

University of Cyprus MAI645 - Machine Learning for **Graphics and Computer Vision**

Marios Loizou, PhD candidate **Spring Semester 2023**

Co-financed by the European Union Connecting Europe Facility

3D Vision

These notes are mainly based on the following works:

- Fei-Fei Li, Jiajun Wu, Ruohan Gao, CS231n Deep Learning for Computer Vision, Stanford University
- •
- University of Massachusetts Amherst

Hao Su, Jiayuan Gu, Minghua Liu, Tutorial on 3D Deep Learning, University of California San Diego Evangelos Kalogerakis, Deep learning architectures for 3D shape analysis and synthesis,

3D Vision

Notes have been prepared by Mr. Marios Loizou Research Associate at Visual Computing Group at **CYENS** Centre of Excellence

Co-financed by the European Union **Connecting Europe Facility**

MAI4CAREU Master programmes in Artificial Intelligence 4 Careers in Europe Today's Agenda

- Who are we?
- What is 3D Vision
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

Co-financed by the European Union

MAI4CAREU Master programmes in Artificial Intelligence 4 Careers in Europe Today's Agenda

- Who are we?
- What is 3D Vision
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

Co-financed by the European Union

Who are we?

Visual Computing Group at CYENS Centre of Excellence

Melinos Averkiou MRG Leader

Yiangos Georgiou Research Associate

Co-financed by the European Union Connecting Europe Facility

Marios Loizou Research Associate

Yeshwanth Kumar Adimoolam

Research Associate

MAI4CAREU Master programmes in Artificial Intelligence 4 Careers in Europe Today's Agenda

- Who are we?
- What is 3D Vision
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

Co-financed by the European Union

What is 3D Vision: Overview

- the case of images (2D Vision)
- process this type of data

Co-financed by the European Union

Teaching the computer (learning) to understand the 3D world around it

• In 3D Vision the input data lie in the **3D space**, rather the 2D domain as in

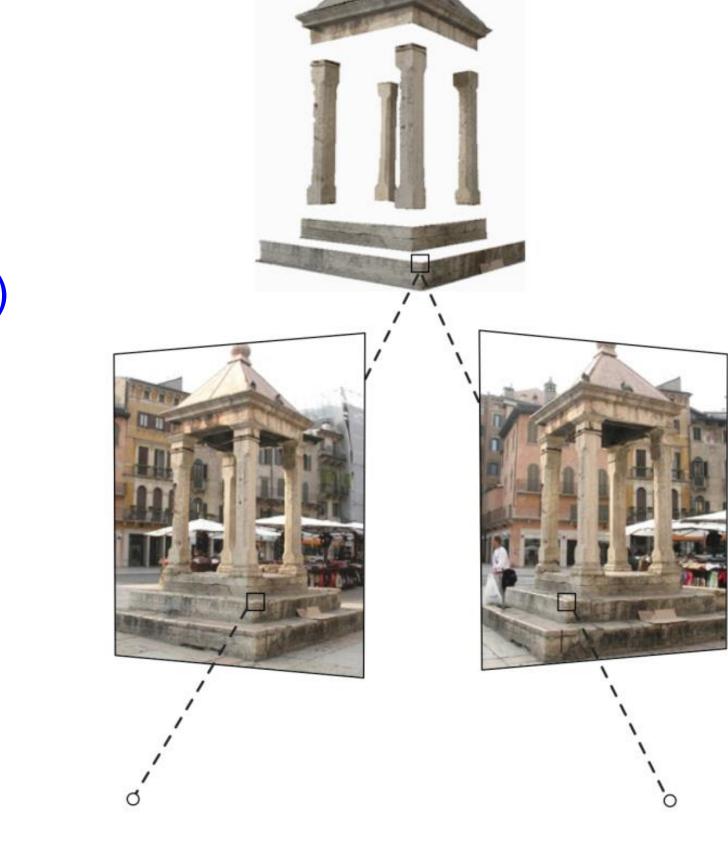
Deep Learning algorithms and architectures are specifically designed to

What is 3D Vision: Overview

Traditional 3D Vision

Multi-view Geometry: Structure from Motion (SfM) •

Co-financed by the European Union



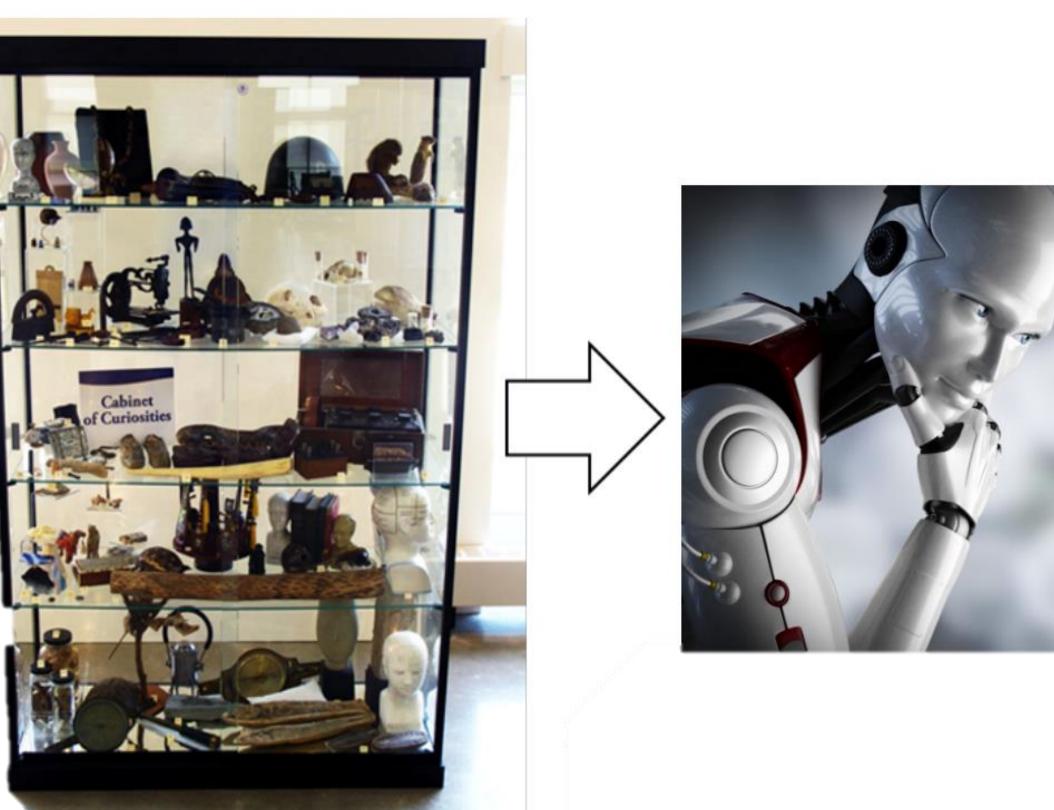
Hao Su et al.

What is 3D Vision: Overview

Now

• Acquire knowledge of the 3D world by Learning

Co-financed by the European Union



Hao Su et al.

What is 3D Vision: Tasks (a very small subset)

couch

hammock

bunk bed

Object Classification

L-shaped couch

hospital bed

couch

Co-financed by the European Union

Connecting Europe Facility

11

What is 3D Vision: Tasks (a very small subset)

Indoor Scene Segmentation

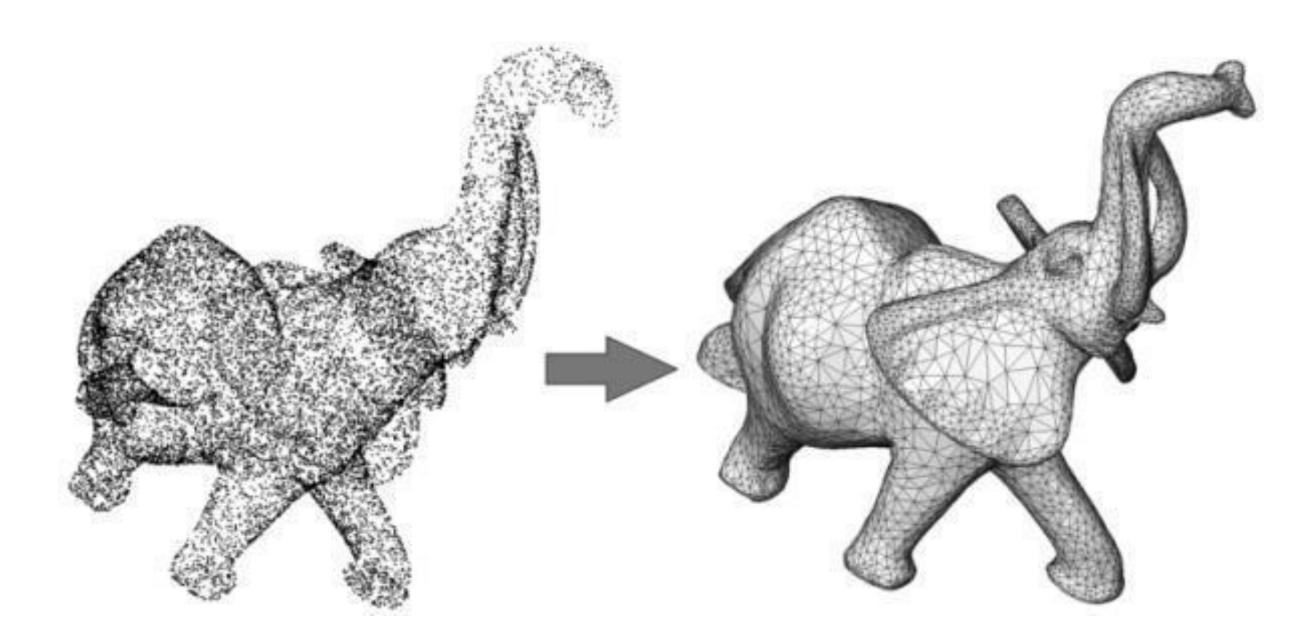
Co-financed by the European Union

Connecting Europe Facility

ScanNet, Angela Dai et al.

What is 3D Vision: Tasks (a very small subset)

Surface reconstruction

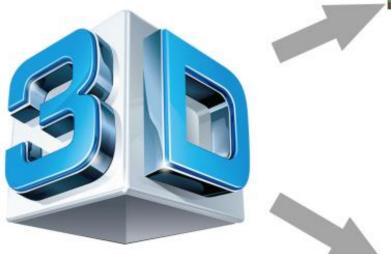


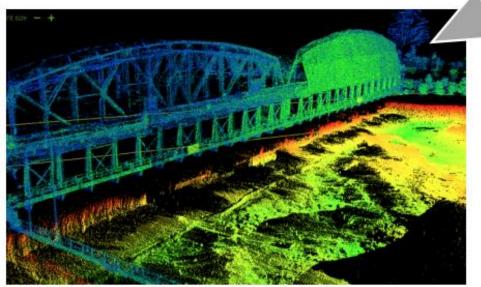
Co-financed by the European Union

Connecting Europe Facility

What is 3D Vision: Applications

Robotics



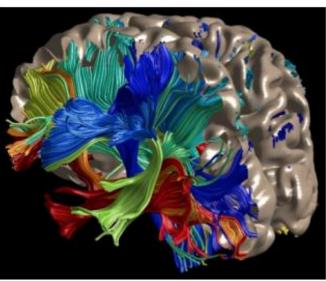


Autonomous driving

Co-financed by the European Union

Connecting Europe Facility

Augmented Reality



Medical Image Processing

Hao Su et al.

MAI4CAREU Master programmes in Artificial Intelligence 4 Careers in Europe Today's Agenda

- Who are we?
- What is 3D Vision
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

Co-financed by the European Union

3D shape representations: Many ways to represent geometry

Explicit

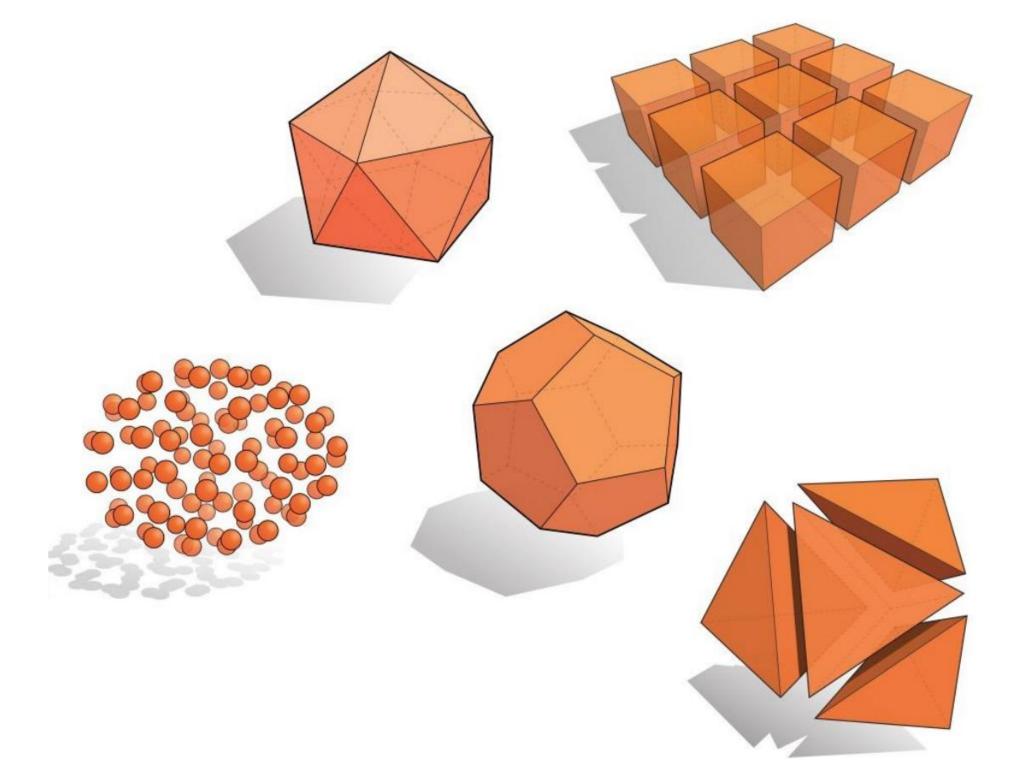
- point cloud
- polygon mesh
- •

Implicit

- level sets
- distance functions

Voxels

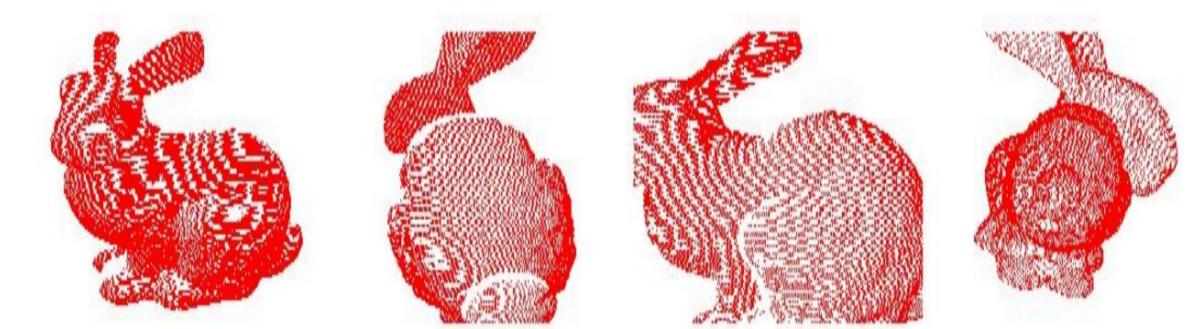
. . .



Jiajun Wu

3D shape representations: *Point clouds*

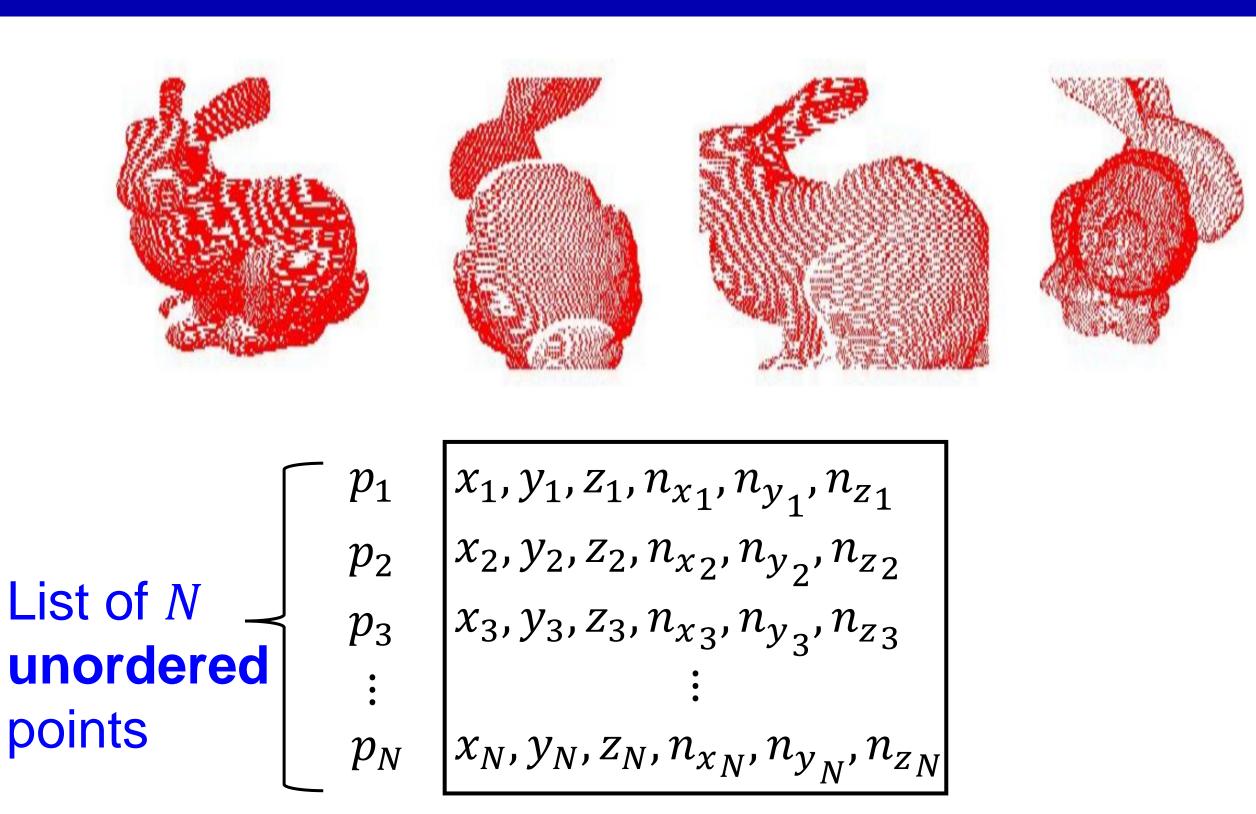
• Simplest representation: only points, no connectivity



Jiajun Wu

3D shape representations: *Point clouds*

- Simplest representation: only points, no connectivity
- Collection of (x, y, z)coordinates, possibly with normal (perpendicular to the underlying surface)

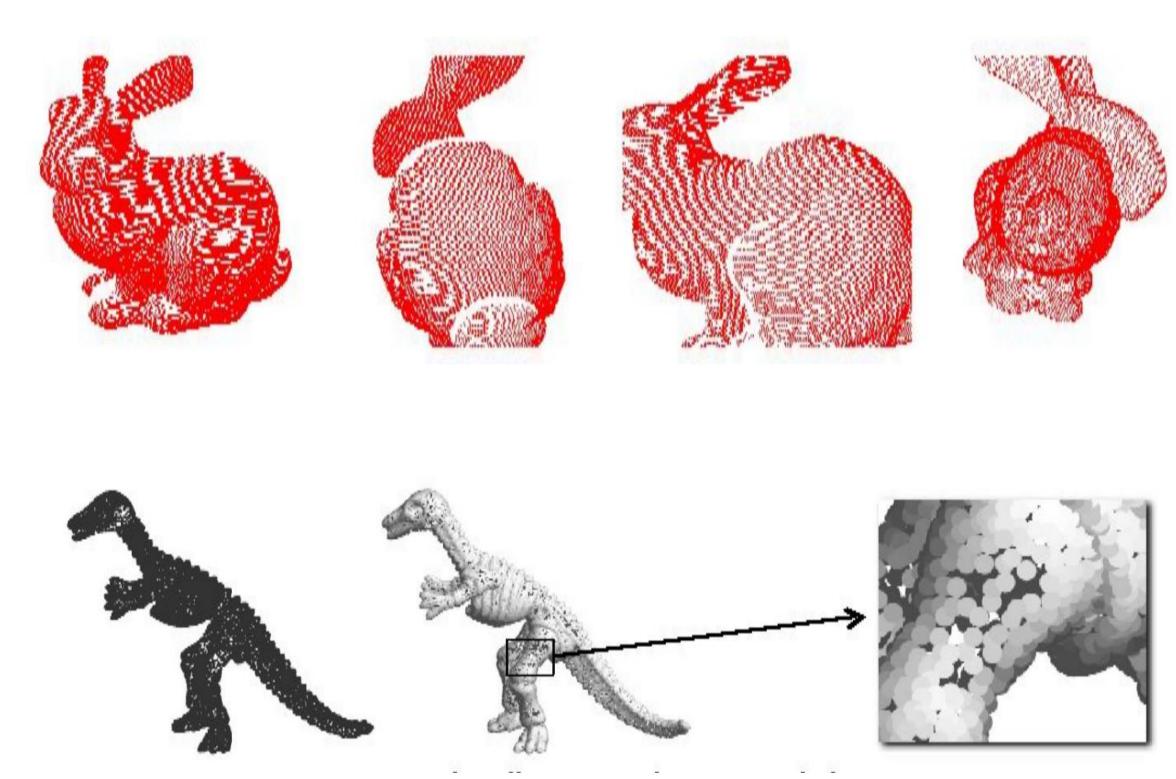


Jiajun Wu

3D shape representations: *Point clouds*

- Simplest representation: only points, no connectivity
- Collection of (x, y, z)coordinates, possibly with **normal** (perpendicular to the underlying surface)
- Points with orientation (normal) • are called surfels

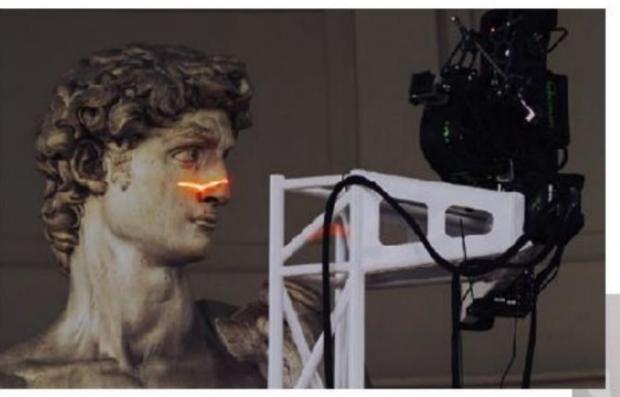
Co-financed by the European Union Connecting Europe Facility

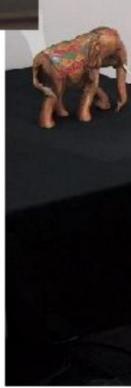


Jiajun Wu

3D shape representations: Point clouds acquisition

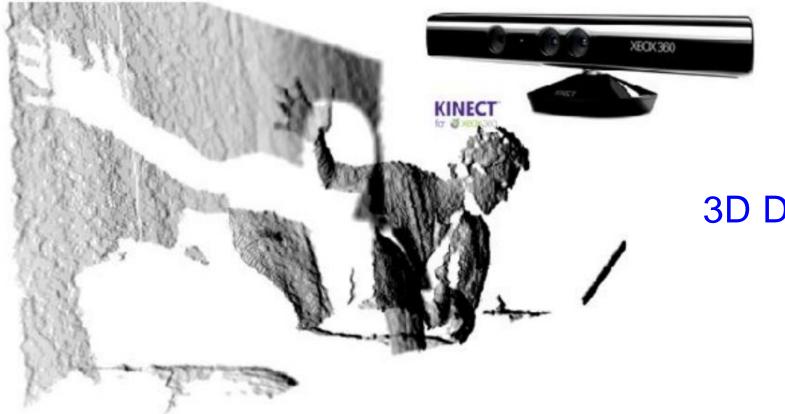
Laser triangulation rangefinder





Co-financed by the European Union

Connecting Europe Facility



3D Depth sensor

3D Laser scanner

Jiajun Wu

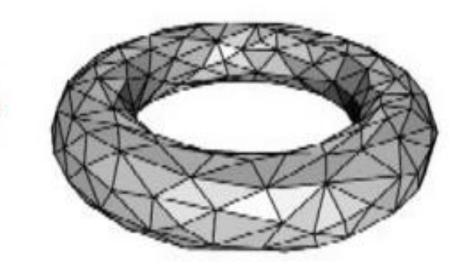
3D shape representations: Point clouds pros & cons

Pros:

- Easily represents any kind of geometry
- ✓ Useful for large datasets
- Cons
 - Incomplete/noisy point Χ clouds
 - No topological information Χ

Co-financed by the European Union Connecting Europe Facility

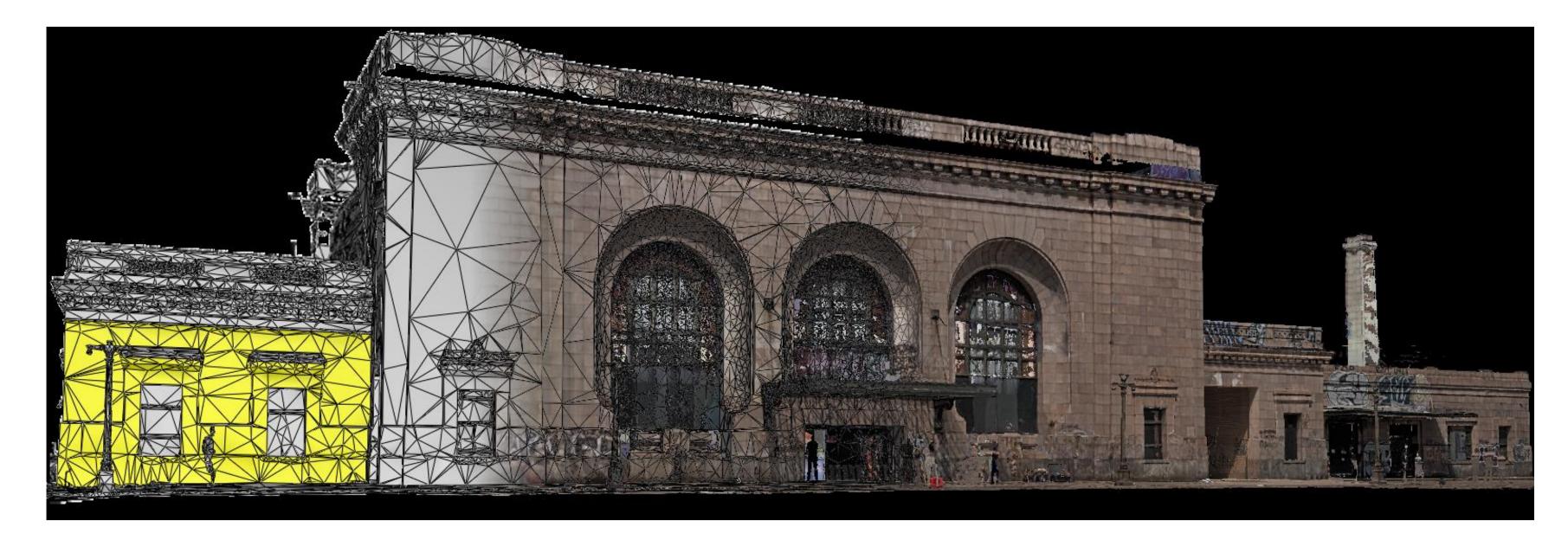
Incomplete scans



No topology

Jiajun Wu

3D shape representations: *Polygonal Meshes*



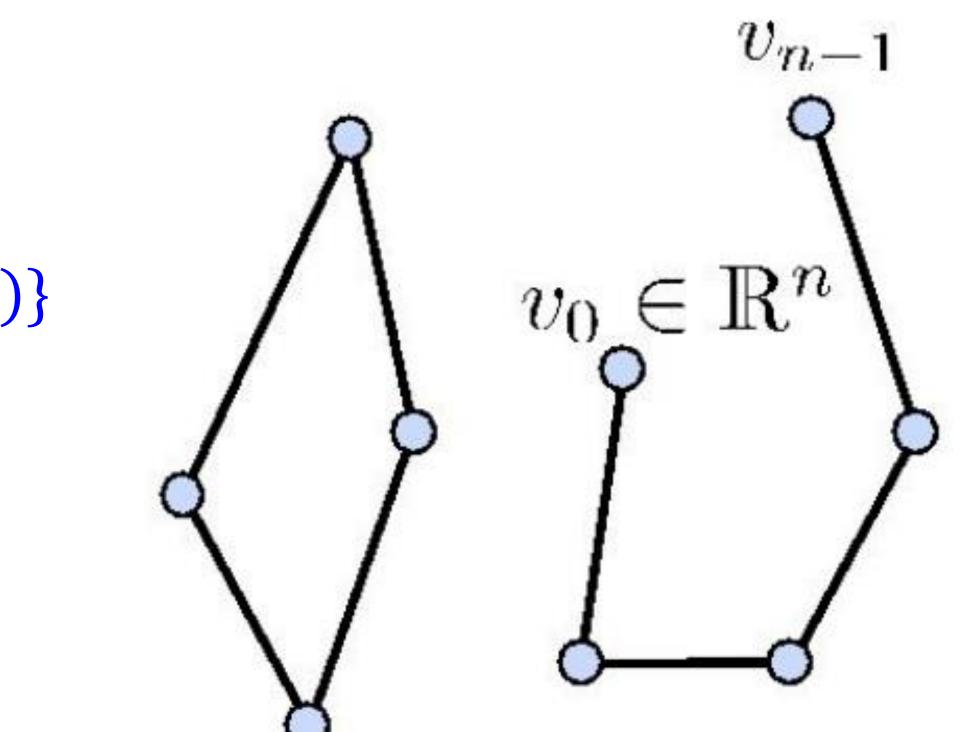
- polygons
- **Boundary representation** of objects

Co-financed by the European Union Connecting Europe Facility

A 3D polygonal mesh is the structural build of a 3D model consisting of

- Polygon: •
 - **Vertices**: v_0, v_1, \dots, v_{n-1}
 - Edges: { $(v_0, v_1), \cdots, (v_{n-2}, v_{n-1})$ }
- Types of polygons:
 - **Closed**: $v_0 = v_{n-1}$
 - Planar: all vertices on a plane
 - **Simple**: not self-intersecting

Co-financed by the European Union **Connecting Europe Facility**



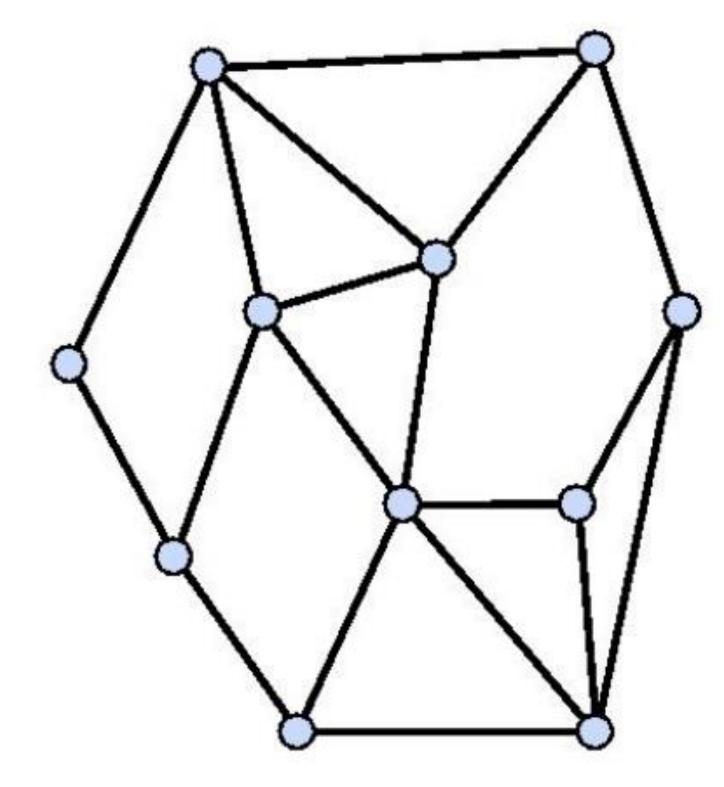
Jiajun Wu

- Polygonal Mesh:
 - A finite set *M* of **closed**, **simple** polygons Q_i

$$M = \langle V, E, F \rangle$$

 $V = \text{set of vertices}$
 $E = \text{set of edges}$
 $F = \text{set of faces}$

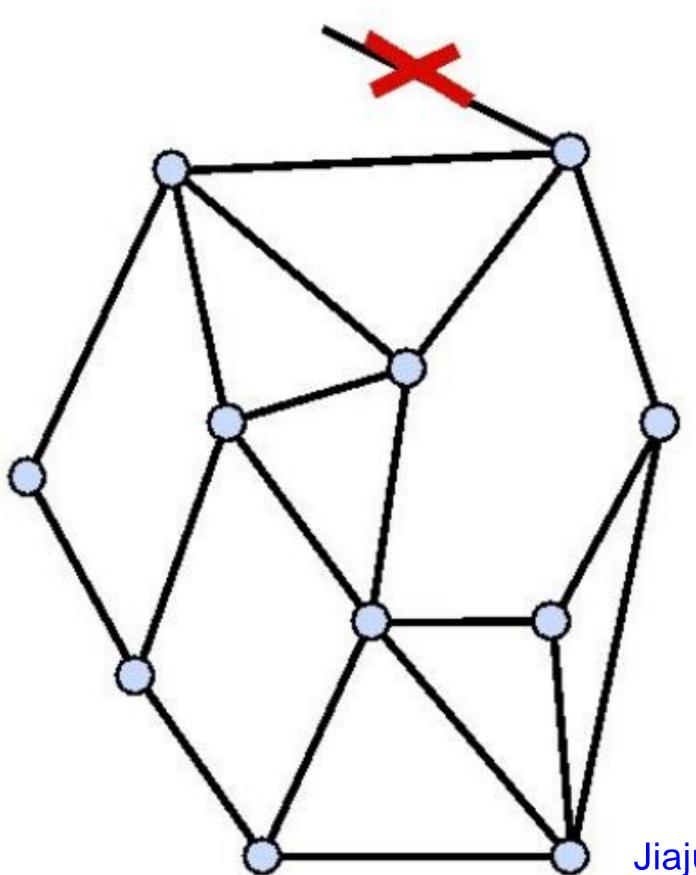
Co-financed by the European Union Connecting Europe Facility



Jiajun Wu

- Polygonal Mesh:
 - A finite set *M* of **closed**, **simple** polygons Q_i
 - Every edge belongs to at least one polygon

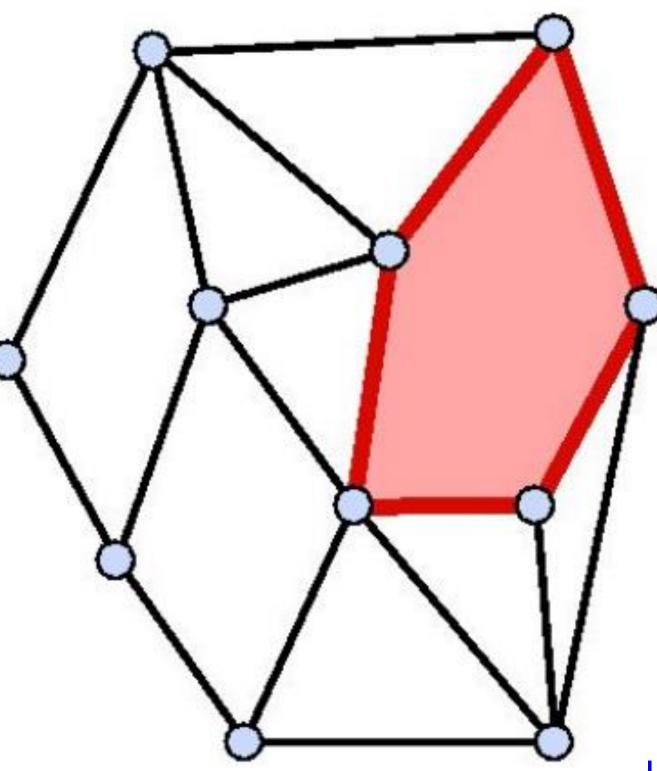
Co-financed by the European Union



• Polygonal Mesh:

- A finite set *M* of **closed**, **simple** polygons Q_i
- Every edge belongs to at least one polygon
- Each Q_i defines a face of the polygonal mesh

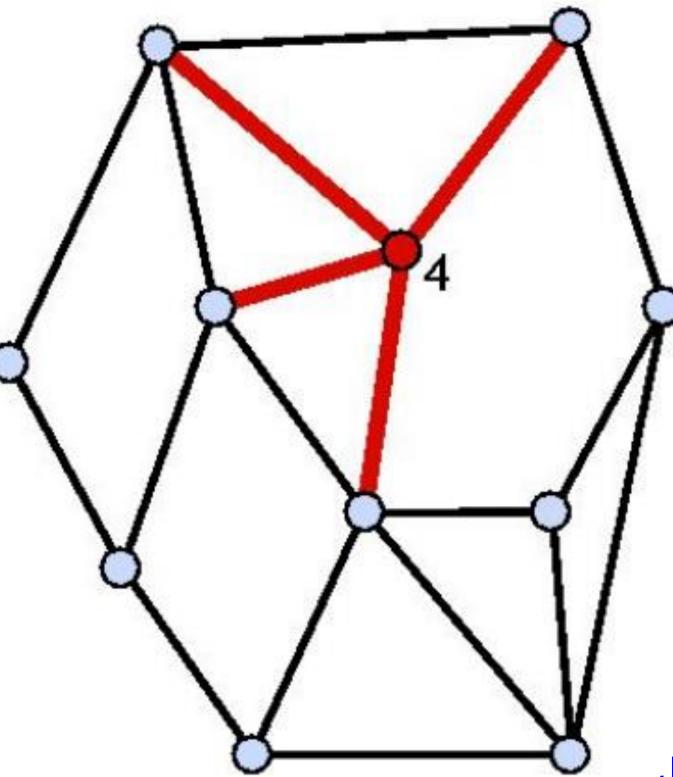
Co-financed by the European Union



Jiajun Wu

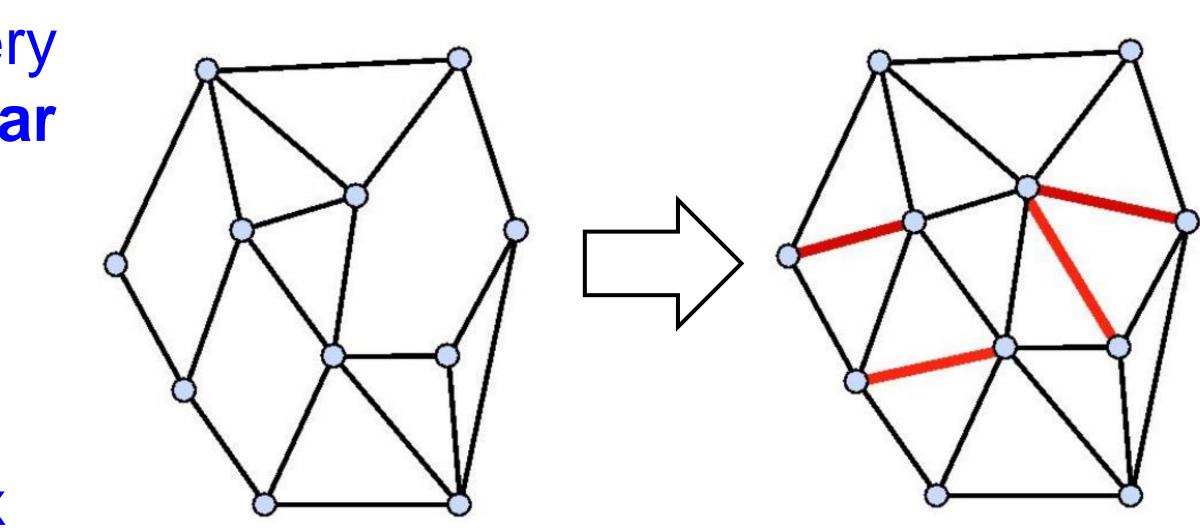
Polygonal Mesh:

- A finite set *M* of **closed**, **simple** polygons Q_i
- Every edge belongs to at least one polygon
- Each Q_i defines a face of the polygonal mesh
- Vertex degree or valance = number of incident edges



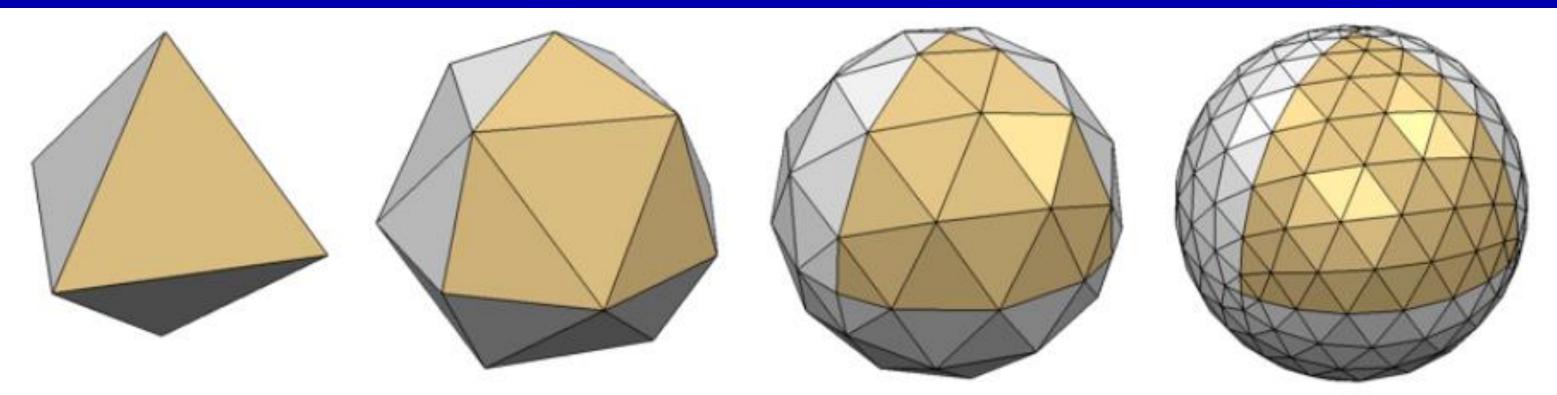
Jiajun Wu

- Polygonal Mesh Triangulation:
 - Polygonal mesh where every face is a triangle \rightarrow triangular mesh
 - Simplifies data structures
 - Simplifies rendering
 - Simplifies algorithms
 - Each face is planar and convex
 - Any polygon can be triangulated



Jiajun Wu

3D shape representations: Polygonal Meshes



- elements

A polygonal mesh consists of three kinds of mesh elements: vertices, edges and faces

Mesh connectivity or topology: describes the incidence relation amongst mesh

Mesh geometry: specifies the position and other geometric characteristics of each vertex

Data Structures:

- What should be stored?
 - **Geometry**: 3D coordinates
 - **Connectivity**: Adjacency relationships
 - Attributes:
 - Normal, color, texture coordinates
 - Per vertex, face, edge

Co-financed by the European Union Connecting Europe Facility

Jiajun Wu

Indexed Face Set

- Used in formats like OBJ and OFF
- Storage
 - Vertex: position
 - Face: vertex indices
- No explicit neighborhood info

Co-financed by the European Union

Vertices				
v0	x0	УO	z0	
v1	x1	x1	z1	
v2	x2	у2	z2	
v3	x3	үЗ	z3	
v4	x4	у4	z4	
v5	x5	у5	z5	
v6	x6	У6	z6	
•••	•••	•••	•••	

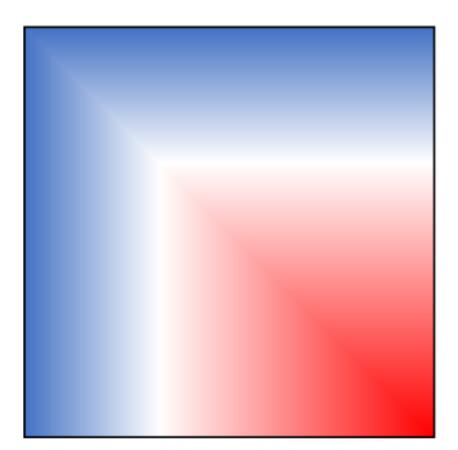
Triangles				
t0	v0	v1	v2	
t1	v0	v1	v3	
t2	v2	v4	v3	
t3	v5	v2	v6	
•••		•••	•••	

Jiajun Wu

3D shape representations: *Implicit Functions*

Implicit function

• Classifies arbitrary 3D points as inside / outside the shape



Implicit function

Explicit Shape

Justin Solomon

3D shape representations: *Implicit Functions*

Implicit function

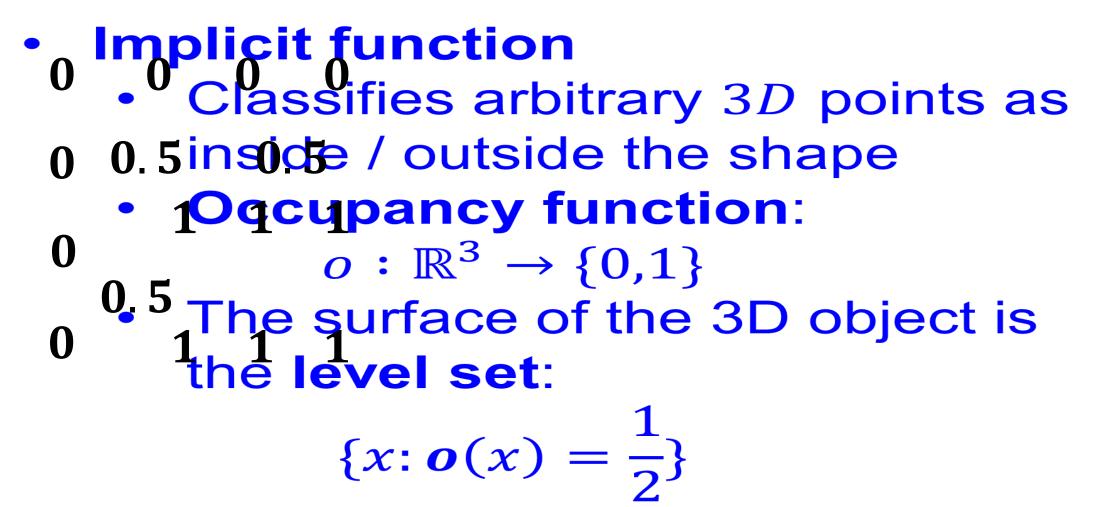
- Classifies arbitrary 3D points as inside / outside the shape
- Occupancy function:

 $o: \mathbb{R}^3 \rightarrow \{0,1\}$

• The surface of the 3D object is the level set:

$$\{x: \boldsymbol{o}(x) = \frac{1}{2}\}$$

Co-financed by the European Union

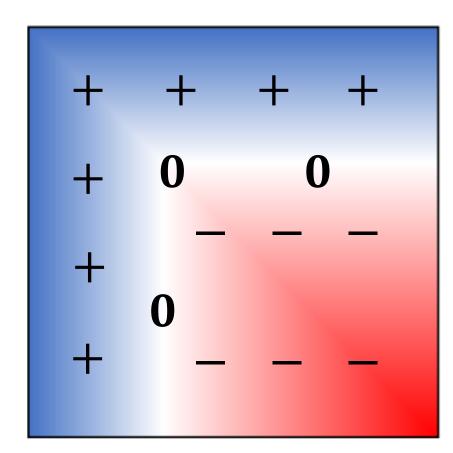


Justin Solomon

3D shape representations: *Implicit Functions*

Implicit function

- Classifies arbitrary 3D points as inside / outside the shape
- Signed Distance Function: Euclidean distance to the surface of shape; sign gives inside / outside
- The surface of the 3D object is the level set: $\{x: SDF(x) = 0\}$



Implicit function

Explicit Shape

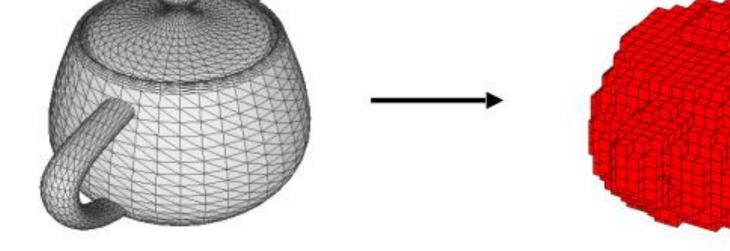
Justin Solomon

3D shape representations: Volumetric Grid

Volumetric Grid

- Represent a shape with a $V \times V \times V$ grid of occupancies or SDFs
- Conceptually simple \rightarrow just a 3D regular Euclidean grid
- Like an image
 - Pixels -> Voxels
- Straightforward to apply 3D convolutions

Co-financed by the European Union



Polygon Mesh

Occupancy Grid 30x30x30

Hao Su et al.

MAI4CAREU Master programmes in Artificial Intelligence 4 Careers in Europe Today's Agenda

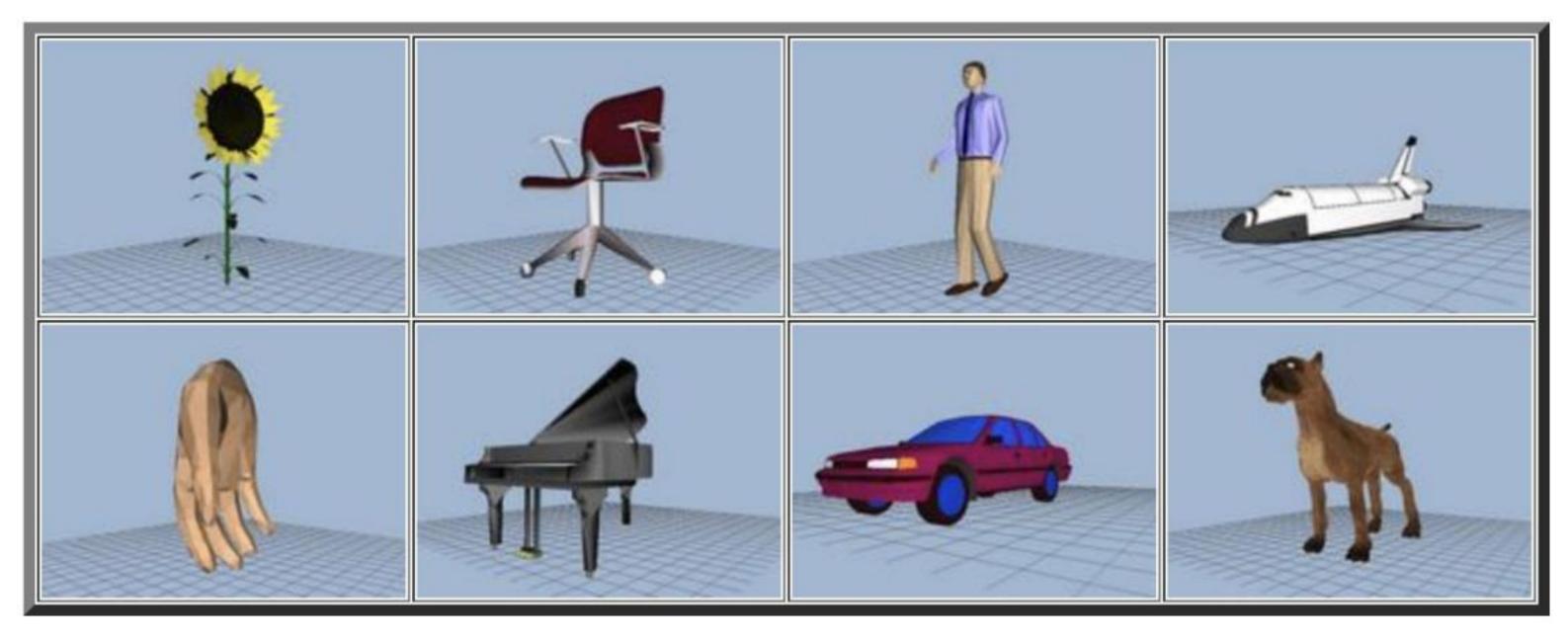
- Who are we?
- What is 3D Vision
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

Co-financed by the European Union

3D shape datasets: Datasets for 3D Objects

Princeton Shape Benchmark

- # Models: 1,814
- # Categories: 182



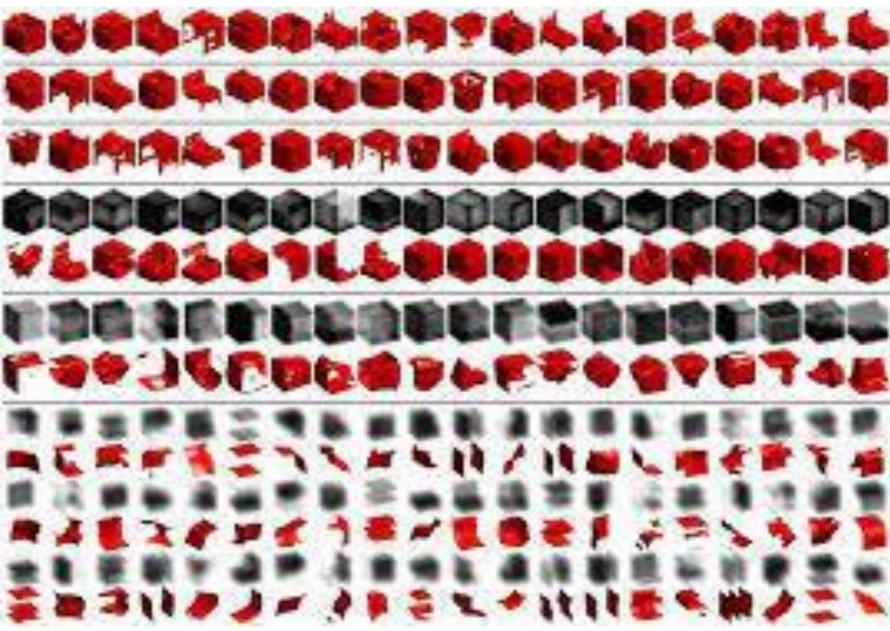
Co-financed by the European Union Connecting Europe Facility

Shilane et al., 2004

3D shape datasets: Datasets for 3D Objects

ModelNet40 and ModelNet40

- # Models: 12,311
- # Categories: 40



Co-financed by the European Union

Connecting Europe Facility

ModelNet10 (subset of ModelNet10)

- # Models: 4,899
- # Categories: 10

Z. Wu et al., 2015

3D shape datasets: Datasets for 3D Objects

- **ShapeNet**
 - # Models: 3M (not publicly available)

Co-financed by the European Union Connecting Europe Facility

ShapeNetCore (subset of ShapeNet)

- # Models: 51,300
- # Categories: 55

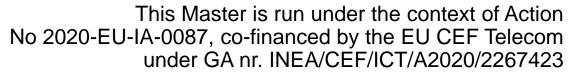
Change et al., 2015

3D shape datasets: Datasets for 3D Objects

- Pix3D
 - # Images: 10,069
 - # Models: 395 (2D-3D aligned)

Co-financed by the European Union Connecting Europe Facility

Sun et al., 2018



3D shape datasets: Datasets for 3D Objects Parts

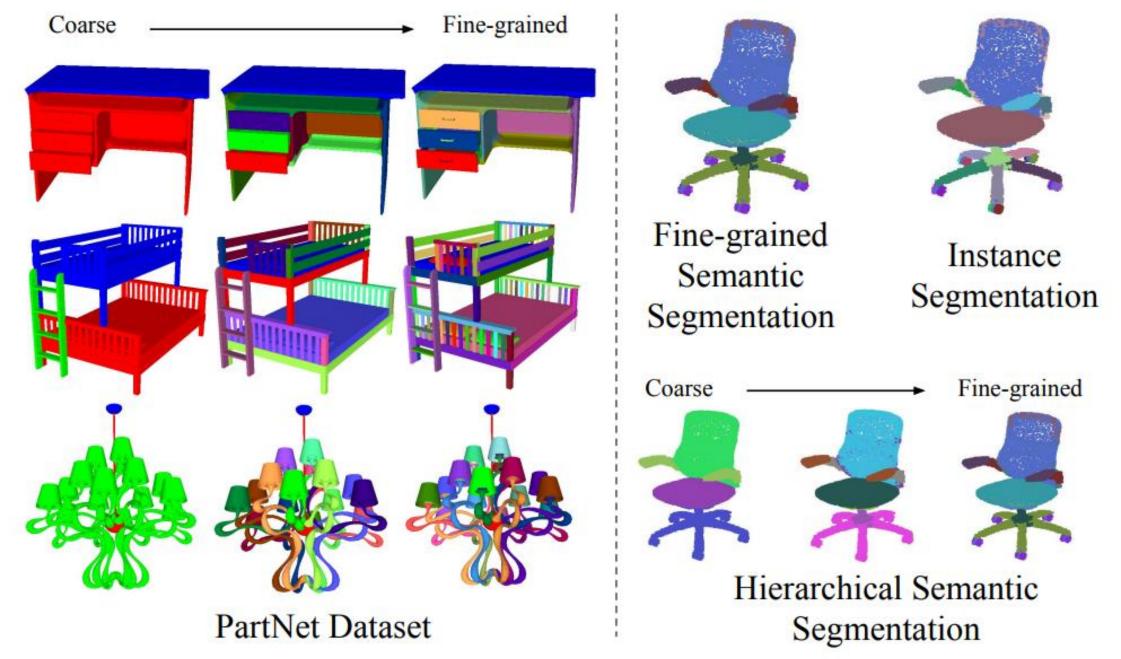
ShapeNet-Part (subset of ShapeNet) •

- # Models: 16,881
- # Categories: 16 •
- # Semantic parts: 50 •

Co-financed by the European Union Connecting Europe Facility

3D shape datasets: Datasets for 3D Objects Parts

- PartNet (subset of ShapeNet)
 - # Models: 26,671
 - # Categories: 24
 - # Part instances: 573,585
 - # Semantic parts: 480
 - Fine-grained
 - Hierarchical



Mo et al., 2019

3D shape datasets: Datasets for Indoor 3D Scenes

- Large-scale Scanned Real **Scenes: ScanNet**
 - # Views: 2.5M
 - # RGBD scans: 1,500
 - 3D camera poses
 - Surface reconstruction
 - Instance-level semantic segmentations

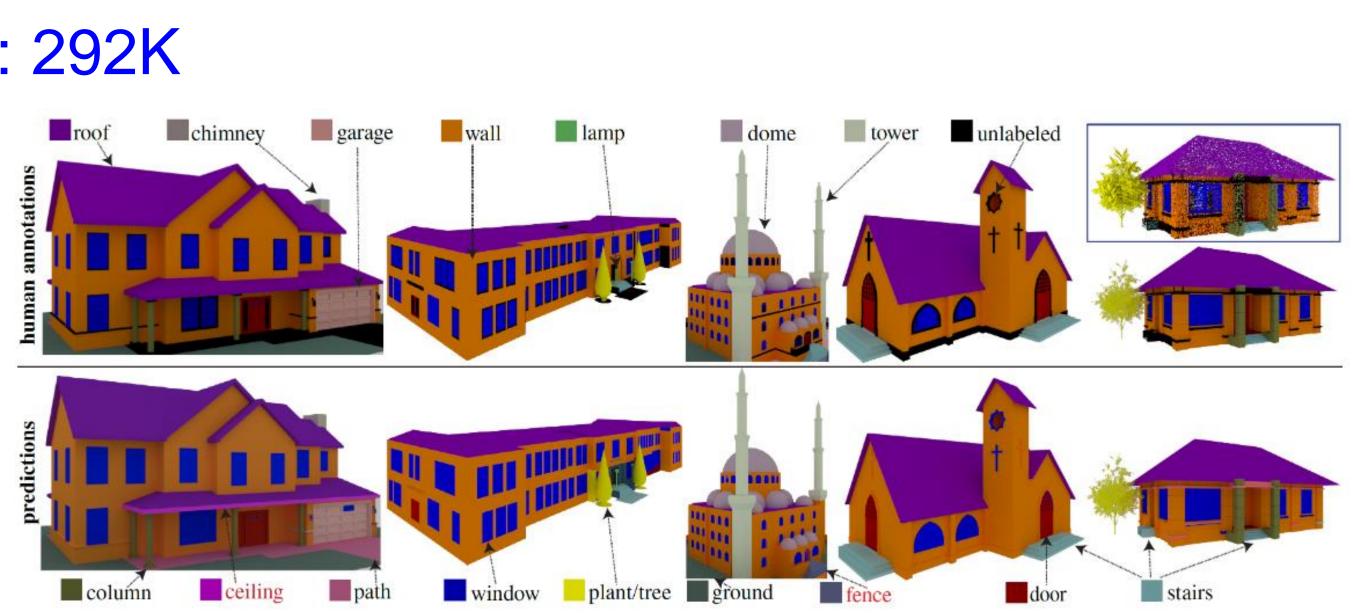
Co-financed by the European Union

Dai et al., 2017

MAI4CAREU

3D shape datasets: Datasets for 3D Buildings

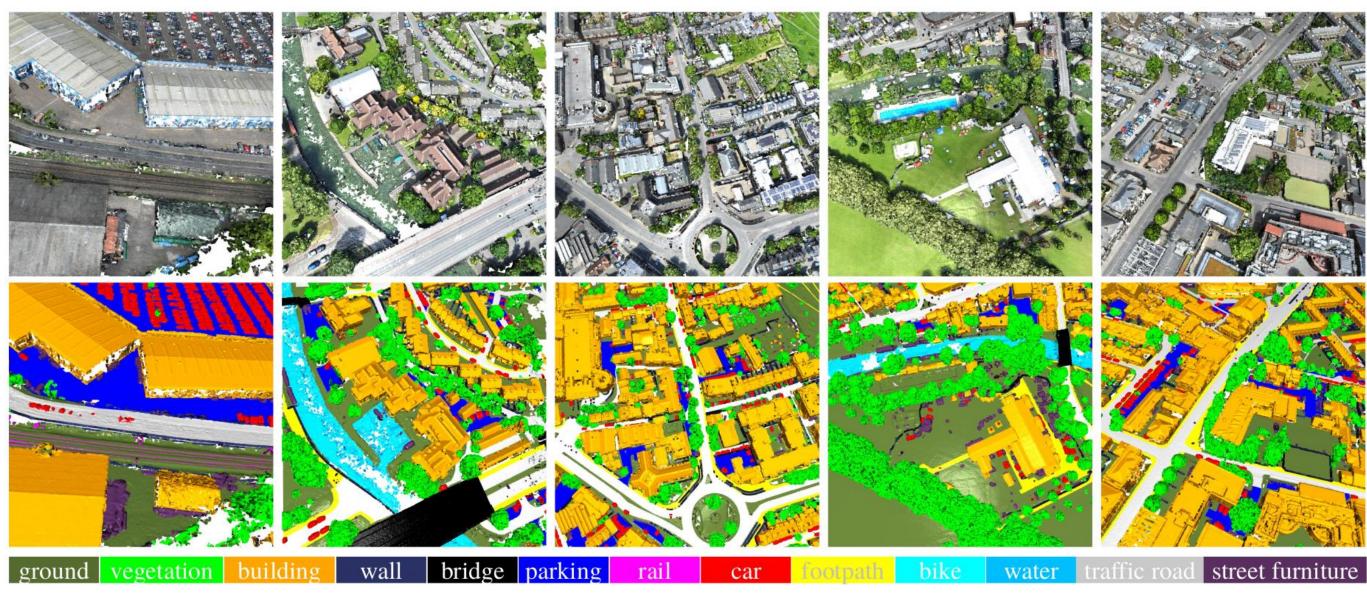
- **BuildingNet**
 - # Models: 2,000
 - # Semantic Components: 292K
 - # Semantic Parts: 31
 - Semantic segmentation
 - Surface reconstruction



Selvaraju et al., 2021

3D shape datasets: Datasets for Urban Areas

- SensatUrban
 - # Points: 3B
 - # Semantic Classes: 13



Co-financed by the European Union Connecting Europe Facility

Qingyong et al., 2022

Figure 3: Examples of our SensatUrban dataset. Different semantic classes are labeled by different colors.

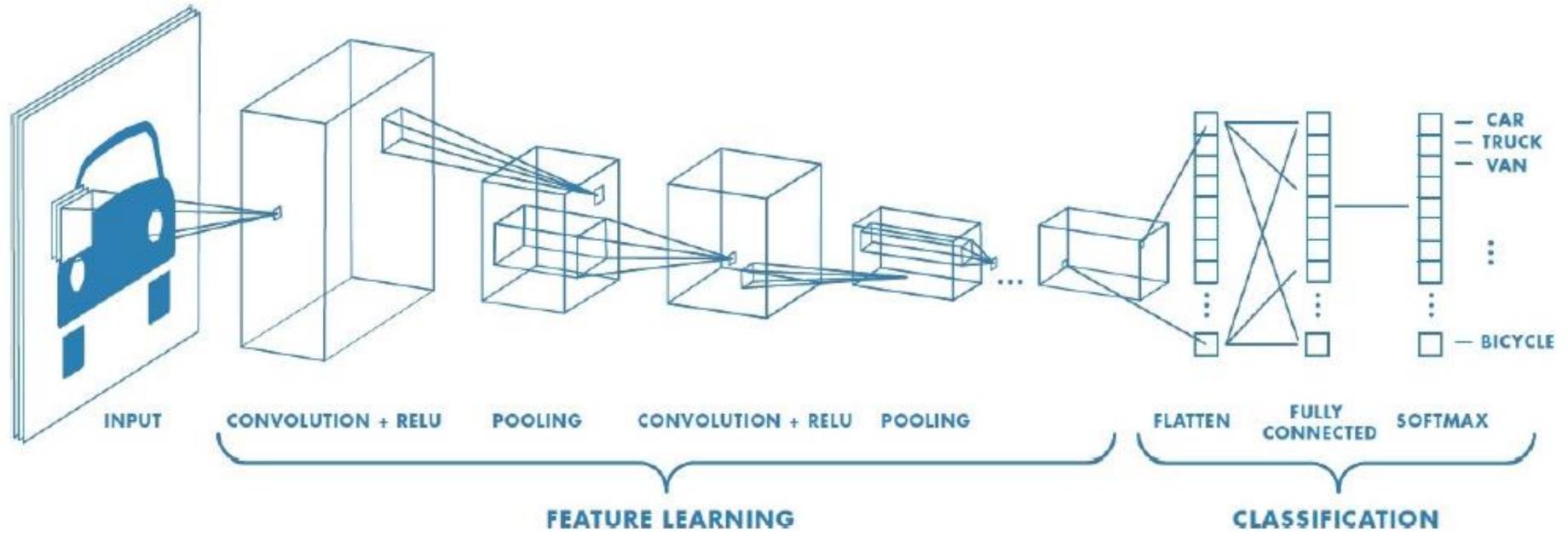
MAI4CAREU Master programmes in Artificial Intelligence 4 Careers in Europe Today's Agenda

- Who are we?
- What is 3D Vision
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

Co-financed by the European Union

3D DL architectures: 2D architectures "success story"

descriptors to high-level concepts

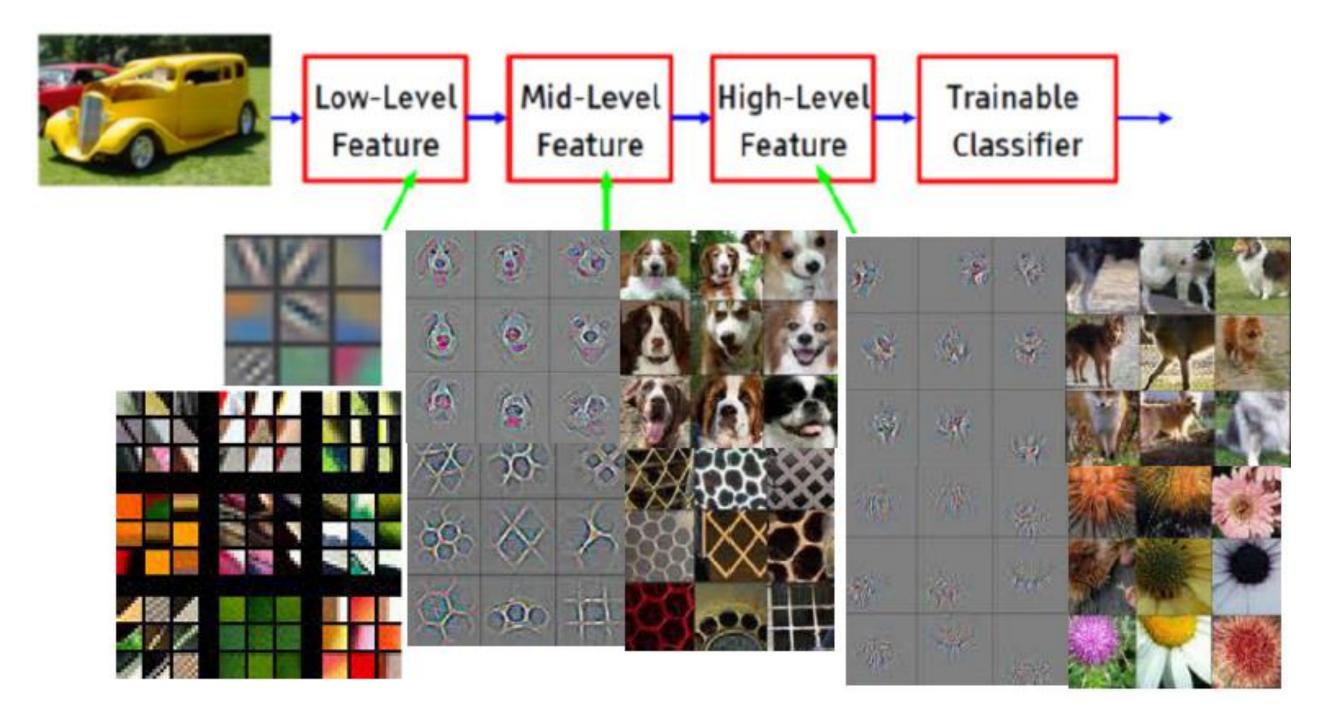


Layers of convolutional filters trained to extract descriptors + learned functions that map

Kalogerakis E.

3D DL architectures: 2D architectures "success story"

Can capture various low-level and high-level features through hierarchical representation learning. Very good performance in 2D vision tasks (class., seg., obj. det....)



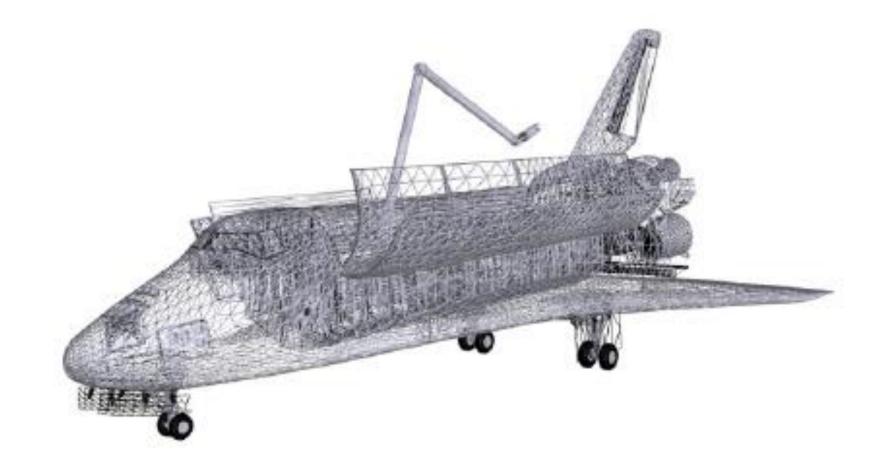
Co-financed by the European Union

Connecting Europe Facility

Kalogerakis E.

3D DL architectures: Challenges – How do we apply convnets in 3D shapes

#points, different #neighbor per point etc.



Polygon mesh

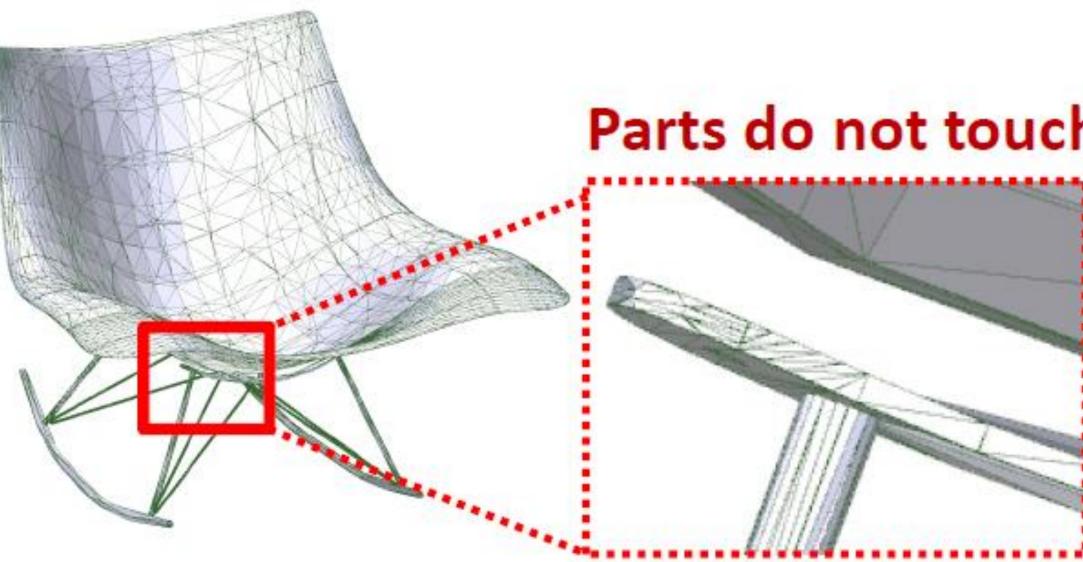
Geometric representations are irregular and unordered: arbitrary point order, different

Point clouds

Kalogerakis E.

3D DL architectures: Challenges – Artifacts

3D models can have several artifacts



Parts do not touch

Kalogerakis E.

3D DL architectures: Challenges – Noise

Scanned surfaces have **noisy** and **missing parts**

Resulting surface

Co-financed by the European Union Connecting Europe Facility

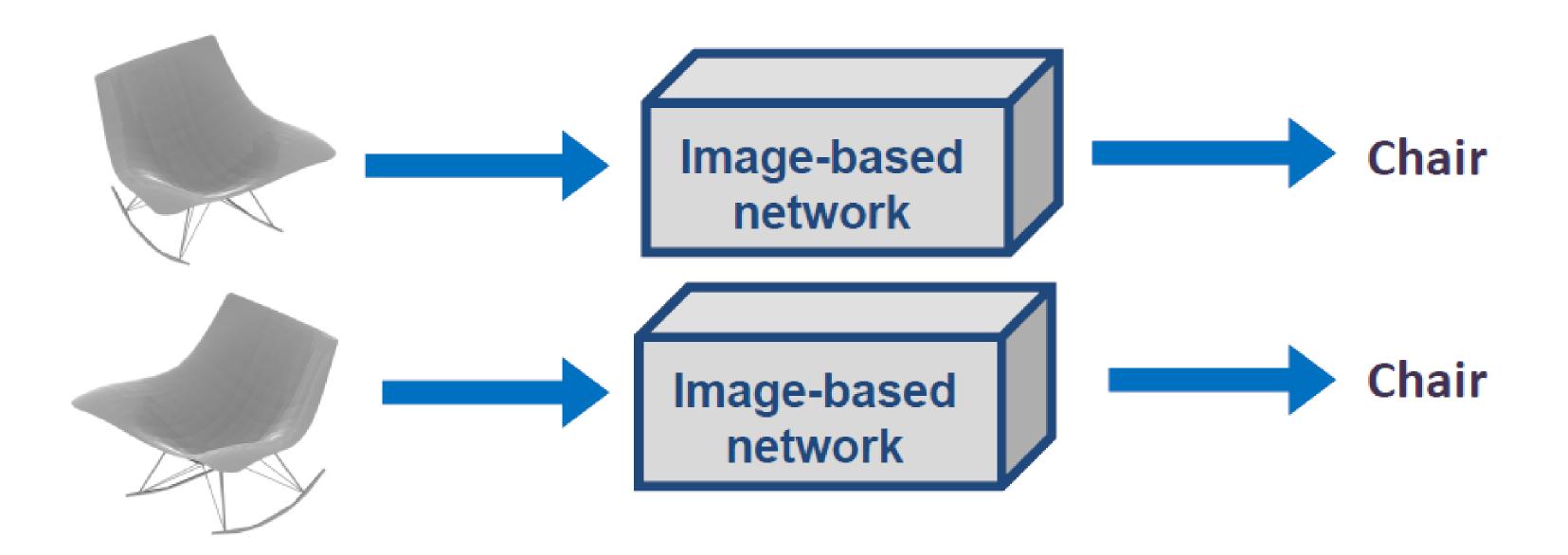


"A Large Dataset of **Object Scans**" Choi, Zhou, Miller, Koltun 2016

Kalogerakis E.

3D DL architectures: *Multi-view approach*

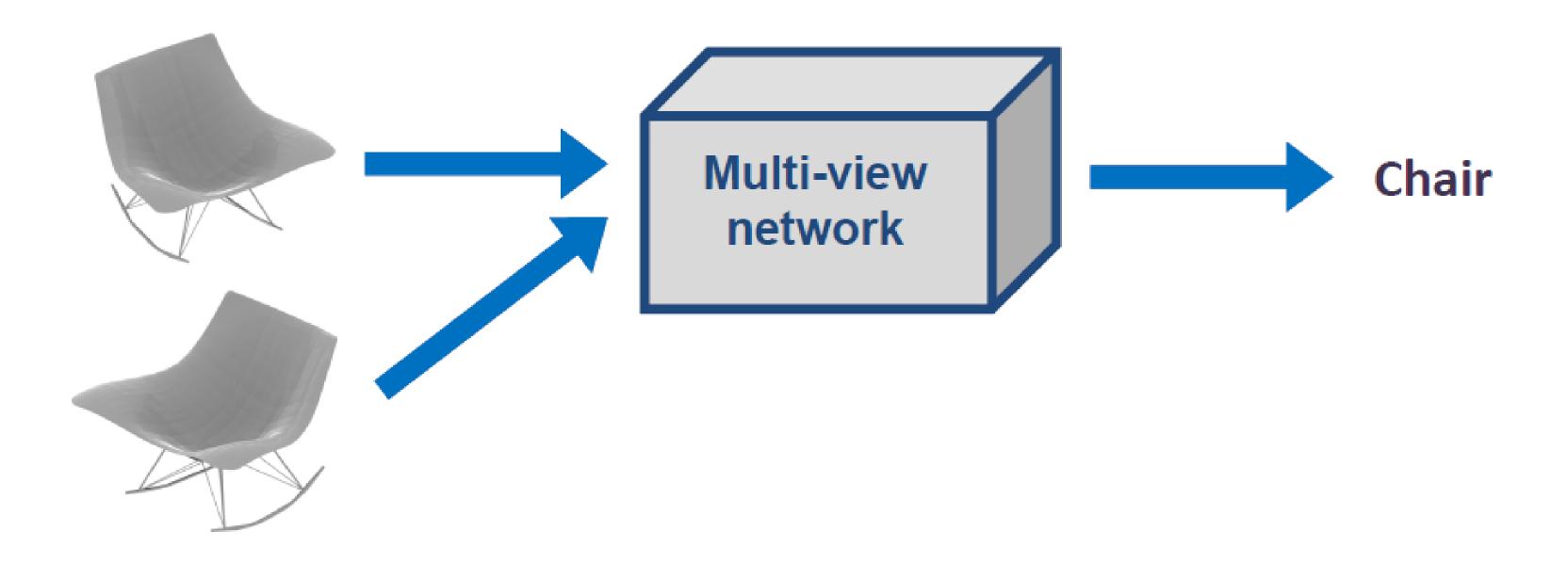
Image-based networks can process individual shape renderings



Kalogerakis E.

3D DL architectures: *Multi-view approach*

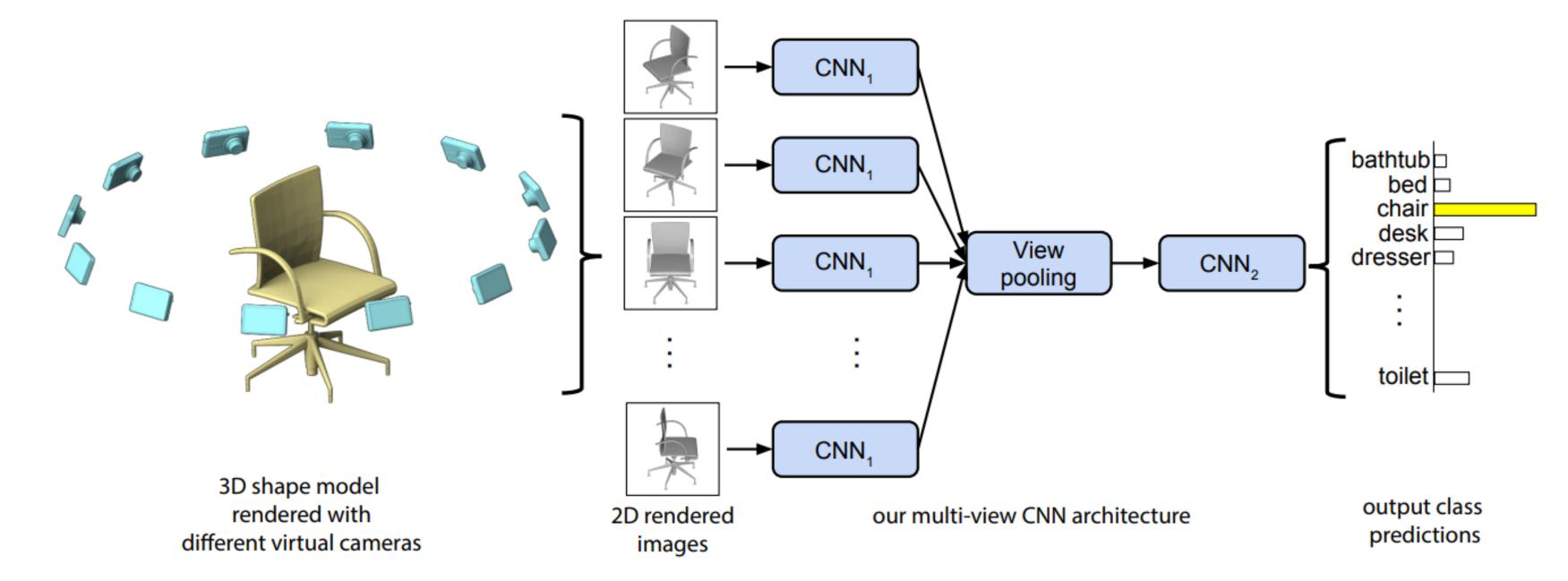
Image-based networks can process individual shape renderings



Kalogerakis E.

3D DL architectures: *Multi-view approach*

Multi-view Convolutional Neural Networks for 3D Shape Recognition



Hang Su et al. ICCV 2015

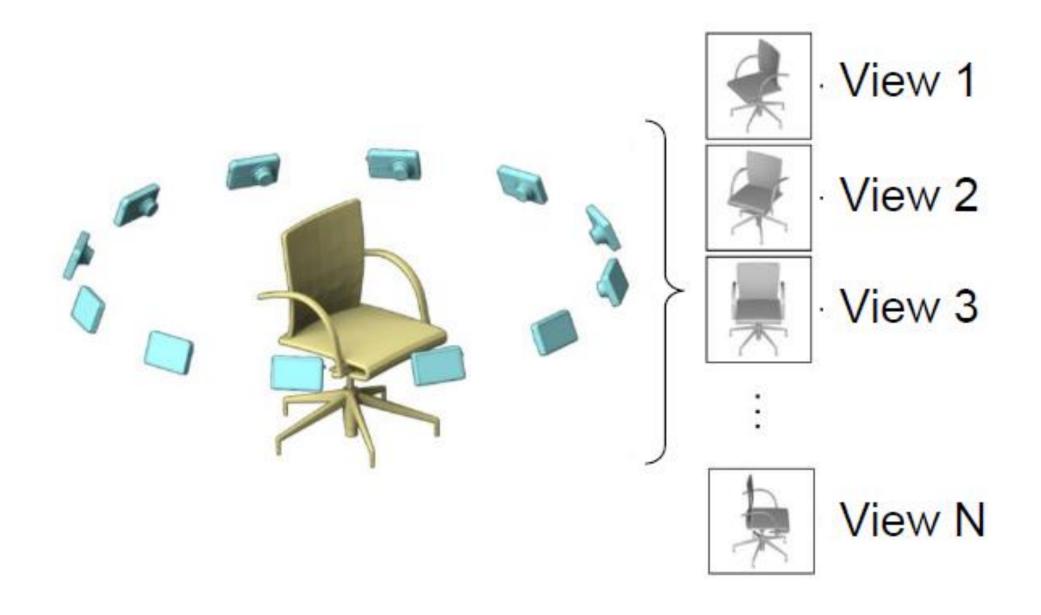
3D DL architectures: *Multi-view approach*

Multi-view Convolutional Neural Networks for 3D Shape Recognition

Hang Su et al. ICCV 2015

3D DL architectures: *Multi-view approach*

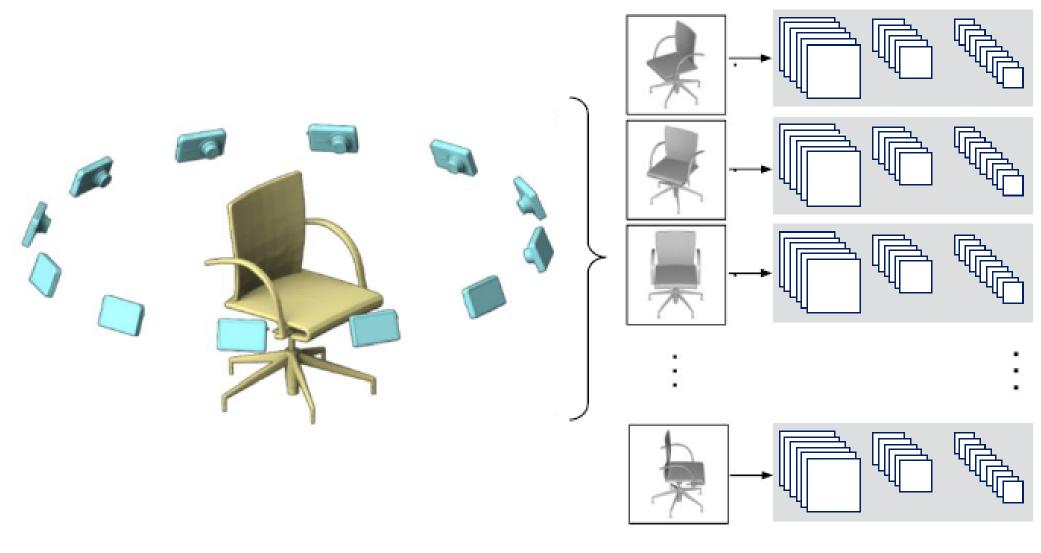
Multi-view Convolutional Neural Networks for 3D Shape Recognition



Hang Su et al. ICCV 2015

3D DL architectures: *Multi-view approach*

Multi-view Convolutional Neural Networks for 3D Shape Recognition



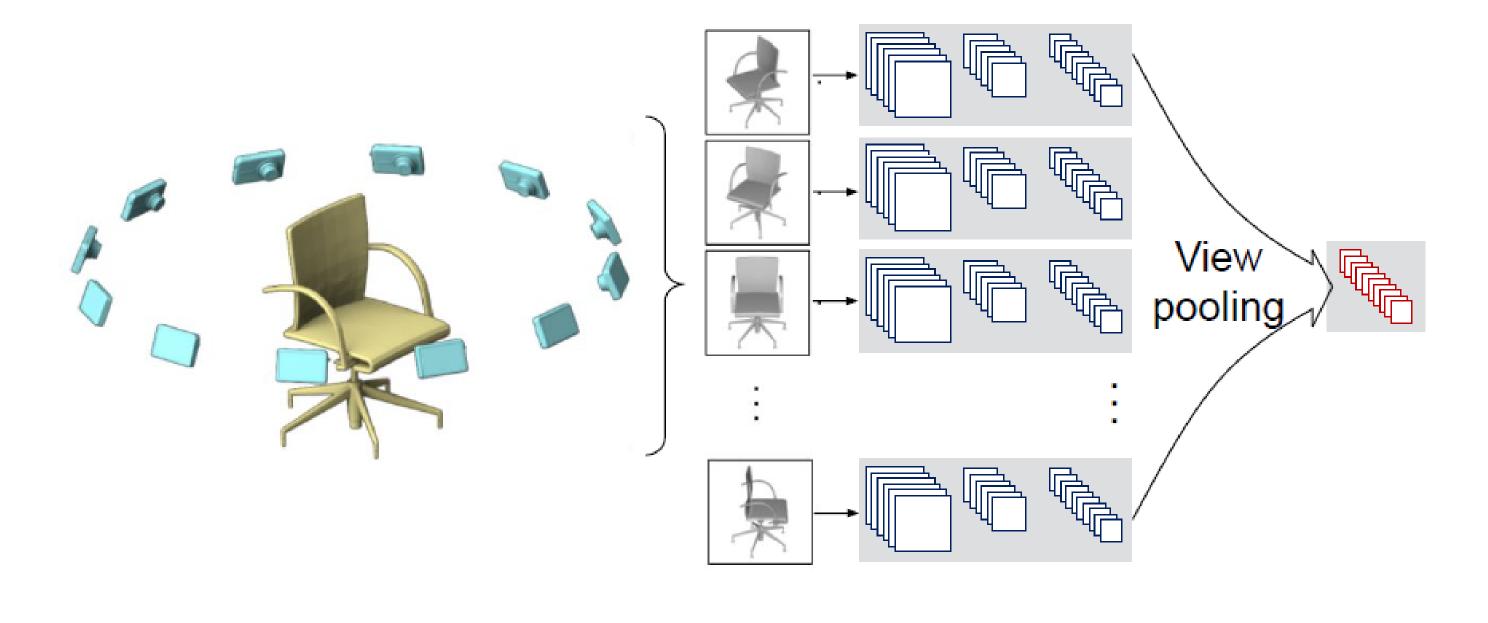
CNN₁: a ConvNet extracting image features

- CNN
- ĊNN
- ĊNN
- CNN

Hang Su et al. ICCV 2015

3D DL architectures: *Multi-view approach*

Multi-view Convolutional Neural Networks for 3D Shape Recognition



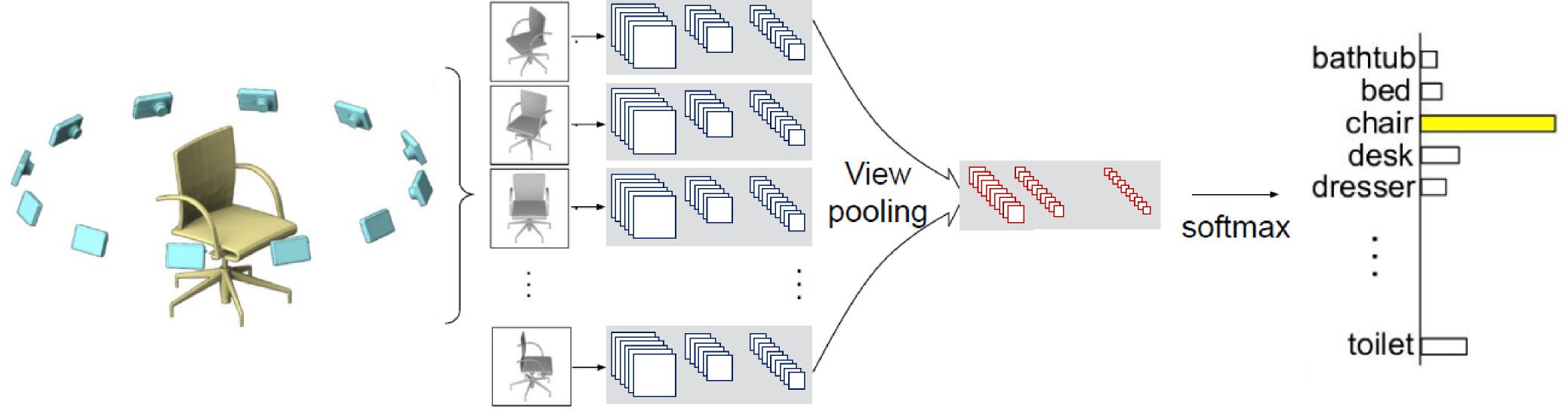
View pooling: element-wise max-pooling across all views

Hang Su et al. ICCV 2015

58

3D DL architectures: *Multi-view approach*

Multi-view Convolutional Neural Networks for 3D Shape Recognition



CNN₂: a second ConvNet producing shape descriptors

Hang Su et al. ICCV 2015

3D DL architectures: *Multi-view approach*

Multi-view Convolutional Neural Networks for 3D Shape Recognition

ModelNet40: Classification & Retrieval

Method

Spherical Harmonics [Kazl

LightField [Chen et al.]

Volumetric Net [Wu et al.

ImageNet-trained CNN (V

Multi-view convnet (MVC

Co-financed by the European Union Connecting Europe Facility

	Classification (Accuracy)
zhdan et al.]	68.2%
	75.5%
.]	77.3%
/GG-M, 1 view)	83.0%
CNN)	90.1 %

Hang Su et al. **ICCV 2015**

3D DL architectures: Multi-view approach

- **Multi-view Networks**
- Pros: ✓ Good performance Can leverage vast literature of image classification Can use pretrained features

Cons

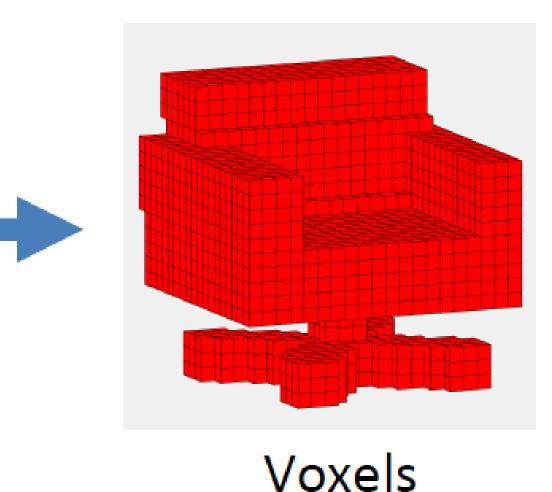
- Need projection Χ
- Issue with noisy and/or incomplete input, e.g., point cloud Χ

Jiajun Wu

3D DL architectures: Volumetric approach

Voxelization: Convert shape to 3D regular volumetric grid

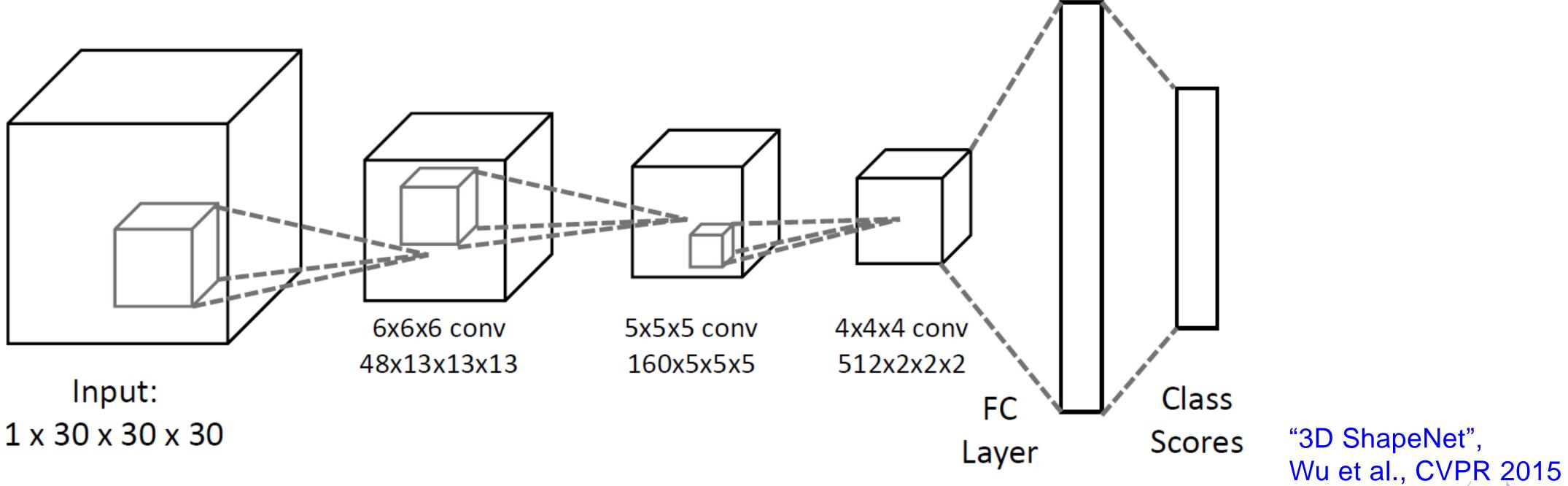
3D polygon mesh



Kalogerakis E.

3D DL architectures: Volumetric approach

Processing Voxel Inputs –> **3D Convolution**

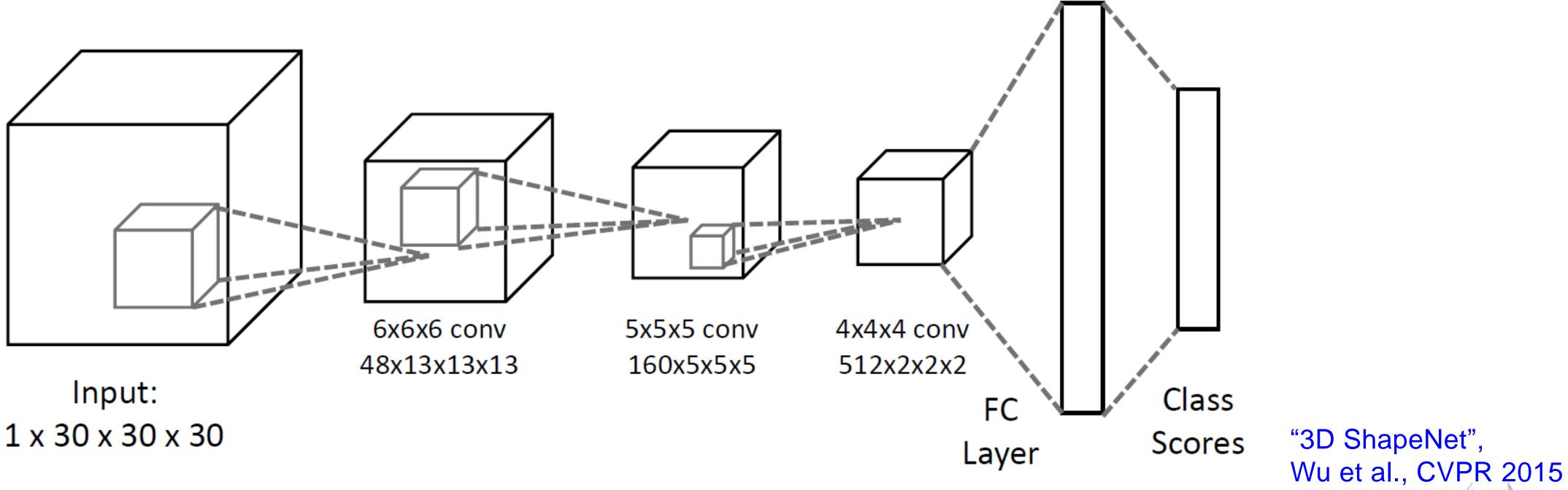


Co-financed by the European Union

Connecting Europe Facility

3D DL architectures: Volumetric approach

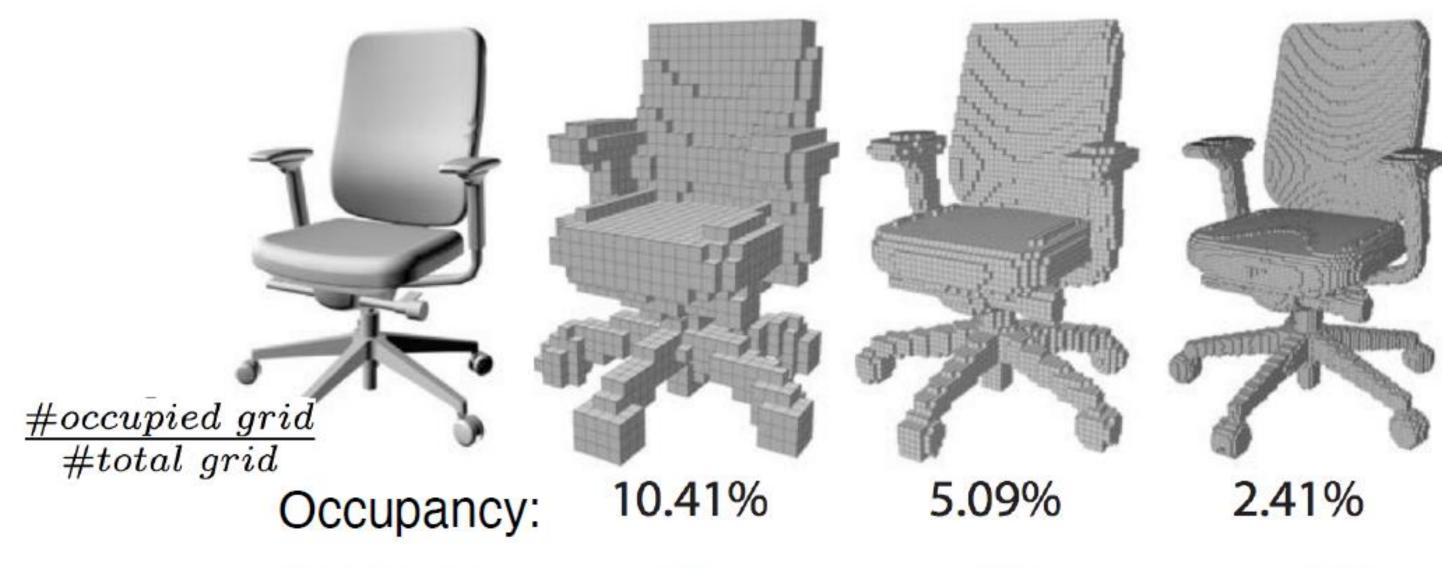
Processing Voxel Inputs –> **3D Convolution** Computationally and memory expensive! Requires low-res input



Co-financed by the European Union Connecting Europe Facility

3D DL architectures: Volumetric approach

Sparsity of 3D data



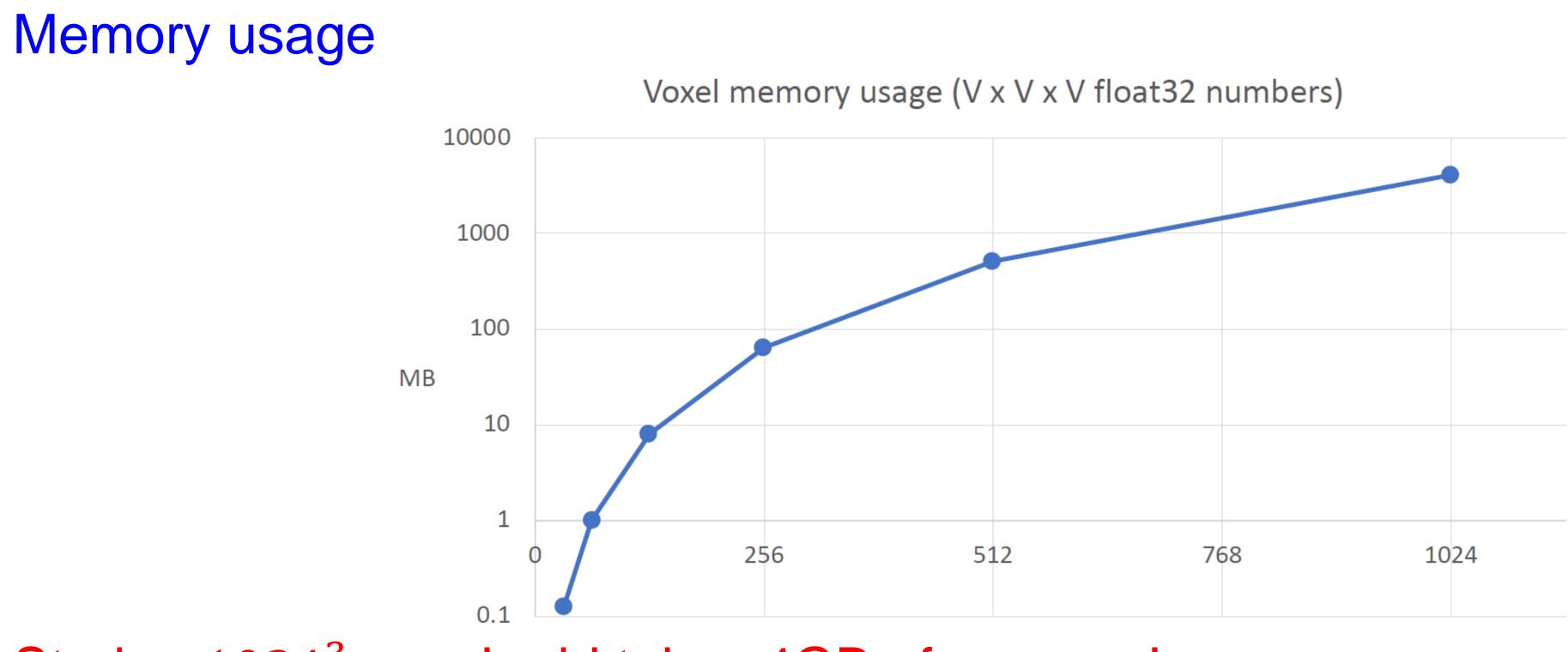
32 128 Resolution: 64

Running convolution on so much empty space is wasteful!

Co-financed by the European Union Connecting Europe Facility

Hao Su et al.

3D DL architectures: Volumetric approach



Storing 1024³ voxel grid takes 4GB of memory!

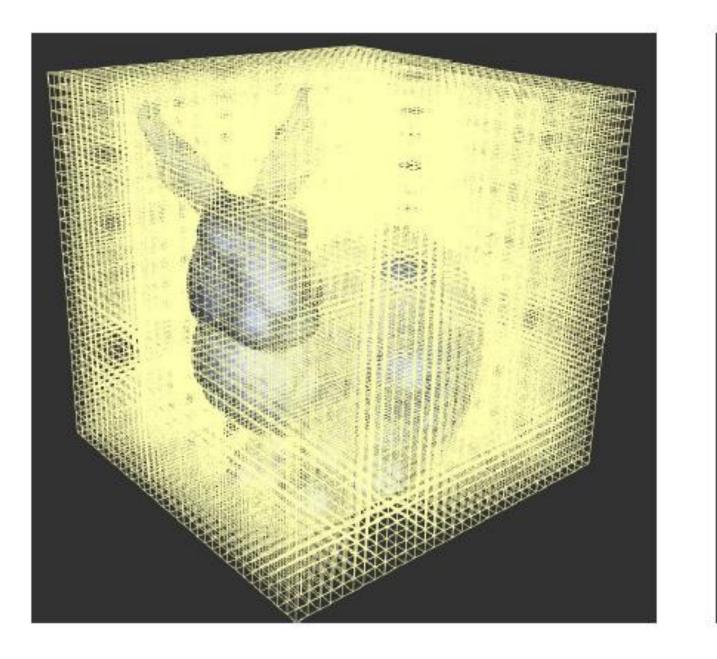
Co-financed by the European Union Connecting Europe Facility

Justin Solomon

3D DL architectures: Volumetric approach

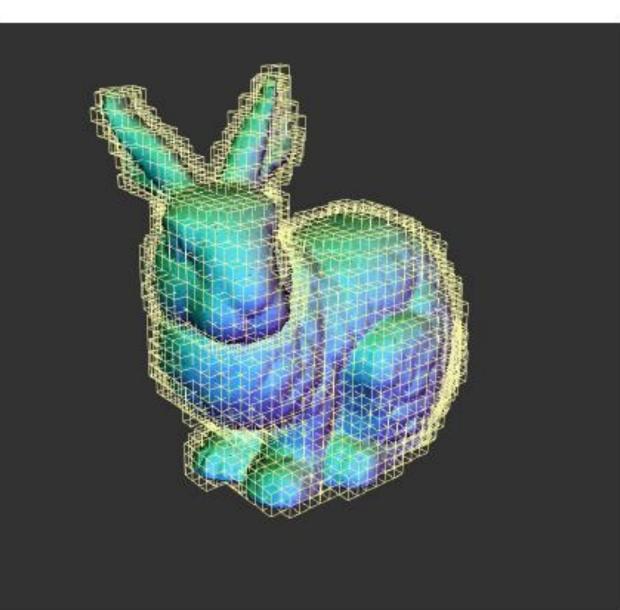
Solution –> Octave Tree Representations

- Store the sparse surface signals
- Constrain the computation near the surface



Co-financed by the European Union

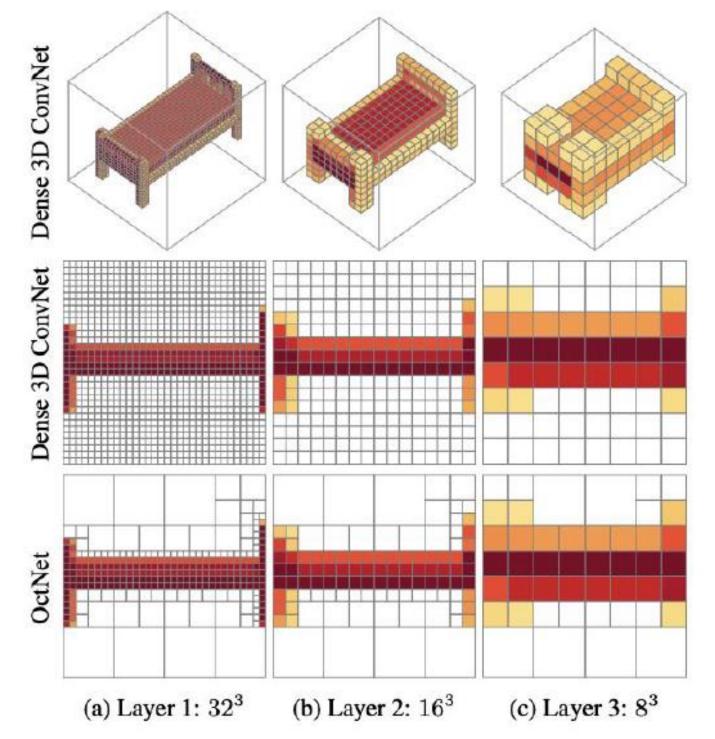
Connecting Europe Facility

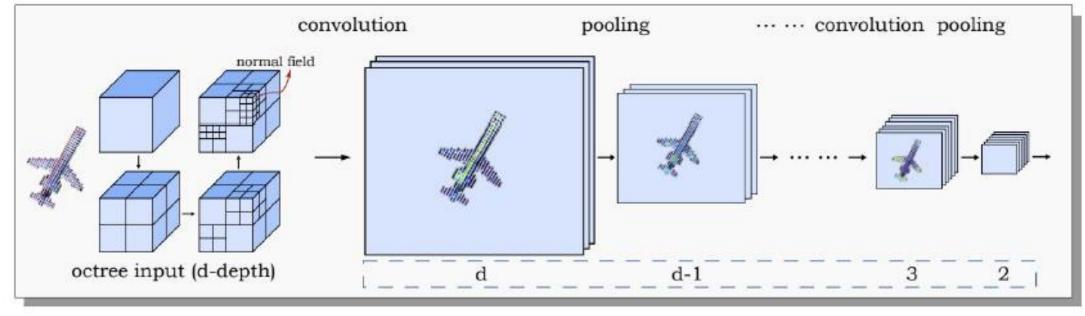


Hao Su et al.

3D DL architectures: Volumetric approach

Octree: Recursively Partition the Space

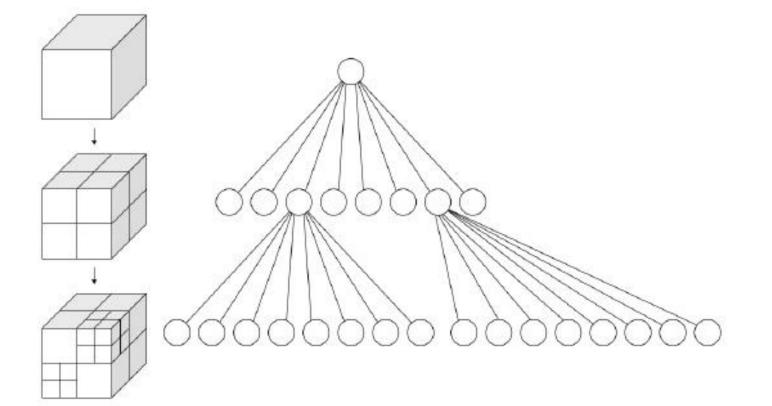




Riegler et al. OctNet. CVPR 2017

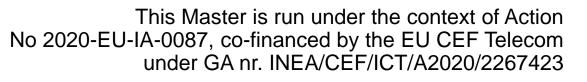
Co-financed by the European Union

Connecting Europe Facility



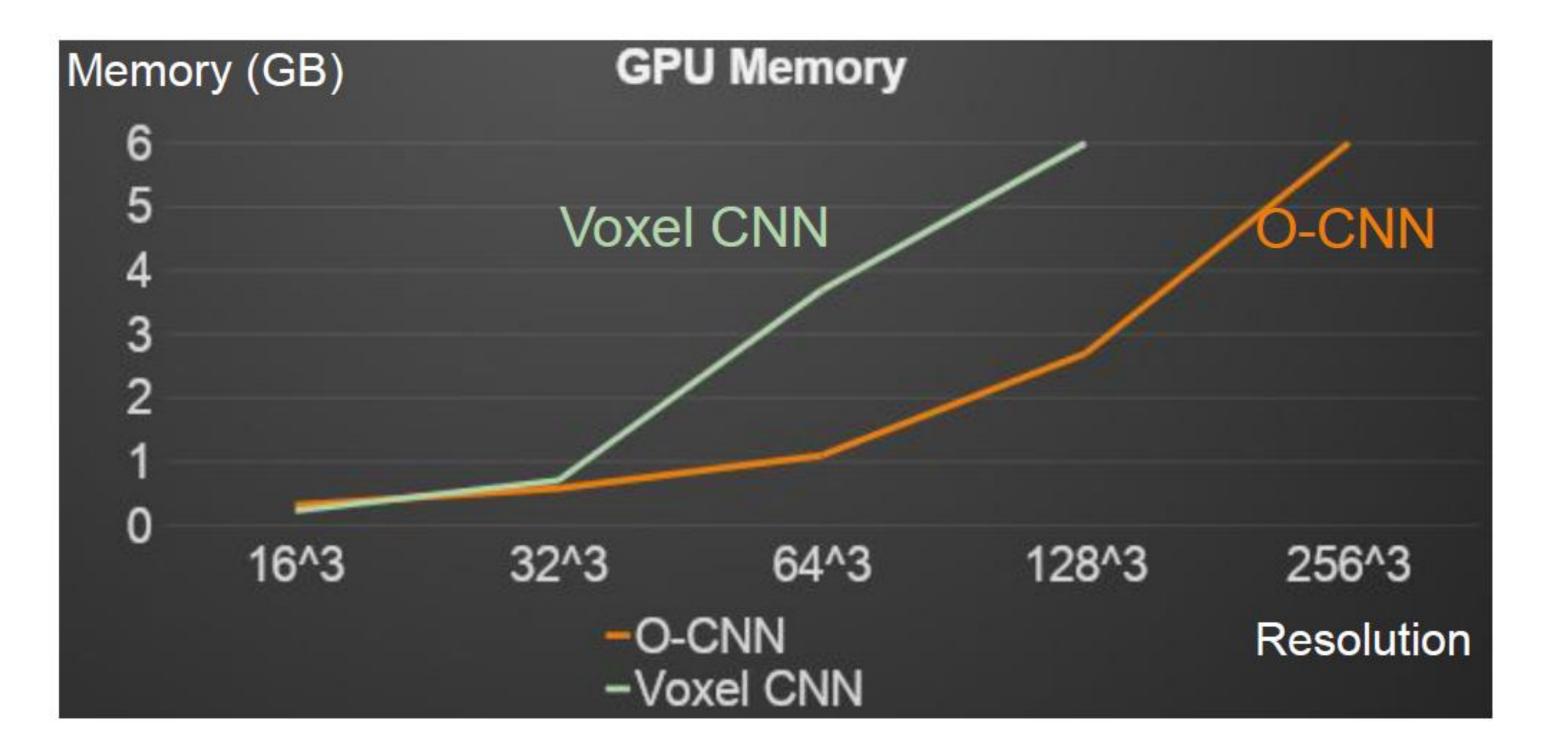
Wang et al. O-CNN. SIGGRAPH 2017

Hao Su et al.



3D DL architectures: Volumetric approach

Memory Efficiency



Co-financed by the European Union

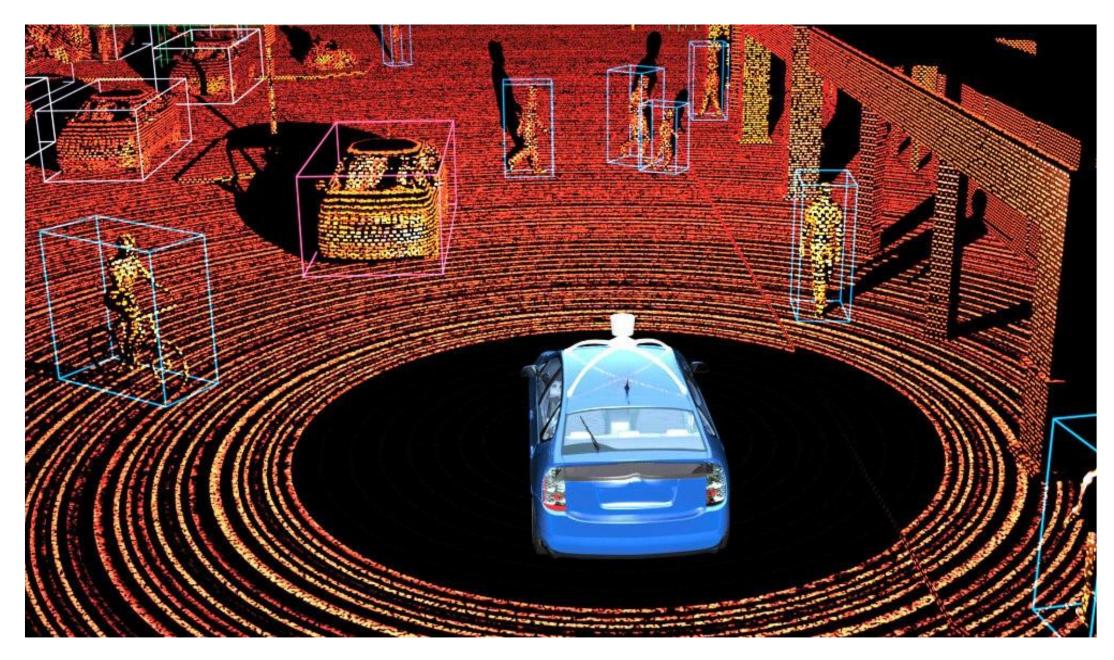
Connecting Europe Facility

Hao Su et al.

3D DL architectures: Point-based approach

Motivation:

- Lots of scanned data are raw 3D point clouds
- **Process raw input**, i.e., point cloud, without any preprocessing



Co-financed by the European Union

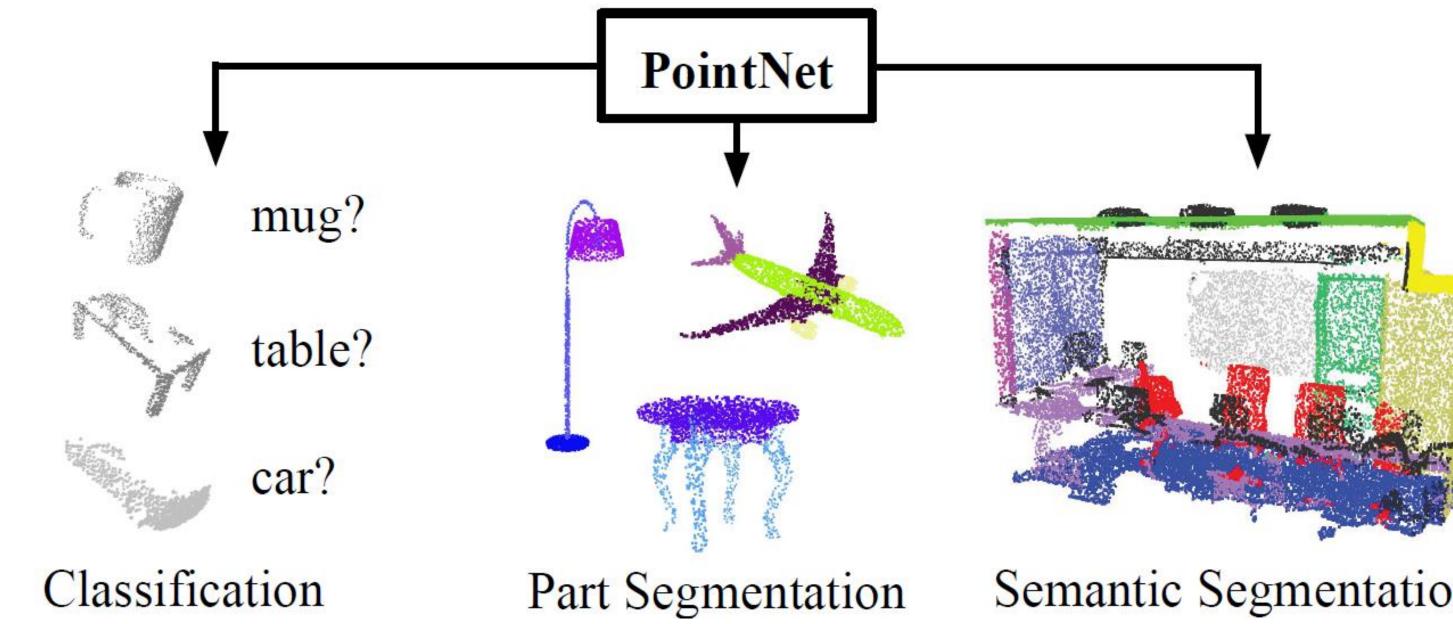
Connecting Europe Facility

Kalogerakis E.

3D DL architectures: Point-based approach

PointNet: (Qi et al., CVPR 2017)

Processes input point clouds for various tasks

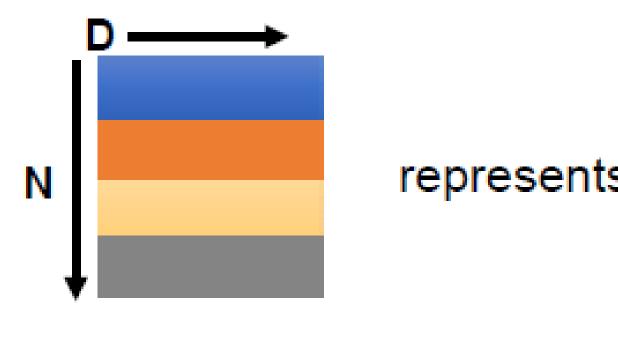


Semantic Segmentation

Hao Su

3D DL architectures: Point-based approach

Desired Properties of PointNet: Permutation invariance

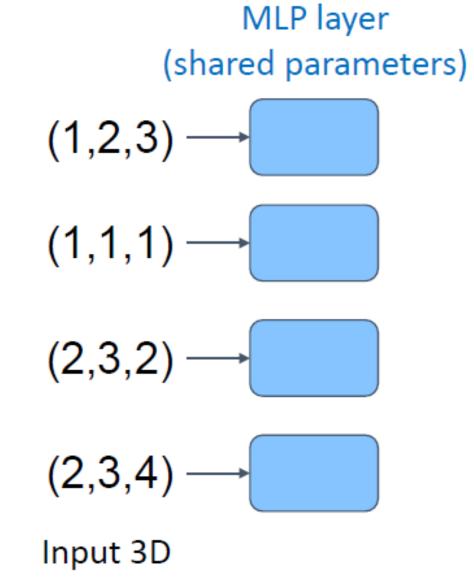


represents the same set as Ν

2D array representation

3D DL architectures: Point-based approach

PointNet architecture:

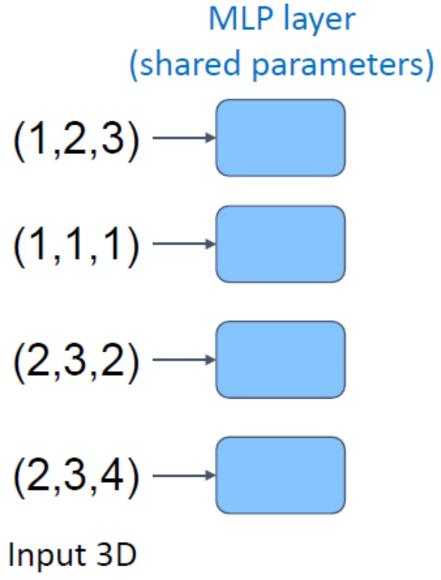


point coord.

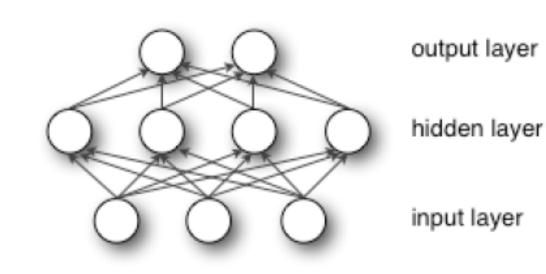
Kalogerakis E.

3D DL architectures: Point-based approach

PointNet architecture:

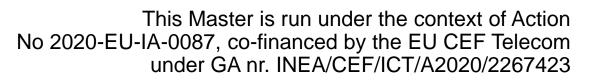


point coord.



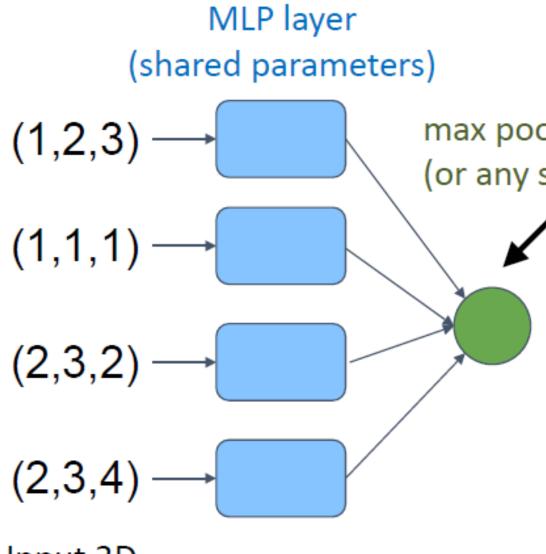
Simply a fully connected NN with one hidden layer, 3 inputs for 3D points, and T outputs (T is layer parameter)

Kalogerakis E.



3D DL architectures: Point-based approach

PointNet architecture:



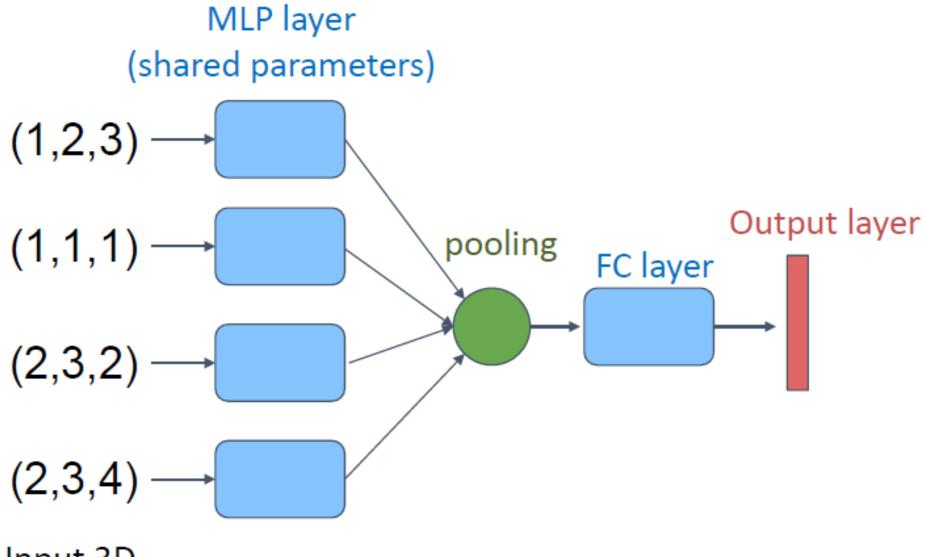
Input 3D point coord.

max pooling (or any symmetric function)

Kalogerakis E.

3D DL architectures: Point-based approach

PointNet architecture:

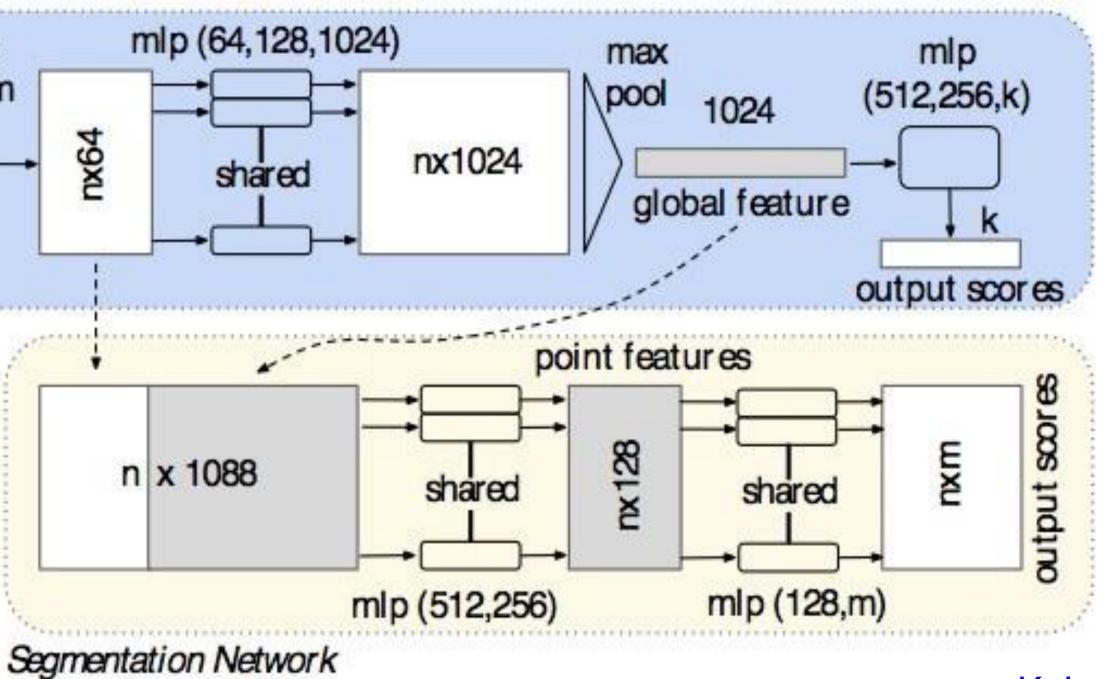


Input 3D point coord.

Kalogerakis E.

PointNet architecture:

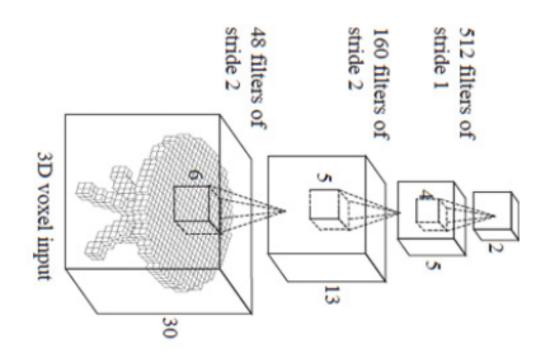
Classification Network input mlp (64,64) feature nput points transform transform EX3 nx64 EX3 shared 64x64 3x3 T-Net T-Net transform transform matrix matrix multiply multiply ******************************



Kalogerakis E.

Limitations of PointNet

<u>Hierarchical</u> feature learning Multiple levels of abstraction

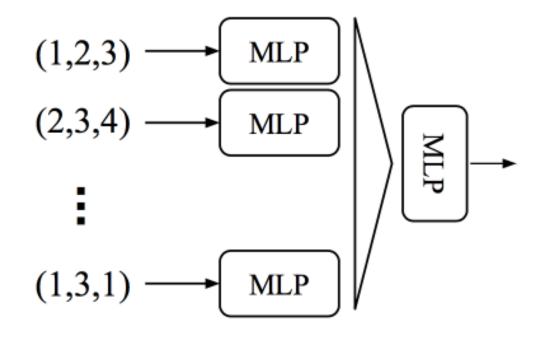


3D CNN (Wu et al.)

No local context for each point!

Co-financed by the European Union Connecting Europe Facility

<u>Global</u> feature learning V.S. Either <u>one</u> point or <u>all</u> points



PointNet (vanilla) (Qi et al.)

Hao Su et al.

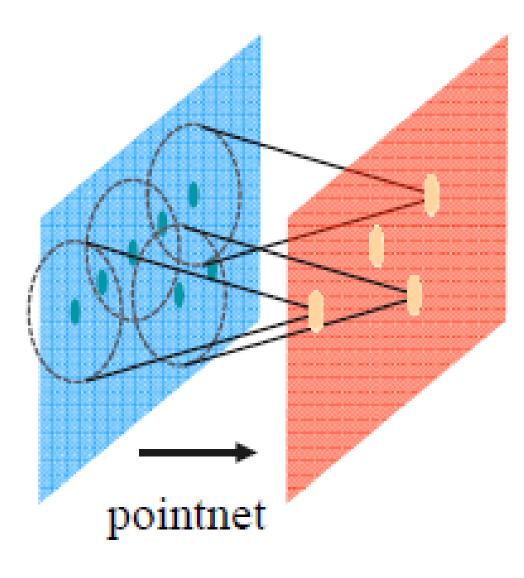
Points in Metric Space

- Learn "kernels" in 3D space and conduct convolution •
- Kernels have compact spatial support
- For convolution, we need to find neighboring points
- Possible strategies for range query •
 - Ball query (results in more stable features)
 - k-NN query (faster)

Hao Su et al.

PointNet++: (Qi et al., NIPS 2017)

- Use PointNet in local regions
- Aggregate local features by PointNet again -> Hierarchical feature learning



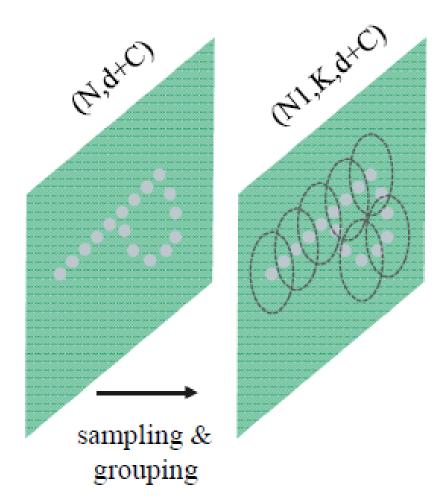
Co-financed by the European Union

Connecting Europe Facility

Kalogerakis E.

PointNet++:

- **Sampling**: Farthest Point Sampling (FPS)
- **Grouping:** Radius-based ball query •

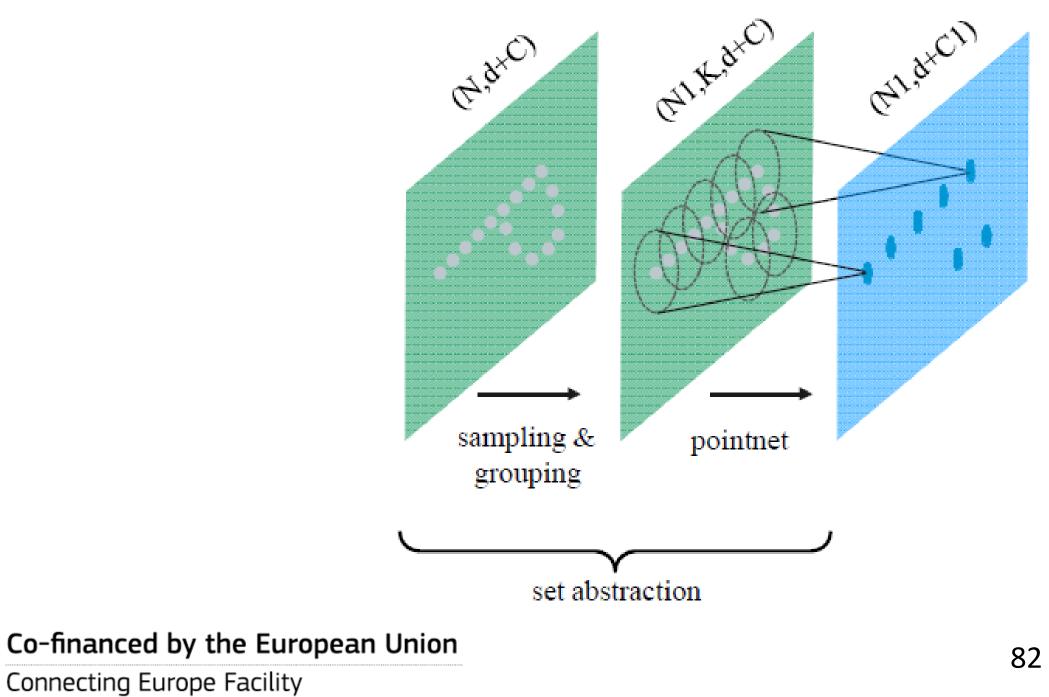


Kalogerakis E.

3D DL architectures: Point-based approach

PointNet++:

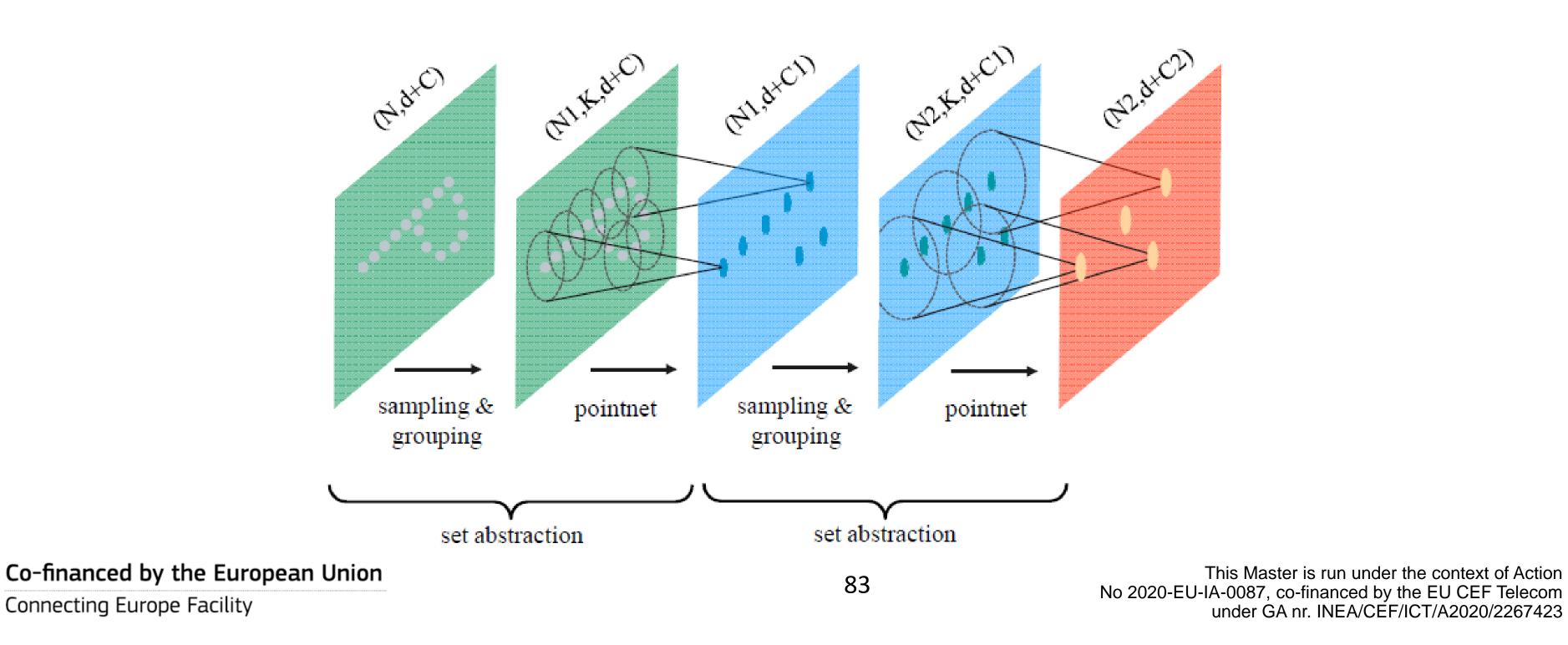
Shared PointNet applied in each local region using local coordinates



3D DL architectures: Point-based approach

PointNet++:

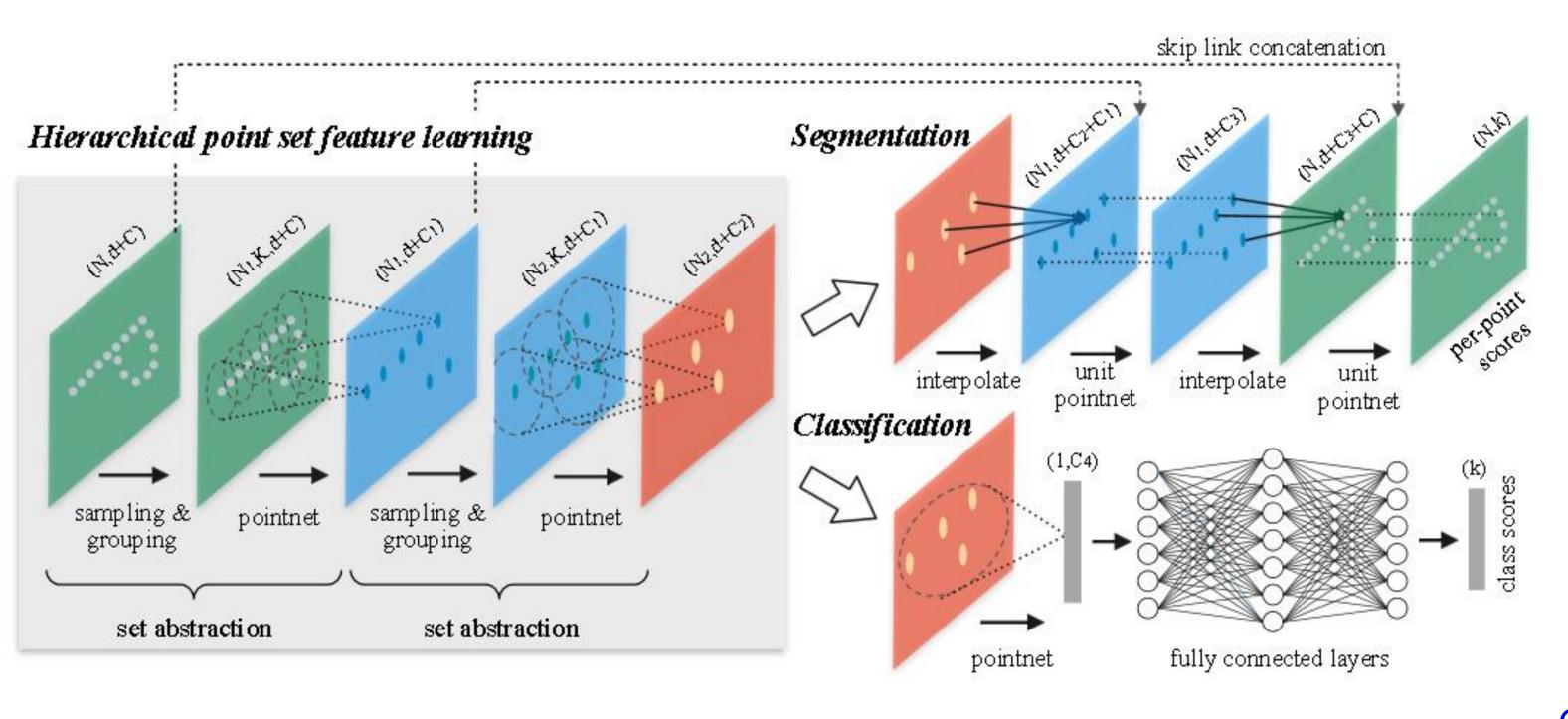
Shared PointNet applied in each local region using local coordinates



Kalogerakis E.

3D DL architectures: Point-based approach

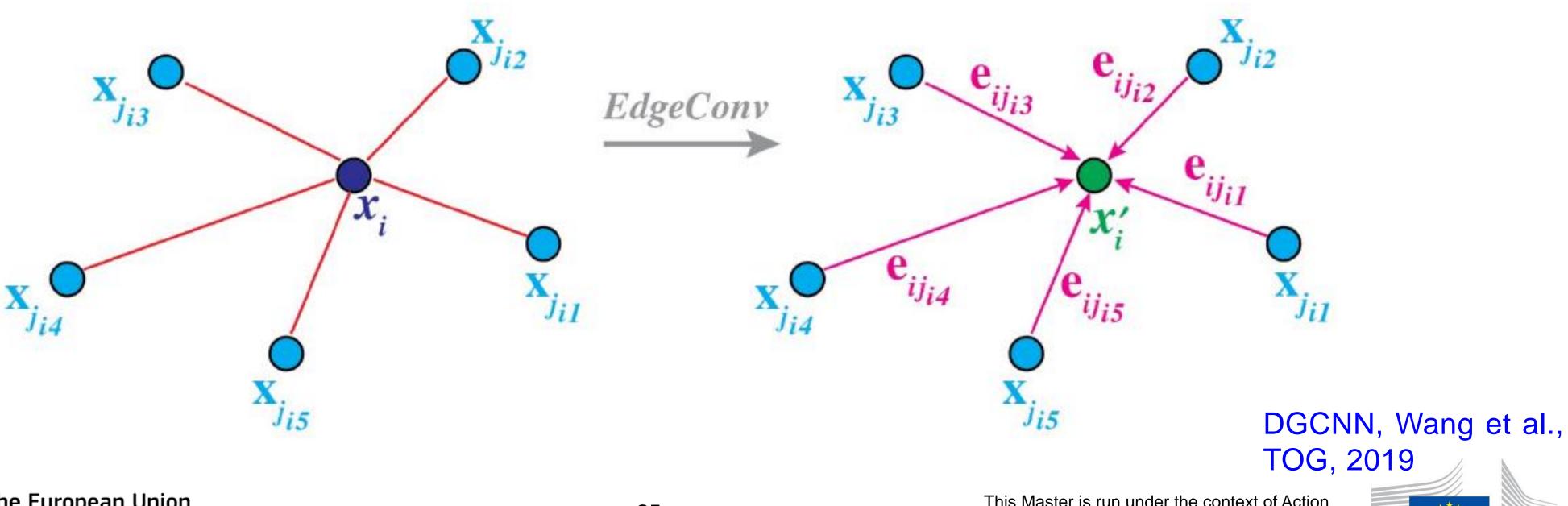
PointNet++ architecture



Qi et al., NIPS 2017

Point Convolution as Graph Convolution: **Dynamic Graph CNN**

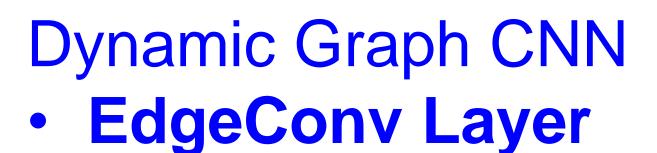
- Points –> Nodes •
- Neighborhood –> Edges •
- Graph CNN for point cloud processing •

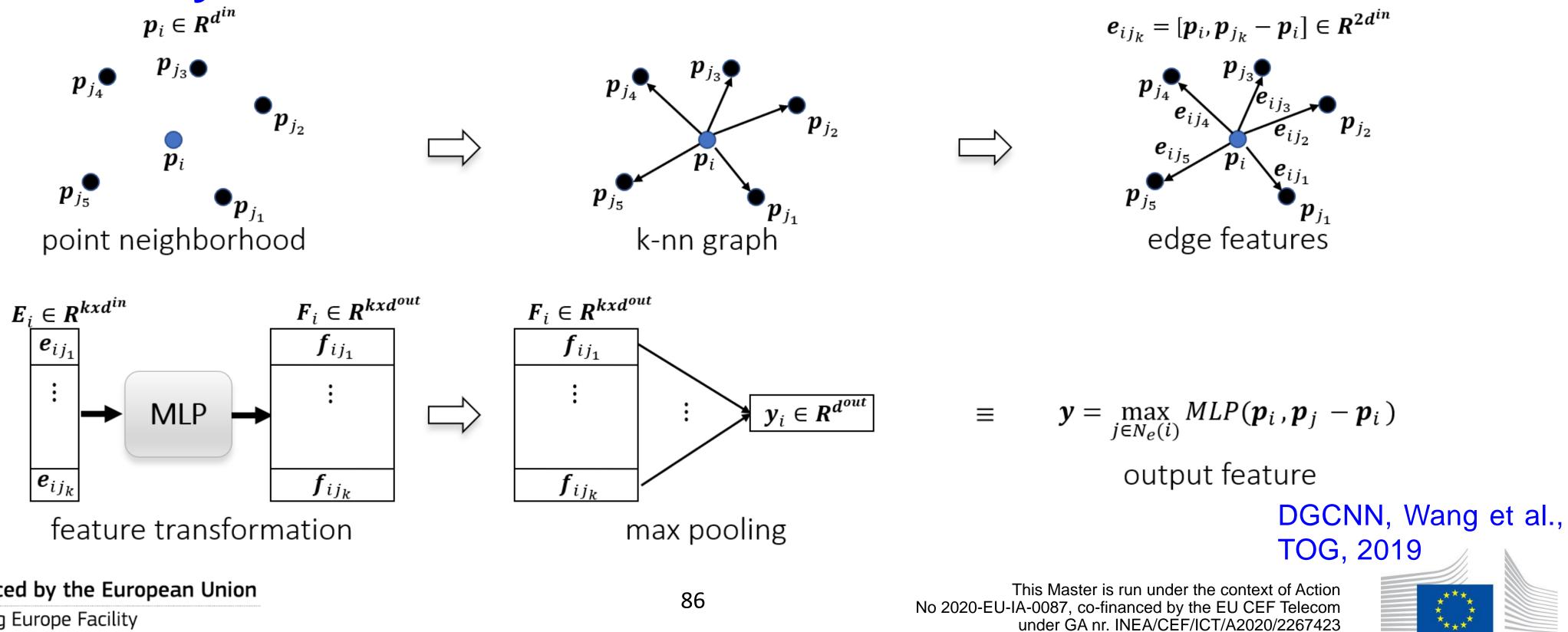


Co-financed by the European Union

Connecting Europe Facility

3D DL architectures: Point-based approach



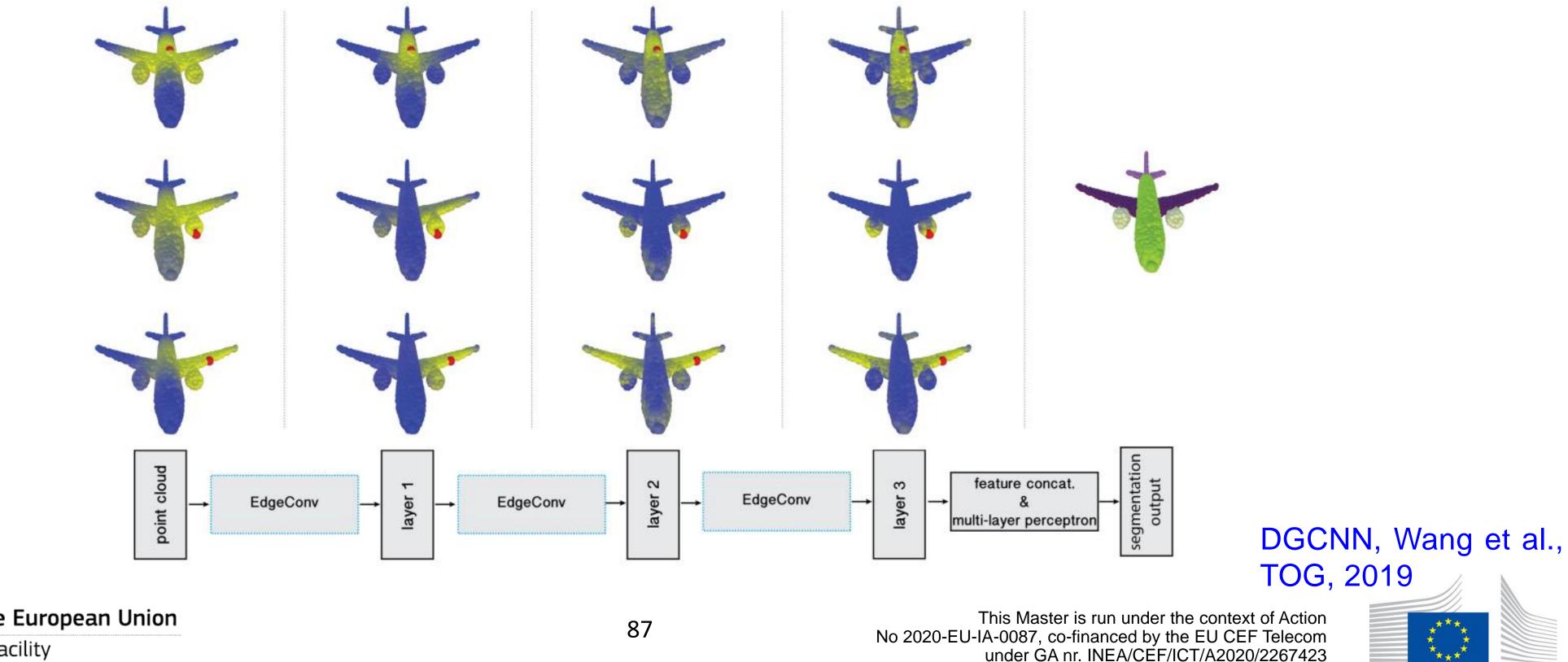


Co-financed by the European Union Connecting Europe Facility

under GA nr. INEA/CEF/ICT/A2020/2267423

Dynamic Graph CNN:

• layer



Co-financed by the European Union

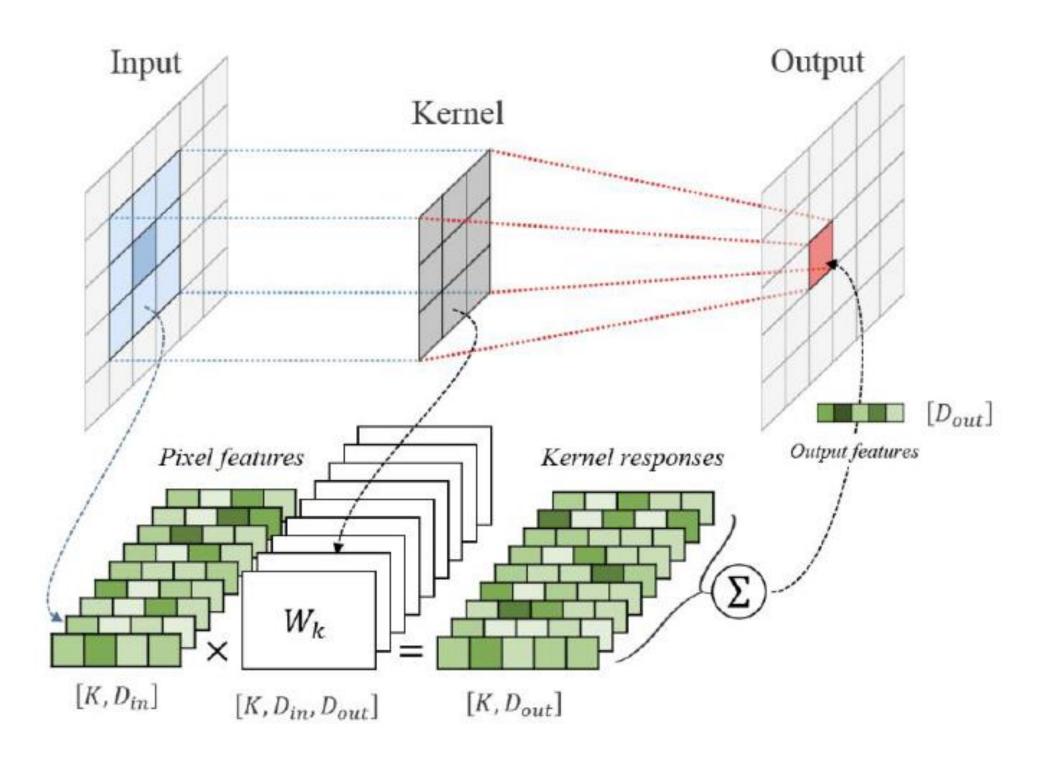
Connecting Europe Facility

At each layer, each local graph is rebuilt upon the feature space of the previous EdgeConv

- Standard GCNs are not Geometry Aware: Note that points are **sampled** from surfaces •
- Ideally, features describe the geometry of the underlying surface
- Should be sample invariant •
- But GCNs lack design to address sample invariance •
- **Solution:** Estimate the continuous kernel and point density for continuous convolution

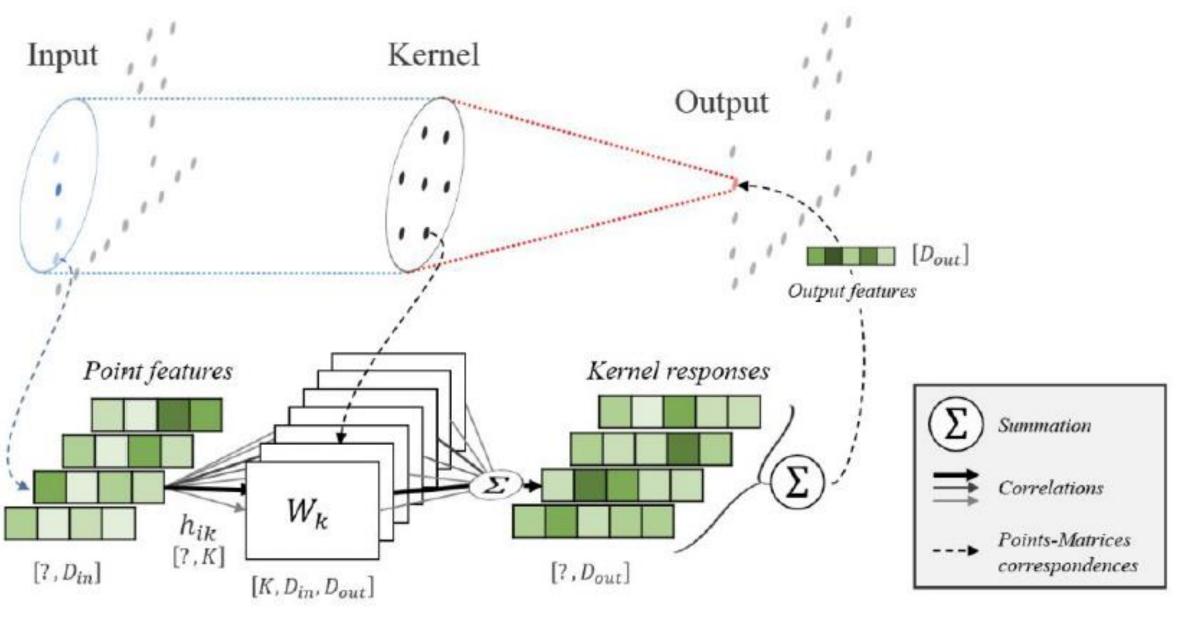
3D DL architectures: Point-based approach

Kernel Point Convolution (KPConv)



Co-financed by the European Union

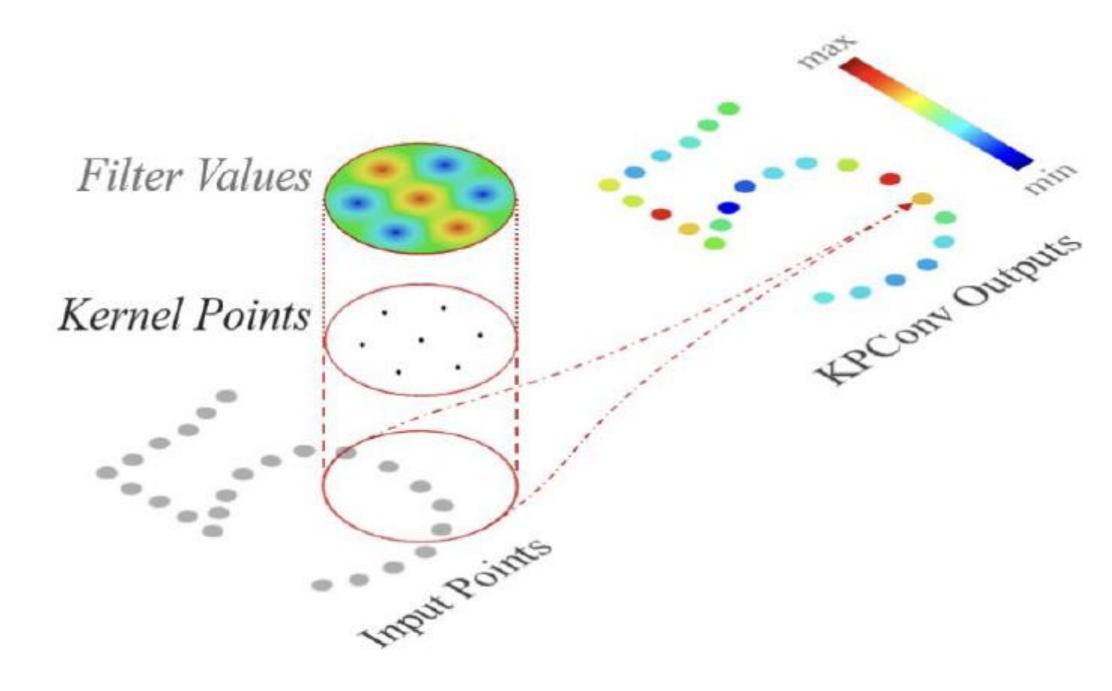
Connecting Europe Facility



Thomas et al., **ICCV**, 2019

3D DL architectures: Point-based approach

Kernel Point Convolution (KPConv)

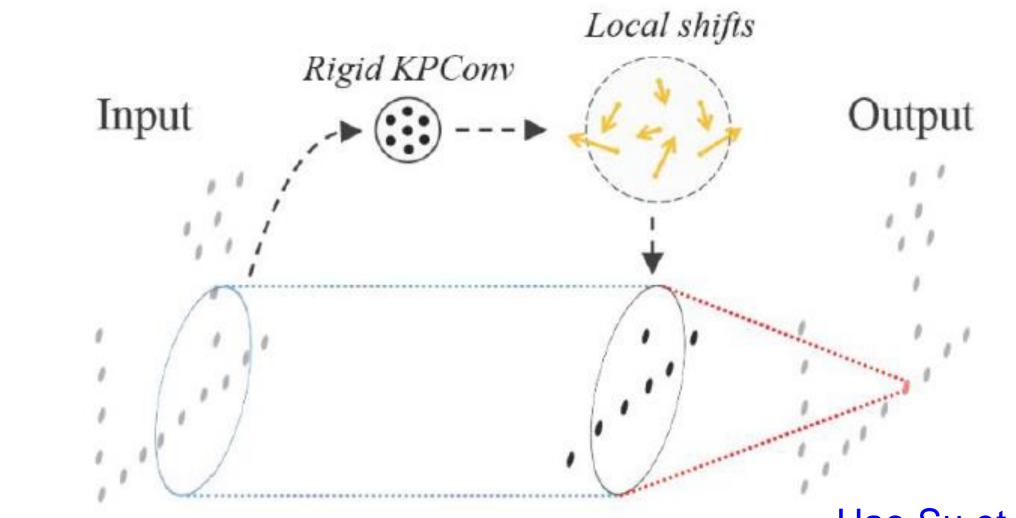


Co-financed by the European Union

Connecting Europe Facility

Deformable point-based kernel

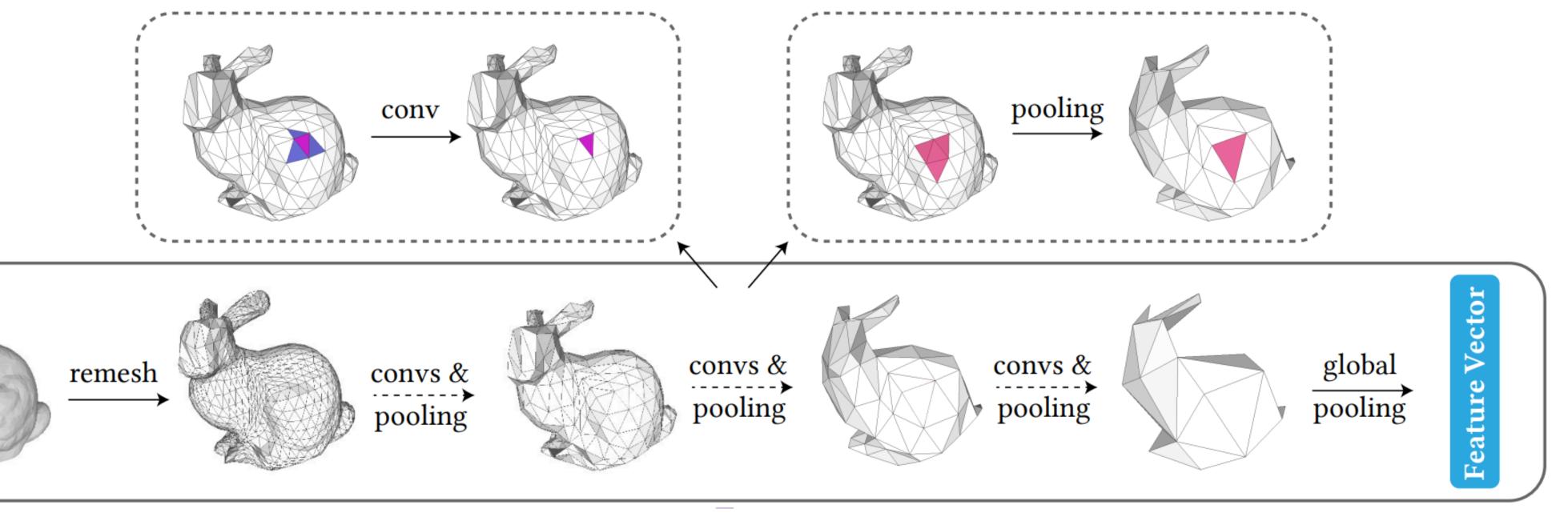
3D version of 2D deformable convolution

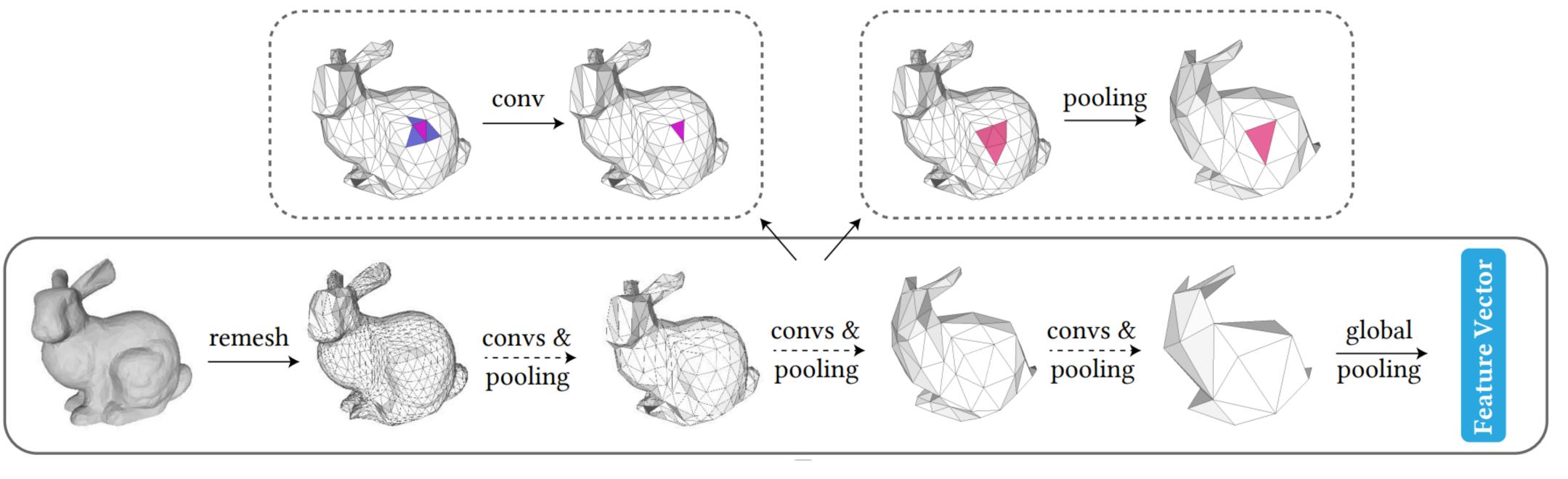


Hao Su et al.

3D DL architectures: Mesh-based approach

Subdivision-Based Mesh Convolution Networks (SubdivNet)



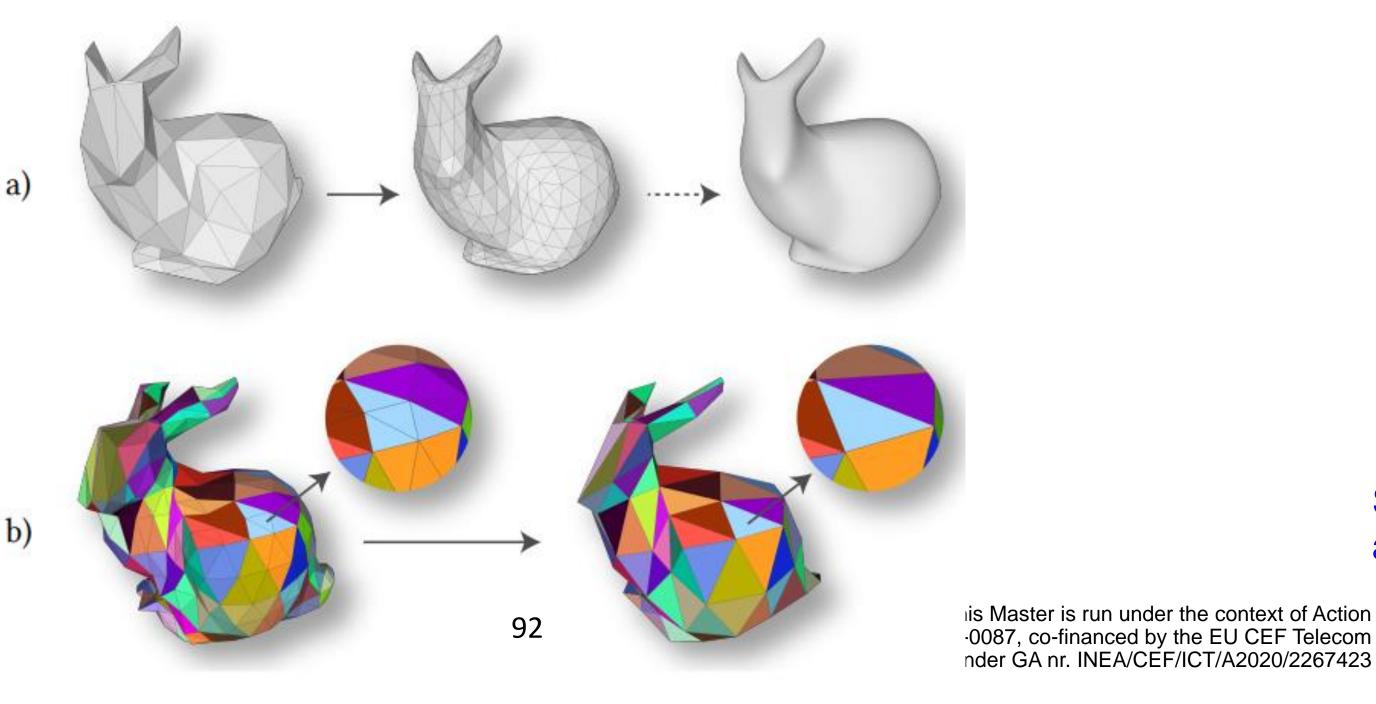


Shi-Min Hu et al., TOG, 2021

3D DL architectures: Mesh-based approach

SubdivNet:

 A subdivision surface provides a hierarchical multi-resolution adjacent to three faces



Co-financed by the European Union Connecting Europe Facility

structure, in which each face in a closed triangle mesh is exactly

Shi-Min Hu et al., TOG, 2021

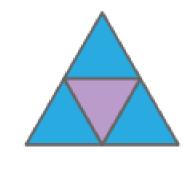
3D DL architectures: Mesh-based approach

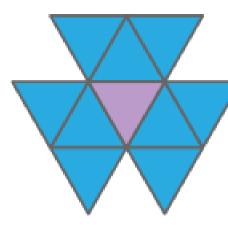
SubdivNet:

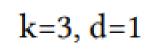
Can support mesh convolution

a).

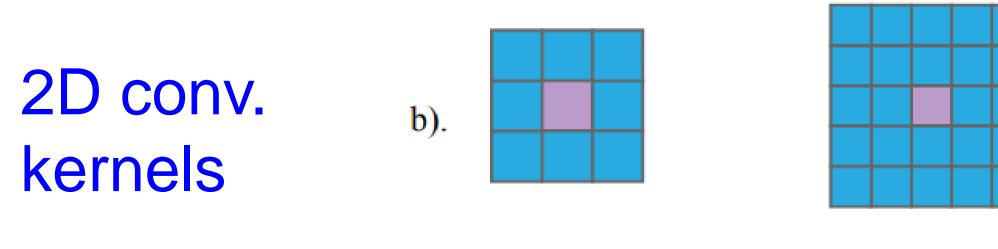
Mesh conv. kernels







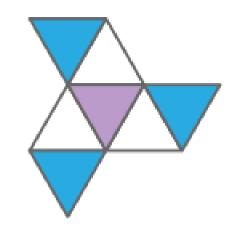
k=5, d=1



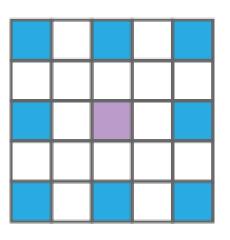
k=3, d=1

k=5, d=1

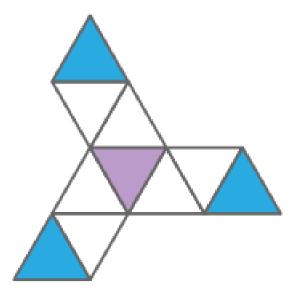
Co-financed by the European Union **Connecting Europe Facility**



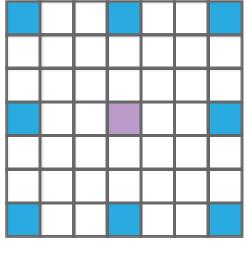
k=3, d=2



k=3, d=2



k=3, d=3

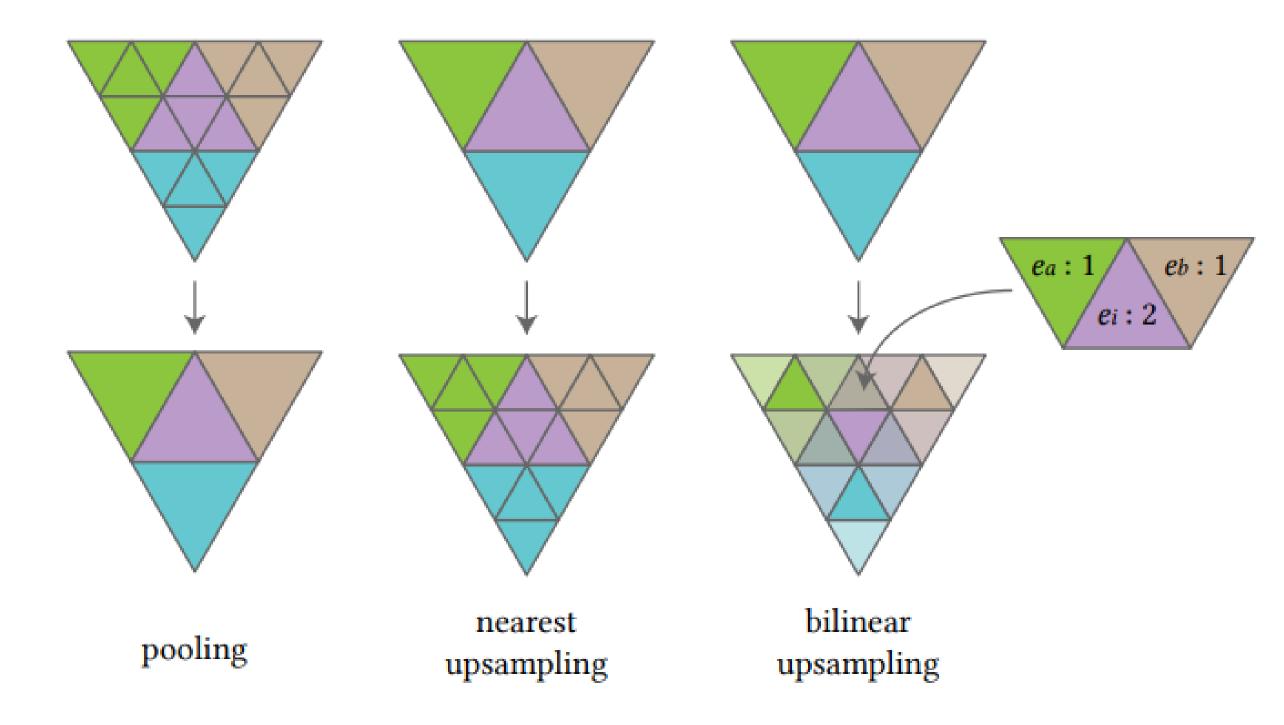


k=3, d=3

3D DL architectures: Mesh-based approach

SubdivNet:

Can support pooling and upsampling



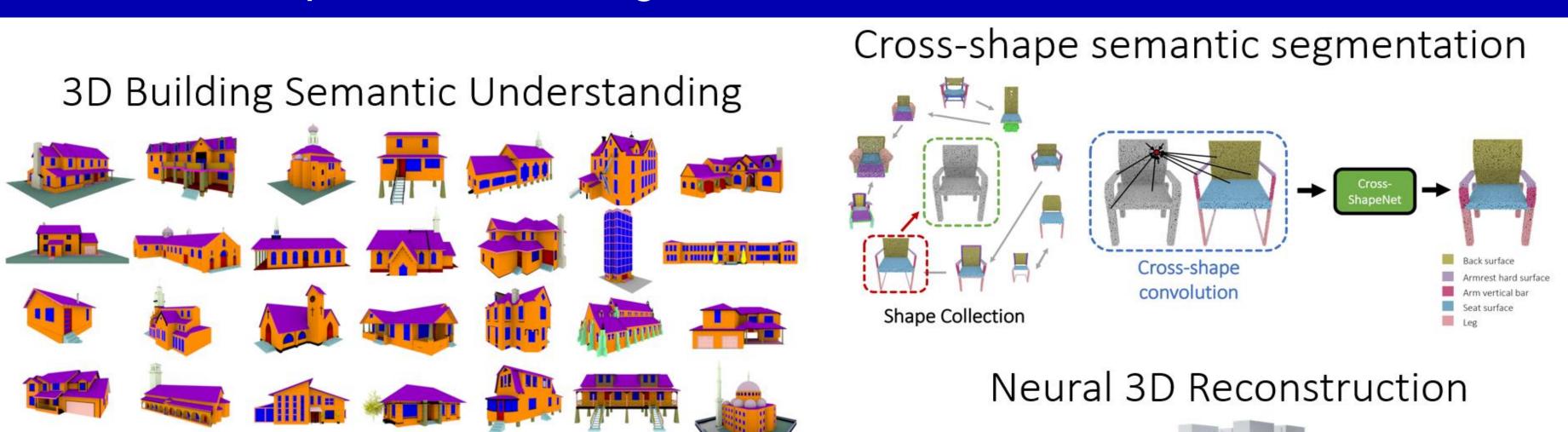
Shi-Min Hu et al., TOG, 2021

MAI4CAREU Master programmes in Artificial Intelligence 4 Careers in Europe Today's Agenda

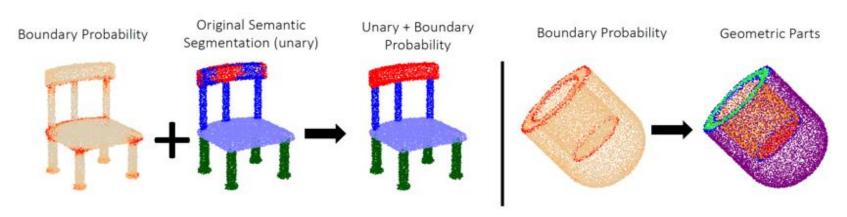
- Who are we?
- What is 3D Vision
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

Co-financed by the European Union

What we do: 3D shape understanding

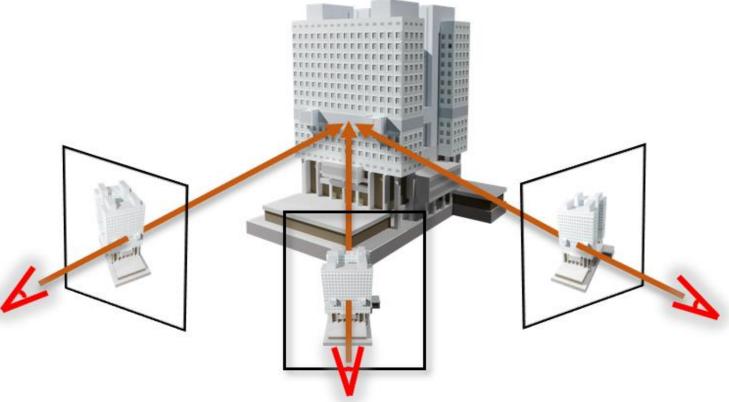


Geometric/Semantic Decomposition



Co-financed by the European Union

Connecting Europe Facility



What we do: Texture Generation for 3D Data

Single-View Guided Façade Synthesis

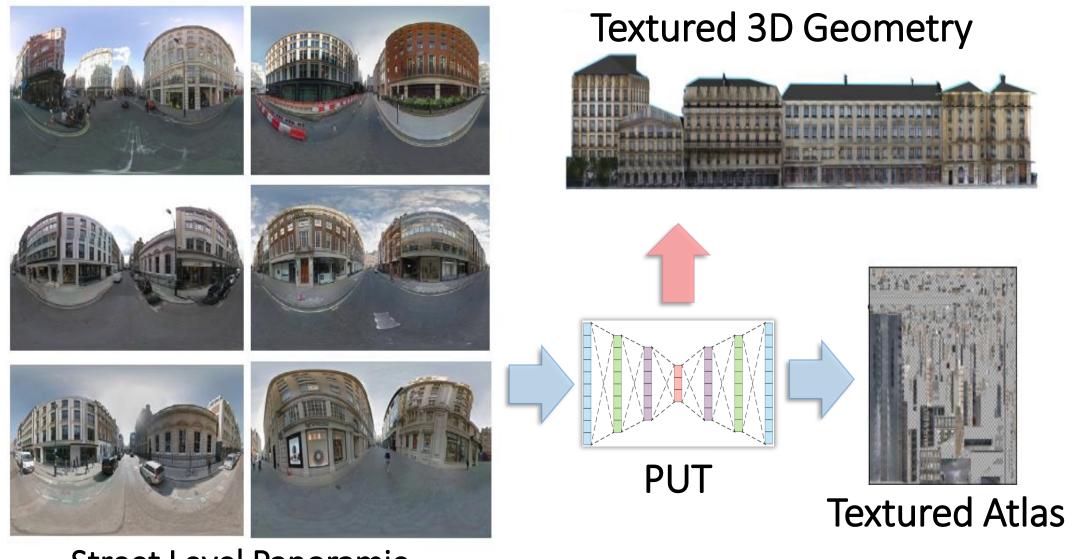
Reference Façade Images

3D Scene Renderings



Co-financed by the European Union **Connecting Europe Facility**

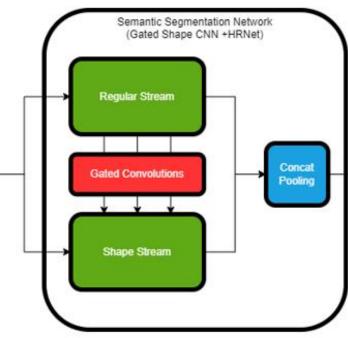
Projective Urban Texturing



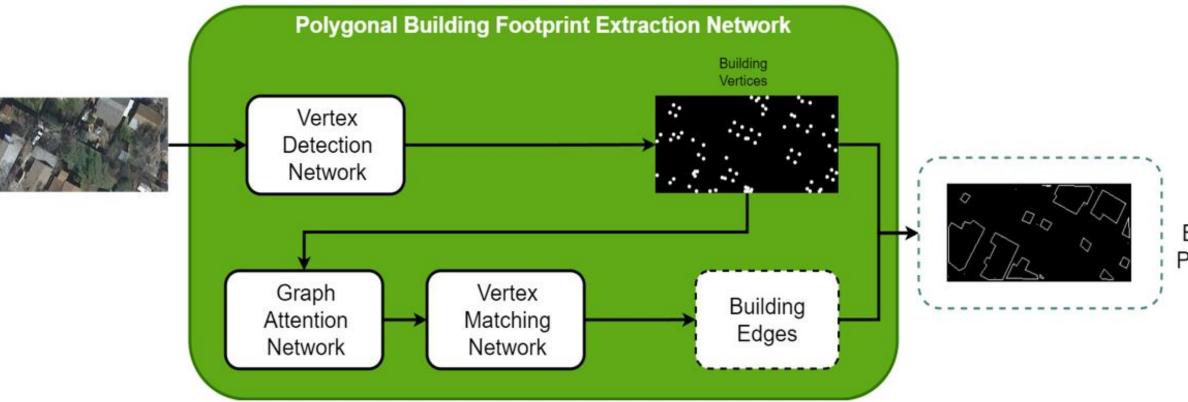
Street Level Panoramic Images

What we do: Urban Semantic Understanding from Remote Sensing Data Sources

Semantic Segmentation of Buildings



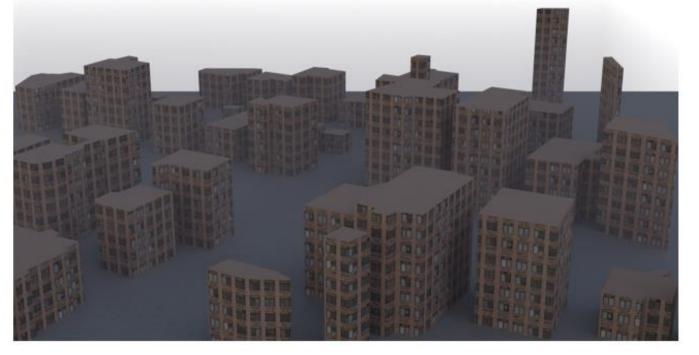
Building Footprint Extraction



Co-financed by the European Union

Connecting Europe Facility

Urban 3D Reconstruction



Final Building Polygons

MAI4CAREU

Master programmes in Artificial Intelligence 4 Careers in Europe

Research in Visual Computing

€€VCG

Melinos Averkiou **Team Leader Visual Computing Group**

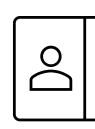
email: m.averkiou@cyens.org.cy

Research Interests:

Geometry processing, acquisition, understanding and modeling of 3D geometry, deep learning for 3D objects, including part segmentation, material identification and style detection.

https://www.cyens.org.cy/en-gb/research/pillarsgroups/visual-sciences/deepcamera/people/alessandro-artusi/

Co-financed by the European Union Connecting Europe Facility



Nicosia, Nicosia 1016, Cyprus

hank you See you next week

100

Co-financed by the European Union

Connecting Europe Facility

