led to overfitting.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

90

Visualizing Activations

Typical-looking filters on the first CONV

layer (left), and the 2nd CONV layer (right)

of a trained AlexNet. Notice that the first-

layer weights are very nice and smooth,

indicating nicely converged network. The

color/grayscale features are clustered

because the AlexNet contains two separate

streams of processing, and an apparent

consequence of this architecture is that one

stream develops high-frequency grayscale

features and the other low-frequency color

features. The 2nd CONV layer weights are

not as interpretable, but it is apparent that

they are still smooth, well-formed, and

absent of noisy patterns.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

91

Maximally Activating Patches

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Pick a layer and a channel; e.g. conv5 is 128 x 13 x 13,

pick channel 17/128

Run many images through the network, record values of

chosen channel

Visualize image patches that correspond to maximal
activations

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

92

Saliency maps

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Saliency maps are a visualization technique that highlights the most important regions of an input image

that are relevant to a specific output of a neural network. Saliency maps can be used to understand the

features and patterns that a neural network is using to make its predictions.

Saliency maps are typically generated by backpropagating the gradient of the output with respect to the

input image. This produces a map that indicates how each pixel in the input image contributes to the

output. By highlighting the pixels with the highest contributions, we can generate a saliency map that

shows which regions of the input image are most important for the output.

Saliency maps are a powerful visualization tool that can be used to gain insights into the workings

of neural networks and diagnose problems with their performance.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

93

Saliency maps

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Saliency maps can be used for a variety of tasks, including:

Interpretation: Saliency maps can help us understand how a neural network is making its predictions by

highlighting the regions of the input image that are most relevant to the output. This can provide insights

into the features and patterns that the network is using to make its predictions.

Debugging: Saliency maps can also be used to diagnose problems with a neural network. For example,

if the saliency map highlights irrelevant regions of the input image, it may be an indication that the

network is not learning the correct features.

Localization: Saliency maps can be used to identify the location of objects or features in an image. By

highlighting the regions of the input image that are most important for a specific output, we can identify

the regions of the image that contain the relevant objects or features.

Adversarial attacks: Saliency maps can be used to generate adversarial examples that are designed to

fool a neural network. By modifying the input image to maximize the saliency map for a specific output,

we can generate images that are classified incorrectly by the network.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

94

Which pixels matter: Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Example of visualization of features in a fully trained model. For layers 2-5 it shows the top 9 activations

in a random subset of feature maps across the validation data, projected down to pixel space using our

deconvolutional network approach. The reconstructed patterns from the validation set is shown that cause

high activations in a given feature map. For each feature map we also show the corresponding image

patches.

Note: (i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii)

exaggeration of discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1).

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

95

Which pixels matter: Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

96

Which pixels matter: Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

97

Which pixels matter: Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

98

Which pixels matter: Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Mask part of the

image before feeding

to CNN, check how

much predicted
probabilities change

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

99

Which pixels matter: Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV 2014

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

100

Which pixels matter: Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV 2014

Three test examples where we systematically cover up different portions of the

scene with a gray square (1st column) and see how the top (layer 5) feature maps

((b) & (c)) and classier output ((d) & (e)) changes.

(b): for each position of the gray scale, we record the total activation in one layer 5

feature map (the one with the strongest response in the un-occluded image).

(c): a visualization of this feature map projected down into the input image (black

square), along with visualizations of this map from other images. The first-row

example shows the strongest feature to be the dog's face. When this is covered-

up the activity in the feature map decreases (blue area in (b)).

(d): a map of correct class probability, as a function of the position of the gray square. E.g. when the dog's face is

obscured, the probability for “pomeranian" drops signifficantly. (e): the most probable label as a function of occluder

position. E.g. in the 1st row, for most locations it is “pomeranian", but if the dog's face is obscured but not the ball, then it

predicts \tennis ball". In the 2nd example, text on the car is the strongest feature in layer 5, but the classier is most

sensitive to the wheel. The 3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but

the classier is sensitive to the dog (blue region in (d)), since it uses multiple feature maps.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

101

Which pixels matter: Saliency via Backprop

Compute gradient of (unnormalized) class

score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification

Models and Saliency Maps”, ICLR Workshop 2014.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

102

Which pixels matter: Saliency via Backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

103

Intermediate features via (guided) backprop

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

104

Intermediate features via (guided) backprop

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

105

Gradient Ascent

Gradient ascent is used to generate images that maximize the activation of a specific neuron or set of

neurons in the network. The basic idea behind gradient ascent is to compute the gradient of the function

with respect to its input, and then update the input in the direction of the gradient. By repeating this

process iteratively, we can gradually increase the output of the function and find an input that maximizes it.

It is used to generate images that maximize the activation of a specific neuron or set of neurons in the

network. To do this, we first select the neuron or set of neurons that we want to maximize the activation of.

We then start with a random image as the input and compute the gradient of the activation of the chosen

neuron(s) with respect to the input image. We then update the input image in the direction of the gradient,

by adding a small fraction of the gradient to the image. This produces a new image that has a slightly

higher activation for the chosen neuron(s). We repeat this process for a certain number of iterations or until

we reach a threshold for the activation of the neuron(s).

Thus, we can generate images that maximize the activation of a specific neuron or set of neurons in a

neural network. This can be useful for visualizing the features and patterns that the neuron(s) are sensitive

to, as well as for generating adversarial examples that are designed to fool the network.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

106

Gradient Ascent

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

107

Gradient Ascent

Repeat:

2. Forward image to compute current scores

3. Backprop to get gradient of neuron value with respect to image pixels

4. Make a small update to the image

1. Initialize image to zeros

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

108

Gradient Ascent

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

109

Gradient Ascent

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

110

Gradient Ascent

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

Use the same

approach to

visualize

intermediate
features

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

111

Gradient Ascent

Nguyen et al, “Multifaceted Feature

Visualization: Uncovering the Different Types

of Features Learned By Each Neuron in Deep

Neural Networks”, ICML Visualization for

Deep Learning Workshop 2016.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

112

Gradient Ascent

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016

Optimize in FC6 latent

space instead of pixel
space

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

113

Gradient Ascent

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016

Optimize in

FC6 latent

space

instead of
pixel space

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

114

Adversarial perturbations

Moosavi-Dezfooli, Seyed-Mohsen, et al. "Universal adversarial perturbations." Proceedings of the IEEE conference on

computer vision and pattern recognition. 2017.

Adversarial perturbations are small, often imperceptible, changes made to an input (such as an image

or audio signal) that are designed to cause a neural network to misclassify it. These perturbations can be

added to an input in a targeted or untargeted way.

In a targeted attack, the adversarial perturbation is designed to cause the network to misclassify the input

as a specific target class. For example, an image of a panda might be perturbed to cause a neural

network to classify it as a gibbon. In an untargeted attack, the goal is simply to cause the network to

misclassify the input, without specifying a particular target class.

Adversarial perturbations are generated using optimization techniques, such as gradient ascent, to find

the smallest perturbation that causes the network to misclassify the input. The perturbation is typically

constrained to be small and imperceptible, to ensure that it does not significantly alter the input

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

115

Adversarial perturbations

Moosavi-Dezfooli, Seyed-Mohsen, et al. "Universal adversarial perturbations." Proceedings of the IEEE conference

on computer vision and pattern recognition. 2017.

Can we find a single small image perturbation that fools a state-

of-the-art deep neural network classifier on all natural images?

→ lead to misclassify natural images with high probability.

By adding a quasi-imperceptible perturbation to natural images,

the label estimated by the deep neural network is changed with

high probability. Such perturbations are dubbed universal, as they

are image agnostic. The existence of these perturbations is

problematic when the classifier is deployed in real-world (and

possibly hostile) environments, as they can be exploited by

adversaries to break the classifier.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

116

Feature Inversion

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Feature inversion is a technique used to reconstruct an image that maximally activates a particular set of

neurons in a neural network. The idea behind feature inversion is to find an image that has similar

features to the set of neurons being targeted, in order to understand what the network is looking for in the

input data.

The feature inversion process starts by selecting a set of neurons in the network that we want to

maximize the activation of. We then initialize a random image and feed it forward through the network,

recording the activations of the selected neurons. We then compute the gradient of the activations with

respect to the input image, and adjust the image to increase the activation of the selected neurons. This

process is repeated iteratively, gradually improving the image until it maximally activates the selected

neurons.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

117

Feature Inversion

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Feature inversion can be used to visualize what the network is looking for in the input data. By generating

an image that maximally activates a set of neurons, we can gain insight into the features and patterns that

are important for the network's predictions. Feature inversion can also be used for generating

visualizations of the network's internal representations, which can be useful for interpretability and

debugging.

One limitation of feature inversion is that it may not always result in realistic or meaningful images, as it

can be difficult to generate an image that simultaneously maximizes the activations of a set of neurons

and looks realistic. However, with appropriate regularization techniques and additional constraints, such

as style transfer or image reconstruction, feature inversion can be used to generate more realistic and

interpretable images.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

118

Feature Inversion

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

119

Feature Inversion

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016

Reconstructing from different layers of VGG-16

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

120

Feature Inversion: DeepDream - Amplify existing features

Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural Networks”,

Rather than synthesizing an image to maximize a specific neuron, instead try to amplify the neuron

activations at some layer in the network.

Choose an image and a layer in a CNN; repeat:

1. Forward: compute activations at chosen layer

2. Set gradient of chosen layer equal to its activation

3. Backward: Compute gradient on image

4. Update image

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

121

Neural Texture Synthesis: Gram Matrix

Neural texture synthesis is a technique that uses deep neural networks to generate new textures

that have similar visual characteristics to a given input texture. A pre-trained convolutional neural

network is used to analyze the features of the input texture. The network is typically a variant of VGG

(Visual Geometry Group) network, which is trained on large-scale image recognition tasks. The

network is used to extract the feature maps from a set of convolutional layers, which can be thought

of as representations of the input texture at different levels of abstraction.

The Gram matrix is then computed for each set of feature maps. The Gram matrix is a matrix of dot

products between the feature vectors of the original texture. This matrix captures the correlation

between the different features in the texture and is used as a measure of texture style. To generate a

new texture with a similar style to the input texture, the Gram matrices of the input texture and a

randomly initialized noise image are computed. The algorithm then optimizes the noise image to

minimize the difference between its Gram matrix and the Gram matrix of the input texture, while also

preserving certain statistical properties of the noise image. This optimization process generates a

new image that has similar texture characteristics as the input texture.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

122

Neural Texture Synthesis: Gram Matrix

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

123

Neural Texture Synthesis: Gram Matrix

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

124

Neural Texture Synthesis: Gram Matrix

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

125

Neural Texture Synthesis

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

126

Neural Texture Synthesis

Reconstructing texture from higher layers recovers
larger features from the input texture

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015

Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

127

Neural Texture Synthesis: Texture = Artwork

Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016.

Texture synthesis
(Gram reconstruction)

Feature
reconstruction

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

128

Neural Texture Synthesis: Style transfer

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

129

Neural Texture Synthesis: Style transfer

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

130

Neural Texture Synthesis: Style transfer

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

131

Neural Texture Synthesis: Style transfer

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

132

Neural Texture Synthesis: Style transfer

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

133

Neural Texture Synthesis: Style transfer

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

134

Neural Texture Synthesis: Style transfer

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

135

Neural Texture Synthesis: Style transfer

Problem: Style transfer requires many forward / backward passes through VGG;

very slow!

Solution: Train another neural network to perform style transfer for us!

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

136

Neural Texture Synthesis: Style transfer

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

137

Neural Texture Synthesis: Fast Style transfer

https://github.com/jcjohnson/fast-neural-style

Slow Fast Slow Fast

https://github.com/jcjohnson/fast-neural-style

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

138

Remember Normalization Methods?

Instance Normalization was developed for style transfer!

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

139

Neural Texture Synthesis: Fast Style transfer

Replacing batch normalization with Instance Normalization
improves results

Ulyanov et al, “Texture Networks: Feed-forward Synthesis of Textures and Stylized Images”, ICML 2016

Ulyanov et al, “Instance Normalization: The Missing Ingredient for Fast Stylization”, arXiv 2016

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

140

Neural Texture Synthesis: Fast Style transfer

One Network, Many Styles

Dumoulin, Shlens, and Kudlur, “A Learned Representation for Artistic Style”, ICLR 2017.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

141

Neural Texture Synthesis: Fast Style transfer

Single network can blend styles after
training

Dumoulin, Shlens, and Kudlur, “A Learned Representation for Artistic Style”, ICLR 2017.

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

under GA nr. INEA/CEF/ICT/A2020/2267423

Master programmes in Artificial

Intelligence 4 Careers in Europe

Thank you!

142

See you next week

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142

