University of Cyprus

MAl645 - Machine Learning for
 Graphics and Computer Vision

Andreas Aristidou, PhD

Spring Semester 2023

MAI4CAREU

Character Animation

MAI4CAREU

How does the magic happen?

MAI4CAREU

How do we make this movie?

Uncharted 4: https://youtu.be/zL46dpNEPPA

Modeling

- Geometry
- Materials
- Lighting

Animation

- How do they move?

Rendering

- Shadows
- Camera
- Special effects
- Post-processing

Motivation

- Bring Animated characters to life
- Animator analogous to film actors
- Many applications use character or object animation
- Entertainment technology (e.g., films, games)
- Virtual, or augmented reality
- Simulations, demonstrations, or training systems
- Other forms of animation?
- Trees, liquids, animals, clouds, etc.
- Other Important factors in character animation
- Lighting, Rendering, etc.

Introduction to Animation

Moving Picture \& Animation

- The perception of motion is based on two optical illusions, the phi phenomenon and beta movement.
- phi is an optical illusion whereas we perceive motion from fast luminous impulses in sequence. Our visual system "fills in" the missing information.
- beta movement is the illusion of motion created when stimuli changes position in a sequence of images. Instead of being perceived as a series of images we perceive movement.
- Quick succession of images (frames) causes this sensation of movement ($1 / 25 \mathrm{sec}$)
 under GA nr. INEA/CEF/ICT/A2020/2267423

Moving Picture \& Animation

- Below 16 images/sec flicker is observed.
- Movies play at 24 images/sec.
- ~10 images/sec still provide sensation of movement.
- Traditional animation was created "on twos"
- A new image every second frame.
- Faster motions are executed "on ones"

- A new image every frame.

MAI4CAREU

Moving Picture \& Animation

MAI4CAREU

Moving Picture \& Animation

Moving Picture \& Animation

- Senior animators draw keyframes (important/extreme shots)
- Junior animators (inbetweeners) fill in the in-between frames

A cartoon animation may require thousands of hand-drawn images

What is Computer Animation?

- Computer Animation is the branch of computer graphics interested in developing techniques for creating moving images.
- Computer Animation is the modernized brother of traditional animation.

Character rigging \& skinning

Rigging

- 3 D rigging is the process of creating a skeleton for a 3D model so it can move.
- A 'rig' has numerous degrees of freedom (DOFs) that can be used to control various properties.
- One character could have several rigs. One rig could control several characters...

Rigging: The Rig

- A skeletal system (rig) is comprised of kinematic chains:
- A hierarchical set of interconnected bones
- A chain:
- starts from a root,
- it has multiple bones,
- connected by joints, and
- ends at the end-effector.

Rigging: The Rig

- A skeleton allows higher-level control of the character's animation.
- The skeleton is only a control mechanism - it is not rendered into the final image.
- Typically, there are many constraints.

Rigging: The Rig

Skinning

- Skinning.
- Attach a mesh ("skin") to the skeletal system of the character.
- The skin is represented as a polygon mesh, e.g., a set of vertices, or a parametric surface

Skinning: The Skin

- We bind the skeleton to the mesh when we first associate them.
- The T-pose (or "bind pose") refer to the initial transformation matrices of the rig and skin when they are first associated.
- The T-pose defines a coordinate system used later when animating the skin via the skeleton.

- The T-pose is a convention used because:
- modeling the mesh and the skeleton is easier, using symmetry.
- rigging is much easier when the limbs are spread apart.

Skinning: The Skin

- Each vertex is associated with a bone in the skeleton, and moves relative to that bone.
- Each vertex is multiplied by several "weighted" transformation matrices that provide the influence factor each bone has to the vertex, and the results are added together.

- The skin's vertices can then be assigned weights.
- Rigid skinning: 1 bone per vertex (weight = 1.0)
- Smooth skinning: Multiple bones per vertex (weights != 1.0)

Texture

Skeletal Animation

What 3D character animation involves?

Animating characters can be broken down to:

- Skeletal animation - animating their main body parts.

Animating characters can be broken down to:

- Skeletal animation - animating their main body parts.
- Facial animation - animating their facial features.

Animating characters can be broken down to:

- Skeletal animation - animating their main body parts.
- Facial animation - animating their facial features.
- Hair (and fur) animation

Skeletal Animation: Keyframing

MAI4CAREU

Skeletal Animation: Physics-based animation

Computer generated animation: Motion Capture

Optical Motion Capture

- The system combines the information of the tracked markers to describe the 3D position of the object
- Repeat this operation several times per second the system can provide us the volumetric trajectory of the marker according to time and space (usually from 30 Hz to 960 Hz)
- Great naturalness and realism in the captured movements.
- High quality recording
- Capturing of both main and secondary movements
- Ease of use (Skeletal geometry is given)
- Capture volume is the physical space where the cameras can
 combine their fields of view

Computer generated animation: Motion Capture

Optical Motion Capture

- Each person wears a suit with markers attached.
- Enters a space that is surrounded with cameras.
- Divided into two main categories: passive and active

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

MAI4CAREU

Motion Capture pipeline

Motion Capture pipeline

Other popular motion capture systems

Inertial Markers

- Micro-inertial sensors, biomechanical models and sensor fusion algorithms.
- Use a number of gyroscopes and accelerometers to measure rotational rates.
- These rotations are translated to a skeleton model.

Co-financed by the European Union
Connecting Europe Facility

Depth-Based

- Use a combination of color cameras and depth sensors.
- the subject's silhouette is captured from multiple angles.
- Reconstruct the object's volume (mesh) from the point clouds.
- Fit a skeleton into the 3D model to estimate motion.

Fusion4D
 Real-time Performance Capture of Challenging Scenes
 Mingsong Dou, Samen Khamis. Yury Deegyarev. Philip David.ont: Sean Ryan Fanello?: ${ }^{\text {equal contibution }}$
 MICROSOFT RESEARCH MICROSOFT RESEARCH contact shahrami@microsoftcom

Vision-Based

- Use a singe or multiple RGB cameras
- Mainly based on deeplearning methods
- Use large amount of training motion data

This Master is run under the context of Action
No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

MAI4CAREU

Motion Capture: Current technological trends

Why 3D?

© Virtual Reality Lab, Department of Computer Science, University of Cyprus

MAI4CAREU

3D scanning and animation

Co-financed by the European Union
Connecting Europe Facility

MAI4CAREU

More Examples

Motion Capture Data

- Depending on the sensors used
- Popular file formats:
- ASF/AMC (Acclaim's skeleton and motion capture files)
- BVH (BioVision Hierarchy)
- C3D (Coordinate 3D - biomechanics - C3D.org)

Motion Capture Data: BVH format

```
hierarchy
```

ROOT Hips
OFFSET 0.000000 .000000 .00000
CHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation Xrotat
JoINT LHipJoint
OFFSET $\circ 0$
Channels 3 Zrotation Yrotation Xrotetion
JOINT Leftupleg
OFFEET 3.13874-1.57224 1.49786
CHANNELS 3 Zrotation Yrotation Xrotation
CHANMT Leftieg
OFFSET $2.10955-5.79594 \quad 0.00000$
Channels 3 Zrotation Yrotation Xrotetion
JOINT Leftroot
OFFSET 2.41843 -6.64458 0.00000
OFFSET $2.41843-6.64458 \quad 0.00000$
CHANNELS 3 Zrotation Yrotatlon Xrotation
जoINT LeftToeBase
f
OFFSET $0.04713-0.12948$ 1.66229
CHANNELS 3 Zrotation Yrotation Xrotation
End Site
OFFSET $0.00000-0.00000 \quad 0.85167$

GoInT RHipJoint
OFfset o oo
Offset 000

Motion Capture Data: BVH format

MOTION

Frames: 75
Frame Time: - Oos3333

 $\begin{array}{lllllllllllllllllllllll}31.1232 & 14.9864 & 2.7457 & -77.4701 & -86.0438 & 100.8650 & 0.0000 & 0.0000 & 0000 & -23.1084 & -9.9967 & -40.9151 & 21.3634 & 19.9554 & 93.985\end{array}$ $\begin{array}{llllllllllllllllllllllllll}30.3209 & 15.0896 & 2.6880 & -79.5441 & -86.1688 & 102.4380 & 0.0000 & 0.0000 & 0000 & -21.9079 & -13.9394 & -46.7402 & 21.2632 & 19.9617 & 93.69\end{array}$

 $\begin{array}{lllllllllllllllll}25.9208 & 15.8551 & 2.4558 & -40.2095 & -85.2517 & 60.8676 & 0.0000 & 0.0000 & 0.0000 & -14.4638 & -30.5887 & -59.1844 & 11.1103 & 17.9886 & 63.135 \\ 24.9973 & 16.0414 & 2.4157 & -33.1182 & -84 .-586 & 53.4984 & 0.0000 & 0.0000 & 0.0000 & -13.6320 & -32.9012 & -56.4396 & 7.5387 & 15.7692 & 50.8834\end{array}$

 $22.230116 .47812 .2937-30.5492-81.9083 \quad 50.0828 \quad 0.0000 \quad 0.0000 \quad 0.0000-8.0945-39.8894-46.98601 .27347 .1519 \quad 20.16631$ $21.324116 .54022 .2649-36.9704-80.9346 \quad 56.904 \mathrm{POT}$ Hips
$20.435616 .5464 \quad 2.2313-45.5334-79.6014165 .344^{6}$ d
$19.540616 .4651 \quad 2.1998 \quad-54.0566-79.7785 \quad 73.034$
18.651116 .31972 .1717 -66.625日 -79.555684 .58 OFPET O.00000 0.00000 0.00000
17.7787 16.1118 2.1800-65.2687-78.8534 82.201 CHANNES 6 Xposition Yposition Zposition Zrotation Yrotation Xrotation
 16.176815 .6329 2.1620 -70.6336-81.7219 84.3520 0.0000 0.0000 0.0000 -18.6407 -28.2134 -28.0709 2.4239 9.6982 28.0049

MAI4CAREU

Motion Capture Data: SMPL format

SMPL Model

Motion Capture: Advantages

- Great naturalness and realism in the movements that have been recorded.
- High-quality recording
- Recording of both primary and secondary movements
- Recording at a very high frequency
- Up to 980 samples per second (e.g., birds)
- Ease of use
- Geometry is a given.
- Freedom of movement for users

Motion Capture: Limitations

- Only realistic motion captured (movement that does not follow the laws of physics cannot be captured).
- Cartoony or superhero animations are not possible to be captured.
- WYSIWYG (what you see is what you get).
- Can't add more expression.
- Continually need to recapture motion.
- What about muscles?

Animators could use more than 750 controls to create Shrek's performance. Som controlled one joint or muscle, others controlled groups of several.

MAI4CAREU

Some home-built motion capture systems

Some home-built motion capture systems

MAI4CAREU

Other Challenges: Motion Retargeting

Other Challenges: Motion Retargeting

What is motion retargeting?

- A method to retarget animations onto models with different morphologies.
- A way to remap animations onto characters with very different animation-specific structures.

Other Challenges: Motion Retargeting

Why Motion Retargeting?

- Improves content reuse.
- Easy integration of procedurally generated animations.
- Sometimes is not possible to motion capture the subject (e.g. animal with human behavior, character does not exist - fiction movies).

MAI4CAREU

Other Challenges: Motion Retargeting

- Preserve angles or end-effector positions (flying)
- Foot-skating.
- Characters with different proportions may have body penetration.

MAI4CAREU

Our Dance Motion Capture Database

$1^{\text {st }}$ Antikristos

Our Dance Motion Capture Database

MAI4CAREU

Our Dance Motion Capture Database

MAI4CAREU

Our Dance Motion Capture Database

Deep Character Animation

Deep Neural Networks

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Generative Adversarial Networks (GANs)
auto-conditional LSTM

Motivation

Character Animation with Deep Learning

Motivation

Common Pose Representations

Motivation

Common Pose Representations

- Euclidean joint locations [Zhou et al., 2018]
- Motion Capture markers [Zhang et al., 2020]

Angular

- Exponential Maps
- Quaternions
- Euler angles
- Rotation Matrices
- Ortho6D [Zhou et al., 2019]

Hybrid

- Positional and angular
- Joint velocities/accelerations [Holden et al., 2017]
* Angular representations with positional losses [Aberman et al., 2020]

Motivation

Common Pose Representations

Method

Error accumulation along kinematic tree

Problem: Error accumulation along chain

- Angular representation causes problems in optimization-based methods
- Angular representations are often paired with loss that averages errors over joints
- Skeleton is a connected graph
- Ignores the fact that prediction errors of different joints have varying impact on qualitative results

Motivation

Common Pose Representations

Hybrid

\checkmark Intuitive
\checkmark Visual result
X Not straightforward to apply to different characters
\checkmark Disentangle shape/skeletal proportions
\checkmark Convenient to work with
X Common rotation representations are discontinuous [Zhou et al., 2019]
X Error accumulation [Pavllo et al., 2018]
\checkmark Combinations of positional + angular work better
\checkmark Angular representations can be paired with positional losses (requires FK)
X Excessive information
X Correspondence often ignored
X Positional losses hinder the rotational information

Deep Neural Networks

How to get a continuous representation in neural networks?
Let's say that the

- mapping to the original space $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{X}$, and
- mapping to the representation space $\mathbf{g}: \mathbf{X} \rightarrow \mathbf{R}$.

We can say (\mathbf{f}, \mathbf{g}) is a good representation if for every $\mathbf{x} \in \mathbf{X} ; \mathbf{f}(\mathbf{g}(\mathbf{x}))=\mathbf{x}$, that is, \mathbf{f} is a left inverse of \mathbf{g}.
We can say the representation is continuous if \mathbf{g} is continuous.

Positional Data

Have been used on early machine learning approaches

- Advantages: Good in continuity
- Disadvantages : (a) Ambiguity problems \rightarrow cannot describe the full human motion articulation, (b) Skeletal model violations

[Cao et al. 2018]

Euler Angles

Rotate the angles of $\boldsymbol{\gamma}, \boldsymbol{\beta}$ and $\boldsymbol{\alpha}$ along the $\boldsymbol{X}, \boldsymbol{Y}$ and \boldsymbol{Z} axes from the reference frame.

Euler Angles: Limitations

- Gimbal Lock
- Discontinuity
- Singularities that cause learning problems
Representation Space

Quaternions

- Mathematical abstractions alternative to Euler Angles
- Revised and Formulated by Sir William R. Hamilton in 1843
- 4-D complex numbers
- With one real axis
- And three imaginary axes, the basis vectors

$$
\mathrm{i}, \mathrm{j}, \mathrm{k}
$$

How are quaternions represented?

$$
\begin{aligned}
\mathbf{q} & =(w, \mathbf{V})=w+x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \\
\mathbf{q} & =\left(q_{0}, \mathbf{V}\right)=q_{0}+q_{1} \mathbf{i}+q_{2} \mathbf{j}+q_{3} \mathbf{k} \quad \text { or }
\end{aligned}
$$

Hamilton Math Inst.
Trinity College

Motion representation in popular works

In an attempt to overcome these limitations, the character animation community proposed some alternatives/improvements:

Training using only positional data:

- Zhou et al. 2018. Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis. International Conference on Learning Representations

Positional data, with bone length constraints:

- Holden et al. 2016. A deep learning framework for character motion synthesis and editing. ACM Trans. Graphics.
- Wang et al. 2021. Spatio-temporal manifold learning for human motions via long-horizon modelling. IEEE Trans. Visualization and Computer Graphics.

Robust Motion ln betweenins

Skeleton-Aware Networks for Deep Motion Retargeting

Kfir Aberman*, Peizhuo Li*, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-Or, Baoquan Chen
(The video contains voice) SICGRMPH

Quaternions, amended with positional data:

- Park et al. 2021. Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model. ACM Comput. Graph. Interact. Tech.

Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model
(Supplementary material)
Full demo

Quaternions, amended with positional data, and motion dynamics:

- Holden et al. 2021. Learned Motion Matching. ACM Trans. Graphics
- Starke et al. 2021. Neural Animation Layering for synthesizing martial arts movements. ACM Trans. Graphics
- Starke et al. 2021. Neural state machine for characterscene interactions. ACM Trans. Graphics

Method

Dual Quaternion Representation

- Hybrid representation based on Dual Quaternions
- Unified entity

$$
\mathrm{q}=\mathrm{q}_{\mathrm{r}}+\epsilon \mathrm{q}_{\mathrm{d}} \text { where } \epsilon^{2}=0
$$

rotation translation

- More compact than homogeneous transformation matrix (8 values per joint) and efficient [Kenwright et al., 2012]
- Well-established mathematical properties

Method

Dual Quaternion Representation

- Can be defined in a root-centered coordinate system mitigating common problems such as error accumulation along the kinematic chain [Pavllo et al., 2018]

Method

Losses

Dual Quaternions

Motion Dataset
Pre-processing

Output
Post-processing

- Euclidean distance of joint
positions/locations
- MSE on joint rotations
- Offset loss \rightarrow maintain skeletal structure

Deep character animation networks

Holden et al., 2016

Holden et al., 2017

Deep character animation networks

Alexanderson et al., 2020

MAI4CAREU

Deep character animation networks

Deep character animation networks

Zhou et al. 2018

Frangiadaki et al. 2015

Many challenges in Character Animation have been re-defined

Rigging/Skinning
Motion Synthesis
Motion in-betweening
Motion Control
Motion Retargeting
Style Transfer
Audio/music-driven synthesis
Text-to-animation
etc.

Research in our lab

MotionNet

MotioNet: 3D Human Motion Reconstruction from Monocular Video with Skeleton Consistency
by M. Shi, K. Aberman, A. Aristidou, T. Komura, D. Lischinski, D. Cohen-Or, B. Chen ACM Transactions on Graphics

[Pavllo et al., CVPR 2019]

Use IK to convert the 3d
position to rotation
[VNect, Mehta et al., SIGGRAPH 2017]

Apply rigging to make the rotation to a consistent skeleton
[HMR, Kanazawa et al., CVPR 2018]

The Key Idea:

What is the common representation of motion in MoCap datasets?

BVH - the most used output format of MoCap system

MAI4CAREU

\oplus : Forward kinematics

Connecting Europe Facility

MAI4CARE

MotioNet: 3D Human Motion Reconstruction from Monocular Video with Skeleton Consistency

MINGYI SHI, Shandong University, China, and AICFVE, Beijing Film Academy, China
KFIR ABERMAN, AICFVE, Beijing Film Academy, China, and Tel-Aviv University, Israel
ANDREAS ARISTIDOU, University of Cyprus and RISE Research Centre, Cyprus
TAKU KOMURA, Edinburgh University, Japan
DANI LISCHINSKI, Shandong University, China and The Hebrew University of Jerusalem, Israel and AICFVE, Beijing Film Academy, Israel
DANIEL COHEN-OR, Tel-Aviv University, Israel, and AICFVE, Beijing Film Academy, Israe
BAOQUAN CHEN, CFCS, Peking University, China, and AICFVE, Beijing Film Academy, China

Fig. 1. Given a monocular video of a performer, our approach, MotioNet, reconstructs a complete representation of the motion, consisting of a single symmetric skeleton, and a sequence of global root positions and 3 D joint rotations. Thus, inverse kinematics is effectively integrated within the network and is
process.

We introduce Motionet, a deep neural network that directly reconstructs the motion of a 3 D human skeleton from a monocular video. While pre vious methods rely on either rigging or inverse kinematics (IK) to asso-
ciate a consistent skeleton with temporally coherent joint rotations, our method is the first data-driven approach that directly outputs a kinematic skeleton, which is a complete, commonly used motion representation. A.
the crux of our approach lies a deep neural network with embedded kinethe crux of our approach lies a deep neural network with embedded kine
matic prios, which decomposes sequences of 2D joint positions into two separate attributes a a single, symmetric skeleton encoded by bone lengths and a sequence of 3D joint rotations associated with global root positions

 Deveclopment
Authori ndd

 Academy, email bapuanepku educn,
Permisison to make digital or h hard copice
 for proft or commercial advantage and that copies bear this notice and the full ctit
titon on the frit t page Copyrights for components of this work owned by others tha
AcM

2020 Association for ocmmuting Machinery

and foot contact labels. These atrributes are fed into an integrated forward kinematics (FK) layer that outputs 3D positions, which are compared to a ground truth. In addition, an adversarial loss is applied to the velocities
of the recovered rotations to ensure that they lie on the manifold of natural joint rotations. The key advantage of our approach is that it learn to infer natural joint rotations directly from the training data rather than assuming an underlying model. or inferring them from joint positions us-
ing a data-agnostic IK solver. We show that enforcing a single consistent ing a data agnostic IK solver. We show that enforcing a single consistent
skeleton along with temporally coherent joint rotations constrains the solution space, leading to a more robust handing of self-occlusions and depth ambiguities.
CCS Concepts: - Computing methodologies \rightarrow Motion processing Neural network
Additional Key Words and Phrases: Pose estimation, motion capturing, mo-
ACM Reference format:
Mingyi Shi, Kfir Aberman, Andreas Aristidou, Taku Komura, Dani Lischinski, Daniel Cohen-OTr, and Baoquan Chen. 2020. MotioNet: 3 D Human Motion Reconstruction from Monocular Video with Skeleton Consistency ACM Trans. Graph. 40, 1, Article 1 (September 2020), 15 pages
https:/doiory/ $10.145 / 3407659$

1 INTRODUCTION
Capturing the motion of humans has long been a fundamental task with a wide spectrum of applications in data-driven computer animation, special effects, gaming, activity recognition and behavioral analysis. Motion is most accurately captured in a and benaviorat analysis. Motion is most accurately captured in a

MAI4CAREU

Results

Motion Analysis
 Emotion and Style

Maori wedding (Haka)
https://youtu.be/QUbx-AcDgXo

Human Motion Style

Happy

Depressed

Style is an abstract attribute

Related Work

Model style, which is not welldefined, as some hand-crafted representations, such as,

- Difference in spectral domain.
- Physical parameters of human body.
- Low-level features based on the LMA theories on human analysis

Related Work

Data Driven

Learn the mapping based on labeled \& paired motion data.

- limited to structurally similar motions in the dataset
- limited to a pre-defined set of styles in mocap data
- limited to style recorded by

MoCap systems

Inspiration from Image Style Transfer

Adaptive Instance Normalization (Adal|N) layer - spatially invariant, maintains geometry, manipulates style.

$$
\operatorname{AdaIN}(x, y)=\sigma(y)\left(\frac{x-\mu(x)}{\sigma(x)}\right)+\mu(y)
$$

[Huang and Belongie, 2017]
style
conten

Geometry and shapes are preserved Adapting to motion?

Adaptive Instance Normalization (AdalN)

Time

Architecture

Temporally-invariant

Loss Terms

Loss Terms

Push embeddings of the same style closer to each

Results

Style Input (proud)

Content Input

Connecting Europe Facility

Unpaired Motion Style Transfer from Video to Animation
KFIR ABERMAN*, AICFVE, Bejing Film Academy \& Tel-Aviv University
YIJIA WENG* ${ }^{*}$, CFCS, Peking University \& AICFVE, Beijing Film Academ
DANI LISCHINSKI, The Hebrew University of Jerusalem \& AICFVE, Beijing Film Academy
DANIEL COHEN-OR, Tel-Aviv University \& AICFVE, Beijing Film Academy
BAOQUAN CHEN ${ }^{\dagger}$, CFCS, Peking University \& AICFVE, Beijing Film Academy

CCS Concepts. \cdot Computing methodologies \rightarrow Motion process-

CM Reference Format:
Whr Aberman, Ypia Weng, Dani Lischinski. Daniel Cohen-Or, and Baoquan
 33865693392469

$r y)$

Output

Challenges

- Data are not always available...

I'm losing my patience.

Challenges

- Given the difficulties of motion capturing children, can we just use adult mocap data on child characters?
- Can we convince the viewers that the motions are from children?
- Jain et al[2016] found that viewers can differentiate child motion from adult motion by viewing point light display videos.

Key Ideas

- Adapt adult motions to child motions that captures both the postures and the timing of child motions.
- Achieve this goal without temporally aligned data given that adult motions and child motions can be drastically different.

Overall Architecture

Adversarial loss

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{G}_{\mathrm{c} 2 \mathrm{a}}}=0.5 * \mathbb{E}_{\mathbf{c} \sim p(\mathrm{c})}\left[\mathrm{D}_{\mathrm{a}}\left(\mathrm{G}_{\mathbf{c} 2 \mathrm{a}}(\mathbf{c})\right)-1\right] \\
& \mathcal{L}_{\mathrm{G}_{\mathrm{a} 2 \mathrm{c}}}=0.5 * \mathbb{E}_{\mathrm{a} \sim p(\mathrm{a})}\left[\mathbf{D}_{\mathbf{c}}\left(\mathrm{G}_{\mathrm{a} 2 \mathbf{c}}(\mathbf{a})\right)-1\right]
\end{aligned}
$$

Cycle loss

$$
\begin{aligned}
& \mathcal{L}_{\text {cycle }, \mathrm{c}}=\mathrm{G}_{\mathrm{a} 2 \mathrm{c}}\left(\mathrm{G}_{\mathrm{c} 2 \mathrm{a}}(\mathrm{c})\right)-\mathrm{c} \\
& \mathcal{L}_{\text {cycle } \mathrm{a}}=\mathrm{G}_{\mathrm{c} 2 \mathrm{a}}\left(\mathrm{G}_{\mathrm{a} 2 \mathrm{c}}(\mathrm{a})\right)-\mathrm{a}
\end{aligned}
$$

Coherence loss

$$
\begin{aligned}
\mathcal{L}_{\text {coherence }, \mathrm{a}} & =\sum_{t} \sum_{D O F}\left\|\mathrm{G}_{\mathrm{a} 2 \mathbf{c}}(\mathrm{a})(t)-\mathrm{G}_{\mathrm{a} 2 \mathbf{c}}(\mathrm{a})(t-1)\right\| \\
\mathcal{L}_{\text {coherence }, \mathrm{c}} & =\sum_{t} \sum_{D O F}\left\|\mathrm{G}_{\mathbf{c} 2 \mathbf{a}}(\mathrm{c})(t)-\mathrm{G}_{\mathbf{c} 2 \mathbf{a}}(\mathrm{c})(t-1)\right\|
\end{aligned}
$$

Transition loss

$$
\begin{aligned}
y & =\mathrm{G}_{\mathbf{c} 2 \mathrm{a}}(\mathbf{c}) \\
\mathcal{L}_{\text {transition }, \mathbf{c}} & =\sum_{t} \sum_{D O F}\left\|y_{i}\left(t_{\text {overlap:end }}\right)-y_{i+1}\left(0: t_{\text {overlap }}\right)\right\|
\end{aligned}
$$

Results: Punch

Input adult
Ours

Reference child

Results: Run as fast as you can

Input adult
Ours

Reference child

Results: Walk a

Yuzhu Dong

Yuzhu Dong	Andreas Aristidou	Ariel Shamir
University of Florida yuzhudoig@ufledu	University of Cyprus	The Interdisciplinary Center Herzliya
arik@idc.acil		

Moshe Mahler
Carnegie Mellon Univers
Carnegie Mellon University
mmahler@andrew.cmuedu
ABSTRACT

Input adu

Child characters are commonly seen in leading roles in top--selling
video games. Previous studies have shown that child motions are video games. Previous studies have shown that child motions are
perceptually and stylistically different from those of adults. Creating motion for these characters by motion capturing children is
uniquely challenging because of confusion, lack of patience and reg. ulations. Retargeting adult motion, which is much easier to record, onto child skeletons, does not tapture the stylistic differences. In his paper, we propose that style translation is an effective way to
ransform adult motion capture data to the style of child motion transform adult motion capture data to the style of child motion.
Our method is based on CycleGAN, which allows training on a relatively small number of sequences of child and adult motions hetwork converts short sequences of motions called motion words from one domain to the other. The network was trained using a motion capture database collected by our team containing 23 loco-
motion and exercise motions. We conducted a perception study to evaluate the success of style translation algorithms, including our algorithm and recently presented style translation neural networks. kesults show that the translated adult motions are recognized as ill motions signifcantly more often than adult motions.

CCS CONCEPTS
Computing methodologies \rightarrow Motion
cessing; Machine learning: Animation
KEYWORDS
Style transfer, CycleGAN, Unpaired data, Motion Analysis
 Interaction and Games (MIG 20), October $16-18$, 202, Virtual Event, SC USSA,
\qquad

Eakta Jain
 Eakta Jain Unversity of Florida ejain@cise.ufledu

INTRODUCTION
Children in the age group 8 to 11 years old have been found to spend as much as s hours seekly on videog games Johnson 2018].
Such trends make children important markets for the video game. and electrononic matertertaimenent industry Games suct the video game Ind electronic entertainment industry. Games such as Just Dance motivate children to exercise. As a result, there is a need to identify nethods for synthesizing child motions Keyframing requires hours of manual effort from trained ani mators to create realistic and compelling motion. Motion captur
mocap), the leading technology for creating animated character rrom actual human motion data, has the advantage of maintaining world physics [Menache 2000]. However, motion capturing childrem is full pof difficulties. Children get confused with the instructions. lack patience, and are hard to ocllaborate with [Piaget 2015], espe
cially at very young ages. These difficulties are the reason ailly at very young ages. These dificultes are the reason the repositories, such as the CMU [2020] and OSU [2020] databases, Consist only of adult motions. Currently, the Kinder-gator [Aloba
et al. 2018] and the Human Motion Database [Guerra-Filho Biswas 2012] are the only publicity aceessible repositories that con-
Bis the tain child motion. For games in particular, an abundance of action types, repeetitions and variations allows for realism in real time play One way to overcome this scarcity of child motion data is to
retarge easily available motion from adults to a child sized skeleton However, retargeting mostly involves changes in the dimension of limbs, so mapping adult motion directly on child characters fails 10 transter the style and nuances of the children motion such as
speed and variabilty. Syyle translation, that is, learning a mapping spetween two labeled motion capture sequences, has been exter sively studied, Starting with approaches by Brand and Heertrmann
[2000 and Clecher $[1998]$ to recent advances made by deep neural networks [Aberman et al. 2020; Du et al. 2019a; Holden et al. 2017, networks Aberman etal. 2020; Du et al. 2019;
2016, 2015; Mason et al. 2018; mith et al. 2019]
In this paper we devise an adult-t-child motion translation at ycleGAN has been successfully used in the past for transformic image styles without paired training data. This characteristic is
critical for adult-to-child translation due to the very limetied critical for adult-to-child translation due to the very limited avail
ability of child data. Generative Adversarial Networks (GANs) have bility of child data Generative Adversarial Networks (GANS) hav
arely been used in character animation because of the difficuly rarely been used in character animation because of he dinculty
to train a mapping that exhibits temporal dynamic behavio and
generates temporally coherent and realistic movements. We show

Reference child

Co-financed by the European Union
Connecting Europe Facility

Introduction
 Contextual Analysis

Introduction

Deep motifs and motion signatures

Motion Words and Motifs

Motion Analysis Triplet Loss Network

45 Triplet Loss Network

Motion Analy sis Triplet Loss Network

Motion Analysis
 Triplet Loss Network

Feature Space
 Motion Words

Bag-of-motifs

Motion Signatures

Motion Signatures

Motion Signatures

Deep motifs and motion signatures Fine-grained details

Deep motifs and motion signatures
Fine-grained details

Deep motifs and motion signatures

Motion Segmentation

Motion Segmentation

Deep motifs and motion signatures

Organizing large collections: Dance ethnography

Deep motifs and moti Unexpected asso

Co-financed by the European Union Connecting Europe Facility

Deep Motifs and Motion Signatures
ANDREAS ARISTIDOU, The Interdisciplinary Center
DANIEL COHEN-OR, Tel-Aviv University
JESSICA K. HODGINS, Carnegie Mellon University
YIORGOS CHRYSANTHOU, University of Cyprus \& RISE Research Center
ARIEL SHAMIR, The Interdisciplinary Center

Fig. 1. Our motion signatures are defined using a deep analysis of motion words and selection of motion-motifs. Each signature is represented by a horizontal distributions and not time evolution - the horizontal axis is not temporal Thre signatures of sequences are shown for each motion type - as can be seen, motions of similar type produce similar signatures where many modiff salign. The rectangles in the sequence of motion to the left of the signatures illustrate motion words associated with the motifs shown by the corresponding arrow above the signature

Many analysis task for human motion rely on highb-revel similiarity betwece
sequeneces of motions, that are not an exact mathes in joint anyles, timin sequences of motions, that are not an exact matches in joint angless timing
or ordering of actions. Even the same movements performed by the sam person can vary in duration and speed Similar motions are charatererize
by similur sest of actions that appear frequently In this paper we introduc by similar sets of actions shat appear frequently. In this paper we introduc
motion motifis and motion signatures that are a sucecinct but descriptive rep resentation of motion sequences. We first break hhe motion nesuyneces
short etem moverents called motion words, and then cluster the word short-term movements called motion words, and then cluster the words in
a high-dimensional feature space to find motifs. Hence, motifs are words a high-imenssional feature space to find motifis. Hence, motis are words motion sequence. To cluster words and find motis, the challenge is to define
an effective feature space, where the distances among motion words ate semantically meaningftul, and where variations in speed and duration
handled. To this end. we use a deep neural networkto embed the motion

words int fataure space using a triplet loss function. To define a signature,
we choose a fintes set of motion-motifis, crating a basoof motifs representa-

 motion sequenceses by motifs, and for the use of motion signatures in a ing motion sequences by
number of applications.
CS Concepts . Computing methodologies \rightarrow Motion capture: Motion processing.
ditionm Key Words and Phrsuece Animation. Motion Word Motif Motion .
ACM Reference Format
Andras Aristiduu. Daniel Coben-Or, Jessica K. Hodgins, Yiorgos ChrysanTrans Graph. 37, 06, Articicl 187 (November 2018), 13 pages. htpp://doi.org/ $10.145 / 32721273275038$
1 introduction
The availabilithy of human motion data in big repositories is growing with the emergence of simpler motion capture devices [Mehta
nt al. 2017; Pavlakos et al. 2017]. Content-based techniques and searching methods become essential to facilitate the use of such data. However, motion data is not always annotated or paramenotion datasets, and the comparison between motion data. Working drectly with the motion sequences is challenging due to the high

Introduction

Contextual motion analysis

https://voutu.be/weSvQCGuTvu

Dance is "a performing-art form consisting of purposefully selected and controlled rhythmic sequences of human movements". These movements have aesthetic and often symbolic value.

S. H. Fraleigh, Dance and the Lived Body: A Descriptive Aesthetics.

University of Pittsburgh Press, 1987.

Dance is "a performing-art form consisting of purposefully selected and

 controlled rhythmic sequences of human movements". These movements have aesthetic and often symbolic value.S. H. Fraleigh, Dance and the Lived Body: A Descriptive Aesthetics.

University of Pittsburgh Press, 1987.

The premise of our work Music-driven motion synthesis

Our network

Music-driven motion synthesis

Our network: Pose component

Music-driven motion synthesis

Our network: Motif component
Music-driven motion synthesis

Our network: Motif component

Music-driven motion synthesis

Our network: Motif component

Music-driven motion synthesis

Our network: Choreography component Music-driven motion synthesis

Our Architecture

Our network: Losses and other important parameters Music-driven motion synthesis

- Audio representation (Librosa Library [Ellis 2007]):
- Rhythmic features $\mathbf{a}_{r}^{t} \in \mathbb{R}^{4}$
- Spectral features $\mathbf{a}_{s}^{t} \in \mathbb{R}^{87}$
- Pose representation: $\mathbf{f}^{t}=\left[\mathbf{f}_{\boldsymbol{t}}, \mathbf{f}_{\boldsymbol{q}}\right] \in \mathbb{R}^{3+4 J}$
- the root displacement $\mathbf{f}_{t} \in \mathbb{R}^{3}$
- joint rotations in unit quaternions, $\mathbf{f}_{\boldsymbol{q}} \in \mathbb{R}^{4 J}$, for $J=31$ joints
- Motif representation:
- $\mathbf{m}^{t} \in \mathbb{R}^{d}$, where $d=184$ universal features
- motion words are segmented on the beat; time-scaled to 13 frames

Our network: Losses and other important parameters Music-driven motion synthesis

- The input to the network at time t is:

$$
\mathbf{n}^{t}=\left[\mathbf{a}_{r}^{t}, \mathbf{m}^{t}, \mathbf{f}^{t}, \mathbf{c}^{\boldsymbol{t}}\right] \in \mathbb{R}^{4+d+4 J+2}
$$

- where $\mathbf{c}^{t} \in\{0,1\}^{2}$ is a binary vector representing the left and the right foot contact labels
- Foot Sliding Cleaning (pose level)
- predict foot contact labels
- Motion Diversity (motif level)
- AdalN layer to inject style variation using $\mathbf{a}_{\boldsymbol{s}}^{\boldsymbol{t}}$
- Motion Perceptual-Loss (motif level)
- controls the content of motion words
- Motif Transition matrix (choreography level)
- describes probability of the temporal connectivity between consecutive motion motifs
- Signature difference (choreography level)
- compares the current signature to the target signature

Results Music-driven motion synthesis

Results

Dance synthesis at different bpm

Results

Dance synthesis with variation

Results: Ablation study Spectral audio for subtle variations

More Results

Music-driven motion synthesis

Applications
 Recreate an existing dance

MAI4CAREU

Other Applications

MAI4CAREU

Other Applications

MAI4CAREU

Other Applications

Submission ID: 678

MAI4CAREU

Other Applications

Dance Central 4 - Shape of You

Just Dance ${ }^{\circledR}$ 2019-Me Me Me

Other Applications

MAI4CAREU

Other Applications

AICP sponsor reel by Method Studios
https://youtu.be/fd_9qwpzVBQ

Dancing Phantoms by Kiyan Forootan https://youtu.be/Ig7A6fZrWyM

Other Applications

PARKER • Become the Fool
https://youtu.be/5oJUfpB4f90

MAI4CAREU

Other Applications

MAI4CAREU

Other Applications

Join our team at the Graphics \& Extended Reality Lab

Andreas Aristidou

Assistant Professor

Office: FST01, Room B113
Office hours: Only after appointment
email: andarist@ucy.ac.cy

Research Interests:
Machine Learning, Deep Learning and its applications in Computer Graphics and Character Animation, Virtual/Augmented Reality, Digital Heritage
https://www.cs.ucy.ac.cy/~andarist

Join our team at the Graphics \& Extended Reality Lab

> Our recent work on pose representation has been accepted at the ACM/Eurographics SCA conference!
${ }^{27} 1 \mathbf{1} 12022$

The Graphics and Extended Reality Lab at the University of Cyprus, part of the Computer Science Department, conducts research in areas such as machine learning, rendering, virtual reality and animation.

Founded in 2002, the lab is located in rooms 122 and 123 of the FST 01 building on the university's new campus, and is staffed by two faculty members and twelve research associates. It also has several active, funded projects.

Website: https://graphics.cs.ucy.ac.cy/

Paper Presentations

- A Style-Based Generator Architecture for Generative Adversarial Networks
- DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
- GANimator: Neural Motion Synthesis from a Single Sequence
- Human Motion Diffusion as a Generative Prior

MALGCAREU

Thank you!

That's all folks!!!

