
University of Ruse

Information Retrieval

Yordan Kalmukov
May 2023

Information Retrieval – Describing documents by keywords

Yordan Kalmukov, jkalmukov@uni-ruse.bg

Describing objects by keywords.
Searching by explicit selection of keywords.

I. Describing objects by unordered set of keywords

Objects are described separately and independently of each other using an unordered set of
keywords. In some literary sources, it is also called a list of keywords, since the concept of a list is
more familiar and close to users. However, from a technical point of view, this is not correct,
because the list structure is essentially ordered.

In the beginning, before starting to add documents, the administrator defines a set of
keywords. Their number should be as many as necessary, but not too many. When adding a new
document to the collection, the user selects only those keywords that most accurately describe it.

The method can be implemented in the following two ways:

1. By selecting the keywords using HTML checkboxes (Figure 1). In this case, the keywords
have a "binary" behavior - each of them is either selected or not; either present in the
object description or not.

2. By selecting the keywords using HTML drop-down menus (select boxes). For each
keyword, there is a drop-down menu (Figure 2), which allows the user to indicate not
only whether it is applicable to the description of the corresponding resource, but also
to state exactly how applicable it is. This introduces “degree of applicability /
significance” of the given keyword to the description of the specific object.

Figure 1. Describing an object by selecting keywords from unordered list (by HTML
checkboxes). The keywords have a binary-like behavior – selected or not selected.

Information Retrieval – Describing documents by keywords

Yordan Kalmukov, jkalmukov@uni-ruse.bg

Figure 2. Describing an object by weighted keywords, selected by HTML select boxes. If a
keyword is selected the user can state how much it applies to the document (object). “Not

applicable” means not selected.

If the keywords are selected from checkboxes, there are several easy options to calculate the
similarity coefficients between any two documents (or between the query and each of the
documents):

1. Simple match

𝑆𝑖𝑚(𝑑𝑖 , 𝑑𝑗) = |𝐾𝑊𝑖 ∩ 𝐾𝑊𝑗| (1)

where:

𝑆𝑖𝑚(𝑑𝑖 , 𝑑𝑗) – similarity between documents di and dj.

𝐾𝑊𝑖 – set of keywords, describing the i-th document.

𝐾𝑊𝑗 – set of keywords, describing the j-th document.

Equation (1) return the number on common keywords between the two sets.
The symbol ∩ means intersection, and the vertical lines returns the number of elements.

The problem with simple matching is that the resulting value is not normalized to a certain
interval, say [0, 1]. If you have two objects described with 2 exactly matching keywords,
and another two objects described with 3 exactly matching keywords, it turns out that the
second pair of objects is actually more similar than the first pair. This, of course, is not true,
because in both pairs, the similarity is 100%.

2. Jaccard’s index

𝑆𝑖𝑚𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑑𝑖, 𝑑𝑗) =
|𝐾𝑊𝑖 ∩ 𝐾𝑊𝑗|

|𝐾𝑊𝑖 ∪ 𝐾𝑊𝑗|
 (2)

Here, all the notations are already described.

The Jaccard’s index calculates the degree of similarity as the ratio of the number of common
keywords to the number of all unique (for both sets) keywords.

Its value is normalized to the interval [0, 1], which is an advantage over simple matching.

Information Retrieval – Describing documents by keywords

Yordan Kalmukov, jkalmukov@uni-ruse.bg

3. Dice’s coefficient

𝑆𝑖𝑚𝐷𝑖𝑐𝑒(𝑑𝑖 , 𝑑𝑗) =
2 × |𝐾𝑊𝑖 ∩ 𝐾𝑊𝑗|

|𝐾𝑊𝑖| + |𝐾𝑊𝑗|
 (3)

According to the Dice coefficient, similarity is calculated as 2 times the number of common
keywords divided by the number of all (for both sets) keywords. Duplicates are not removed in the
denominator (as in Jaccard)!

If there are 5 keywords in the first set, and 3 in the second, and 2 of them match between
the sets, then the denominator for Dice will be 8 (5+3), and for Jaccard’s index - 6 (5+1). With
Jaccard’s index it will be 5+1 because 2 of the keywords in KWj are already in KWi.

I.e. in the described case, the similarity according to Jaccard’s index will be 2/6 = 0.33, and
according to Dice’s coefficient- 4/8 = 0.5.

Obviously, the Dice coefficient is also normalized in the interval [0, 1].

Saif Mohammad and Graeme Hirst proved that the relationship between two similarity
factors calculated by Jaccard's formula is preserved when they are recalculated by Dice's formula
as well. Yes, there is a difference in absolute values, as we saw in the example above, but the
relationships between the individual coefficients are preserved. Therefore, if you are not
interested in the absolute values, but only in the relationships between the coefficients, then it
does not matter whether you use the Jaccard or Dice similarity measure. When searching and
ranking the results, we are generally not particularly interested in the absolute values of the
similarities, but only the relationships between them. Results are sorted based on relationships.
Biggest similarities go higher in the result list. No matter what the exact value is.

In the literature, the Dice coefficient could be also found as the Sørensen index. The two
scientists proposed it independently of each other, but Dice published it first.

If keywords are weighted (as in Figure 2), it is mandatory that the similarity measure not only
take into account the number of matching/common keywords, but also their respective levels.
How can this happen? Well - when 2 keywords (one of a set) match but their relevance levels are
not maximum, you won't count the match as 1 full match. You will count it as 0.x matches by
decreasing the 1 inversely proportional to the applicability level, i.e. the greater the applicability of
the word, the less you will reduce.

|𝐾𝑊𝑖 ∩ 𝐾𝑊𝑗| => ∑ (1 − (1 − 𝑤𝑚) − (1 − 𝑤𝑛))𝑘𝑚∈𝐾𝑊𝑖,𝑘𝑛∈𝐾𝑊𝑗

Information Retrieval – Describing documents by keywords

Yordan Kalmukov, jkalmukov@uni-ruse.bg

II. Describing documents/objects by taxonomy of keywords

Selecting keywords from a predefined, unordered set individually and independently
describes all documents. But the unordered nature of the set requires that its size be limited to a
reasonable (not large) number of semantically non-overlapping elements - say 20 to 30. Otherwise,
the user interface will be very inconvenient to work with. If the set of keywords contains hundreds
of items and they are not structured in any way, it will take a very long time for the user to read
them and select the ones that best describe the relevant resource. This could greatly demotivate
him/her and he/she might give up or make superficial choices. On the other hand, the small
number of keywords leads to a lack of specificity (details) in them or an inability to fully cover the
thematic areas of the documents.

The stated problem can be largely solved, if the selection of keywords is done not from an
unordered set, but from a taxonomy. The advantage of this method is a direct consequence of the
hierarchical structure of the taxonomy. It provides additional and very important information - the
semantic relationships between individual keywords, which allows:

1. Similarity measures to consider not only the number of exactly matching keywords, but
also the semantic similarity between non-matching ones.

2. To calculate a non-zero similarity between two documents, even when they do not share
any common keyword.

3. The taxonomy may include many more keywords - hundreds, even thousands. Their larger
number provides a more detailed and accurate description of the objects, without causing
inconvenience when working with the user interface. The elements are grouped into
generalized branches in the tree, and the user "opens" only those branches that interest
him.

Taxonomy

1.

1.n.2.

1.1. 1.2.

1.n.

1.1.1.

1.1.1.1. 1.1.1.3.

1.1.1.2.

1.2.1.

1.n.m

1.n.1.

1.n.2.1.
1.n.2.2.

2.

2.p.2.1.

2.1.1.
2.p.1.

2.p.1.1. 2.p.1.2.

2.(p+1).

Figure 3. General structure of the taxonomy

Information Retrieval – Describing documents by keywords

Yordan Kalmukov, jkalmukov@uni-ruse.bg

Conference

Taxonomy

Information

systems

On-line Information

Services

Database

management

Database

applications

Information Storage

and RetrievalSystems

Relational

databases
Distributed

databases

Object-oriented

databases

Spatial databases

and GIS

Content Analysis

and Indexing

Information

Storage

Data

sharing
Web-based

services

Software

Programming

Languages

Software

Engineering

Architectures OO Languages

Java C++

X X X

X
X

X

X

X X

X

X

X

X

Figure 4. Example taxonomy with the keywords describing the first document
(colored in green) and the second document (colored in dark red).

According to the figure, the keywords that describe the two documents are:

KWi = {Relational databases, Content analysis, Web-based services, Architectures}

KWj = {Relational databases, Distributed databases, Spatial DB & GIS, Information
 storage and retrieval, Content analysis, Data sharing, Software Engineering,
 Programming languages, C++}

Although they are stored in unordered sets, the semantic relationships between them are
preserved and could be extracted from the taxonomy at any time.

Documents are typically described not by one, but by multiple keywords selected from the
predefined taxonomy. Therefore, in order to accurately calculate the degree of similarity between
them, it is necessary to use a similarity measure that calculates the semantic similarity between
two sets of nodes (concepts) in a common taxonomy. I proposed the one below (4). It is based on
and derived from Dice's coefficient. However, instead of the number of exactly matching
keywords, it also counts the semantic similarity between the non-matching ones. How is this
possible? Because the keywords are not independent, but hierarchically related within the
taxonomy. The semantic similarity between any two keywords could be calculated based on the
length of the path between them or in other ways.

𝑆𝑖𝑚(𝑑𝑖 , 𝑑𝑗) =

∑ max
𝑘𝑛∈𝐾𝑊𝑗

(𝑆𝑖𝑚(𝑘𝑚, 𝑘𝑛))𝑘𝑚∈𝐾𝑊𝑖
+ ∑ max

𝑘𝑚∈𝐾𝑊𝑖

(𝑆𝑖𝑚(𝑘𝑛, 𝑘𝑚))𝑘𝑛∈𝐾𝑊𝑗

|𝐾𝑊𝑖| + |𝐾𝑊𝑗|
 (4)

where:

km – m-th keyword, describing the i-th document.

kn – n-th keyword, describing the j-th document.

Information Retrieval – Describing documents by keywords

Yordan Kalmukov, jkalmukov@uni-ruse.bg

𝐾𝑊𝑖 – set of keywords, describing the i-th document.

𝐾𝑊𝑗 – set of keywords, describing the j-th document.

𝑆𝑖𝑚(𝑘𝑚, 𝑘𝑛) – semantic similarity between the m-th keyword, describing the i-th document
and the n-th keyword, describing the j-th document.

max
𝑘𝑛∈𝐾𝑊𝑗

(𝑆𝑖𝑚(𝑘𝑚, 𝑘𝑛)) – semantic similarity between the m-th keyword, describing the i-th

document and its semantically closest keyword, describing the j-th document.

If the taxonomy is converted to an unordered set, by ignoring the semantic relations between
the individual elements, then formula (4) will always give exactly the same result as the Dice’s
coefficient (3). But unlike it, (4) can also be used for sets whose elements are semantically related.

To calculate 𝑆𝑖𝑚(𝑑𝑖 , 𝑑𝑗) one must first compute all similarities 𝑆𝑖𝑚(𝑘𝑚, 𝑘𝑛) between all

keywords describing one document and all keywords describing the other document. This can be
done in one of two ways:

 Based on the structural characteristics of the taxonomy - distance, depth, density, etc.

 Based on the information content of the nodes.

One of the widely used measures to determine the semantic similarity between two nodes in
a taxonomy is that formulated by Zhibiao Wu and Martha Palmer (5).

210

0
),(

2

2
&

NNN

N
kkSim nmPalmerWu




 (5)

where:

0N - distance (in number of edges) between the root and the closest common ancestor C0
of the two nodes/concepts (Cm) and (Cn) (fig. 5).

1N - distance from C0 to one of the concepts, for example Cm. Cm represents the m-th
keyword from the i-th set.

2N - distance from C0 to the other concept – Cn. Cn represents the n-th keyword from the j-
th set.

Since the similarity measure of Wu and Palmer is symmetrical, it does not matter whether Cm
belongs to the i-th set, and Cn to the j-th or the opposite. A closer look at (5) shows that it actually
represents a Dice coefficient applied to the sets of edges, building the paths from the root to the
two nodes/concepts between which semantic similarity is sought.

Information Retrieval – Describing documents by keywords

Yordan Kalmukov, jkalmukov@uni-ruse.bg

Cm

Cn

C0

Figure 5. Visual representation of the similarity measure of Wu and Palmer
for calculating similarity between two concepts in a taxonomy

Dekang Lin proposes a similarity measure based on concepts’ information content. In this
case, the taxonomy is augmented with a function p:C -> [0,1], so that for any node (concept) Cc ,
p(c) represents the probability of encountering the node c or any of its descendants in the
taxonomy. I.e. if c1 is in "IS-A" relationship with c2, then p(c1) <= p(c2). It follows that the
probability of the root (if any) is 1 because every node is its successor. Since lower probability
means higher information content, nodes deeper in the hierarchy are more informative than those
located shallower. Lin's similarity measure (6) is similar to Wu and Palmer's, but instead of
distances, it considers the information content of nodes.

)(log)(log

)(log2 0
),(

nm

nm

CPCP

CP
kkSimLin




 (6)

where

)(0CP - probability of encountering the closest common ancestor C0 or any of its

descendants in the taxonomy.

)(mCP - probability of encountering the concept (or its successor) representing the m-th

keyword from one set.

)(nCP - probability of encountering the concept (or its successor) representing the n-th

keyword from the other set.

