
University of Ruse

Information Retrieval

Yordan Kalmukov
May 2023

Information Retrieval – Text preprocessing and Boolean Retrieval

Yordan Kalmukov, jkalmukov@uni-ruse.bg

Content-based document retrieval

Text pre-processing

Boolean Retrieval

I. Text pre-processing

Usually, before proceeding with an algebraic or probabilistic text analysis model, it is

necessary to pre-process the text to remove certain words and symbols that can introduce a lot of

noise into the analysis and greatly affect the reliability of the the results. The five basic text

preprocessing operations are listed below. It is desirable that at least the first four are

implemented.

1. Remove punctuation. Generally, there are many punctuation symbols in documents -

periods, commas, dashes, quotation marks, apostrophes, etc. They are important for the

construction of sentences and their syntax, but from a semantic point of view they do not

carry any additional information. They are not telling us what a document is about. Just

because they do not give us any information, does not mean they should be removed. But

they actually cause problems. Especially when they touch on words. In this way they

interfere with word recognition. For example, a word immediately followed by a dash or

period is recognized as different from the same word without such a symbol. If, on the

other hand, these symbols are separated from the words by spaces, then they are

recognized as unique words, which unnecessarily increases the dimensionality of the

vectors. Therefore, it is best to remove them. This is most easily done with a regular

expression (eg. the following perl-compatible regex /[\p{P}]/u) or with a “string replace“

function.

2. Convert all letters to lowercase. Whether a word is written in lowercase, uppercase, or a

mixture of lowercase and uppercase does not change its meaning in any way. But in word

recognition, letters matter, unless converted to all lowercase (preferably) or uppercase. It

is desirable to do such a conversion for both all documents and the query. This will ensure

that the same words will always be detected and recognized, no matter what letters they

are written in.

3. Tokenization of the text. I.e. converting the text into an array (or list) of unique words.

4. Removing semantically insignificant words (stop words). These are mainly prepositions,

conjunctions, pronouns, adverbs, and etc. But not only. They also have an important

syntactic meaning, but in no way represent the meaning and subject domain of the

documents. They are also extremely common, which is a problem - they will have a

disproportionately large tf value compared to semantically significant words that really carry

information about the meaning and content of the documents. I.e. semantically insignificant

words may overtake semantically significant ones. This can be somewhat solved by using idf,

but only to a certain extent and not in the case of multiple documents in a single subject

area. Therefore, it is best to simply remove these words. They are usually predefined as a

Information Retrieval – Text preprocessing and Boolean Retrieval

Yordan Kalmukov, jkalmukov@uni-ruse.bg

list, and are of course language dependent. There are ones for English, another for Bulgarian,

another for Greek, and so on. The list is loaded as an array. Subsequently, when a document

is processed, one simply checks to see if the current word appears in this array, and if so,

ignores it.

5. Word stemming. This is an operation of separating word endings from the root. The goal is

to use only the roots in the analysis. For example, if different documents contain the words

beauty, beautiful, beautifully and they are not stemmed, they will all be recognized as

different words. However, it is clear that it is the same word, just in different forms.

Therefore, it makes sense to recognize them as one word, not as different ones. For this

purpose, the root of the word must be separated or the endings removed. This is, of

course, an operation that is highly language-dependent, because the rules for forming

endings in different natural languages are different. Various stemming algorithms exist. For

the English language, the most used stemmer is the one proposed by Martin Porter [3].

Implementations of this algorithm can be found on the Internet in many different

programming languages. Of course, there are other stemming algorithms for English. For

example, the one proposed by Chris Paice called Lancaster Stemming Algorithm [2]. There

is a stemming algorithm for Bulgarian as well - BulStem [1], proposed by Preslav Nakov.

II. Boolean retrieval

The most elementary method of searching by content is the so-called Boolean model

(Boolean retrieval). It allows searching for words that are interconnected by AND and OR logical

expressions. NOT inversion could be also used.

For example, if a user is searching for airplanes manufactured by Boeing, he/she should type

the following query:

airplane AND Boeing

If searching for all documents that mention Boeing or any other aircraft, the query would be:

airplane OR Boeing

If searching for all airplanes, which are not Boeing or Airbus, they the query would be:

airplane AND (NOT(Boeing OR Airbus))

The Boolean searching model is largely used. Virtually all database management systems

(DBMS), especially those managing relational databases (RDBMS), rely on it. Regardless of whether

searching requires full match (ie attribute=”value”) or partial match (searching for a substring

within a string, ie attribute LIKE “%value%”), the DBMS implements exactly this search model.

The Boolean Retrieval’s popularity is motivated by its following advantages:

 Easy to understand.

 Easy to implement.

 Computationally efficient.

Information Retrieval – Text preprocessing and Boolean Retrieval

Yordan Kalmukov, jkalmukov@uni-ruse.bg

However, database administrators probably also know how many limitations it has, which

determine its disadvantages:

 Queries must be represented as Boolean expressions, which is not always easy. In

fact, with a large number of words it is extremely difficult. Therefore, it is usually only

used for simple queries with few words.

 In the case of many words, the search returns either a huge amount of found

documents, if the words are connected with OR (low precision), or just a few or even

no documents, if the words are connected with AND (low recall).

 Its behavior is truly Boolean - the document is either found or not. No similarity

coefficient is calculated, therefore the results are not ranked, i.e. order by degree of

similarity. The lack of ordering means that it is possible for some very similar/relevant

documents to be pushed far back in the results list, and others that are less relevant

to the query may be brought up at the beginning of the list.

As a conclusion, the Boolean retrieval is only suitable for searching by single words, not by

entire sentences, paragraphs, and documents. The lack of calculated similarity to the query and

ordering of the results does not guarantee that less relevant documents will not be incorrectly

brought forward in the results, while relevant ones could be pushed at the end of the list.

References:

1. Nakov, Preslav. "BulStem: Design and evaluation of inflectional stemmer for Bulgarian." In

Workshop on Balkan Language Resources and Tools (Balkan Conference in Informatics). 2003.

2. Paice, Chris D. "Another Stemmer." ACM SIGIR Forum 24.3 (1990): 56-61

3. Porter, Matrin F. An algorithm for suffix stripping. In J. S. Karen and P. Willet, editors, Readings

in information retrieval, pages 313-316. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1997

