
University of Ruse

Information Retrieval

Yordan Kalmukov
May 2023

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

Content-based document retrieval

Vector Space Model

I. Vector Space Model - introduction

The vector space model [1] is an implicit method where the meaning of a document is

described (or extracted) from its content.

As its name suggests, according to the vector space model, all the documents as well as the

query are represented in the form of vectors. However, unlike set-theoretic models, the vectors

are not binary, but contain real numbers representing term weights.

For example:

d1 = {0.15, 0.83, 2.12, 0.87, 0, 0, 0, 0.43, 0.25, 0, 0, … }

It is important to note that the size of the vector is not equal to the number of words in the

document, but to the number of unique words in the entire document collection. If the number of

unique words in the entire collection is n, then all the vectors representing the documents will be

presented in the n-dimensional space. I.e. they will have n number of elements. In practice, this

means that the vast majority (over 95%) of the elements of each vector will be zeros, because

most words will not occur in the corresponding document at all, i.e. their weight with respect to it

will be 0.

A relatively small collection of about 5,000 documents, each of 150-200 words, typically

results in over 20,000 unique words. Working with multiple vectors consisting of tens, even

hundreds, thousands of elements requires a lot of memory and computing resources. Therefore,

in practice the model is implemented in a slightly different way with the use of an inverted index.

How exactly this is done is described in details later.

The accuracy of the calculated similarity factor between two documents (or between a

query and a given document) largely depends on how the term weights are calculated. Numerous

term-weighting models for their calculation have been proposed in the scientific literature. All of

them are based on two main features:

• Frequency of occurrence of a given word ti within the j-th document ti. It is called term-

frequency – tfi,j. This is a local feature of the word, within the current document only.

The presumption is that the more frequently a word occurs within a document, the more

important it is to its description and meaning.

• Number of documents containing the given word ti. It is called document frequency - dfi.

It represents a global feature of the word with respect to the entire collection of

documents. Unlike tf, however, it is an inversely proportional measure of word

informativeness. I.e. the more documents this word appears in, the less specific

information it carries. Why? Because the words that occur in all documents, regardless of

their thematic orientation, are usually conjunctions, prepositions, definite articles (in

English), etc. These are the so-called semantically insignificant words. Therefore, when

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

calculating term weights, not this feature is used, but its "inversion" - inverse document

frequency - idfi. The presumption here is that the fewer documents the word is involved

in, the more specific meaning it carries. idfi is not 1 over df but is calculated by equation

1.

In general, the term weight is calculated by the product of tf and idf. But they are usually not

used directly, with their "raw" values. Why? Imagine you are looking for a "large pizza". If "pizza"

occurs 1 time in document d1 and 10 times in document d2, then clearly d2 should have a greater

degree of similarity to the query, but not quite 10 times greater. In addition, a word that appears

in the document many times can significantly reduce the weight of the other words, which of

course is not very desirable. Therefore, when calculating the weights, tf is usually logarithmized.

Likewise with idf. There, logarithmization is mandatory (equation 1), because otherwise, if the

document collection is very large, idf may have a disproportionately larger value than tf.

𝑖𝑑𝑓𝑖 = log(
𝑑

𝑑𝑓𝑖
) (1)

where:

idfi – inverse document frequency of ti in the entire document collection.

d – number of documents in the collection.

dfi – number of documents that contain ti.

The simplest tf-idf model for calculation of term weights is:

𝑤𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 ∗ 𝑖𝑑𝑓𝑖 = (𝑡𝑓𝑖,𝑗) ∗ log (
𝑑

𝑑𝑓𝑖
) (2)

where:

wi,j – the weight of the i-th term in the j-th document.

tfi,j – term frequency of ti in the j-th document.

The rest notations are already explained.

However, as mentioned, tf is usually also logarithmized rather than used directly. Thus, the

most frequently used tf-idf scheme is actually equation (3). It is by no means perfect, but it is easy

to implement and gives good results. There are other more complex term-weighting models, some

of which are discussed in the next point.

𝑤𝑖,𝑗 = (1 + log(𝑡𝑓𝑖,𝑗)) ∗ log(
𝑑

𝑑𝑓𝑖
) (3)

The weights of the same terms in different documents will be different, because the local

frequency of occurrence of the corresponding words within the given document (tf) also takes

part in them.

After the term weights are calculated and the document vectors are formed, the degree of

similarity between them can be calculated by various similarity measures, including the algebraic

versions of Dice (Equation 4) and Jaccard (Equation 5), but most commonly used is the cosine

similarity – equation 6.

𝑆𝑖𝑚𝐷𝑖𝑐𝑒(𝑞, 𝑑𝑗) =
2∑ 𝑤𝑞𝑖𝑤𝑑𝑗𝑖

𝑛
𝑖=1

∑ (𝑤𝑞𝑖)
2𝑛

𝑖=1 + ∑ (𝑤𝑑𝑗𝑖)
2𝑛

𝑖=1

 (4)

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

where:

𝑆𝑖𝑚(𝑞, 𝑑𝑗) – similarity between the query q and the dopcument dj.

𝑤𝑞𝑖 – weight of the i-th term in the query vector.

𝑤𝑑𝑗𝑖 – weight of the i-th term in the j-th document vector.

n – number of unique terms in the entire document collection.

𝑆𝑖𝑚𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑞, 𝑑𝑗) =
∑ 𝑤𝑞𝑖𝑤𝑑𝑗𝑖
𝑛
𝑖=1

∑ (𝑤𝑞𝑖)
2𝑛

𝑖=1 + ∑ (𝑤𝑑𝑗𝑖)
2 − ∑ 𝑤𝑞𝑖𝑤𝑑𝑗𝑖

𝑛
𝑖=1

𝑛
𝑖=1

 (5)

Cosine similarity calculates the cosine of the angle between the two vectors. If the angle is 0

degrees, ie. vectors coincide, the cosine (similarity) is 1. If the angle between the vectors is 90

degrees, i.e. they have nothing to do with each other, the cosine is 0. The idea is illustrated in

figure 1, for the case of vectors represented in two-dimensional space. Of course, if the

dimensions are more than 3, there is no way to draw such a graph, but it is not necessary.

𝑆𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒(𝑞, 𝑑𝑗) =
∑ 𝑤𝑞𝑖𝑤𝑑𝑗𝑖
𝑛
𝑖=1

√∑ (𝑤𝑞𝑖)
2𝑛

𝑖=1 √∑ (𝑤𝑑𝑗𝑖)
2𝑛

𝑖=1

(6)

Figure 1. Illustration of the idea for cosine similarity between two documents
by calculating the cosine of the angle between their vectors.

The numerator of equation 6 represents the dot (scalar) product of the two vectors — sum

of the positional product of each element of one vector with the element standing at the same

position in the other vector.

The denominator represents the so-called cosine normalization - the value obtained from

the numerator is normalized with the product of the lengths of the two vectors. The length of a

vector is the square root of the sum of all elements squared. Why is normalization necessary?

Because the longer a given document is, the more likely it is to have words from the query,

resulting in greater similarity to it than to another shorter document. Since the scalar product is a

sum of products, it can grow indefinitely (especially for words with high weights), making it

difficult to compare and rank individual similarity factors between documents. Therefore, it is

necessary to fit all calculated similarities in the same interval, for example from 0 to 1, so that they

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

can then be objectively compared with each other. This is exactly what normalization does - it fits

the resulting value into the range from 0 to 1, regardless of the length of the query and of the

documents.

In general, it is possible to normalize terms weights in the vectors before calculating the

similarity. This is done when it is necessary to apply (and) another type of normalization. In this

case, the denominator of equation 6 can be dropped, but not necessarily – it depends on what

normalization is applied to the terms.

Example: Let’s there are two vectors:

d1 = {0.15, 0.83, 2.12, 0.87, 0, 0, 0, 0.43, 0.25, 0, 0}

d2 = {0.67, 0, 0, 0.19, 0, 0.98, 1.27, 0.43, 0.53, 0, 0}

Then

Numerator = 0.15*0.67 + 0.83*0 + 2.12*0 + 0.87*0.19+ 0*0 + 0*0.98 + 0*1.27 + 0.43*0.43 +

0.25*0.53 + 0*0 + 0*0 = 0.1005 + 0 + 0 + 0.1653 + 0 + 0+ 0 + 0.1849 + 0.1325 + 0 + 0 = 0.5832

Denominator = 6.2101 * 3.5241 = 21.8850

or

Sim(d1 , d2) = 0.5832/21.8850 = 0.026648

II. Term-weighting models

Since the similarity between two vectors is computed by their dot product, longer

documents that have a greater number of non-zero elements in their vectors will logically yield a

greater degree of similarity to the query. This is precisely why the normalization in equation 6 is

available to reduce this unwanted effect and the influence of the length of the vectors. However,

Amit Singhal noticed that as a result of cosine normalization, short documents yield higher

similarity factors with the query, and therefore have a higher probability of retrieval [2]. In an

attempt to solve this problem, he compares the probability that a document will be retrieved with

the probability that it will be adequate, depending on its length. If the two probabilities are

plotted in two-dimensional space, ideally the two curves should coincide. However, they do not

coincide, but intersect at a point called pivot - figure 2.

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

Figure 2. Curves describing the probability of retrieval and the probability of relevance of the

document depending on its length. An illustration of the idea of "pivoted" normalization. The

graphic is borrowed from Singhal's publication [2] in which he proposes his model.

The graphic shows that before the pivot (i.e., for the shorter documents), the probability of

the document being retrieved is greater than that of being relevant. And after the pivot – vice

versa. I.e. after the cosine normalization, the short documents get a bonus. So, his idea is to find

such a correction of the normalization that the curve of the probability of retrieval turns around

the pivot and coincides more precisely with the probability of relevance. For this purpose, Singhal

suggests applying the correction from (equation 7) [2] to the already calculated term weights. As a

result, similarity with short documents decreases, and with long documents increases. In his

paper, Singhal doesn't specify a specific model for calculating term weights before correction, but

he mentions that the traditional logarithmic normalization of tf does a good job .

𝑤𝑖,𝑗 =
𝑡𝑓_𝑖𝑑𝑓𝑤𝑒𝑖𝑔ℎ𝑡

1 − 𝑠 + 𝑠
𝑑𝑙(𝑑𝑗)
𝑎𝑣𝑑𝑙

 (7)

where:

s – slope of rotation. 𝑠 ∈ [0,1]. By default s = 0.2.

dl(dj) – length of the j-th document.

avdl – average document length (for the entire collection). Exactly this average length

determines the projection of the pivot point onto the abscissa. It is defined as the average number

of characters in the documents or the average number of unique words in the documents.

The slope value of 0.2 was proposed by Singhal himself and subsequently experimentally

confirmed as the most appropriate by other scientists and experts in their own experiments and

projects. In my own experimental studies, it was found that for the specific subject domain

(calculation of similarities between papers and reviewers), the value of the slope is not significant.

Yes, different values of s lead to different similarity factors, but the relationship between them

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

remains the same in almost all cases. Just to remind that the relationships between the similarities

is what determines the order of the results.

In a later publication [3], Singhal proposed to normalize tf by double-logarithmization, which

is particularly effective for cases where the same words occur many times in the same documents.

Thus, the model for calculating word weights that he proposes takes the form (8).

𝑤𝑖,𝑗 =
1 + log(1 + log(𝑡𝑓𝑖,𝑗))

1 − 𝑠 + 𝑠
𝑑𝑙(𝑑𝑗)
𝑎𝑣𝑑𝑙

log(
𝑑 + 1

𝑑𝑓𝑖
) (8)

Equation 8 represents a term-weighting model that consists of a composite tf function - first

a twofold logarithmic normalization of tf is done, then the proposed pivoted normalization. The

latter is also called average document length normalization, since the axis is chosen to intersect

the abscissa at the location that corresponds to the arithmetic average length of all documents in

the collection. The length can be determined by number of characters or number of unique words.

Stephen E. Robertson offers an algebraic variant of his probabilistic model BM 25 [4,5]

(equation 9) which also uses a composite tf function, applying Singhal normalization first, then k-

concavity normalization.

𝑤𝑖,𝑗 =
(𝑘1 + 1)(𝑡𝑓𝑖,𝑗)

𝑘1 (1 − 𝑠 + 𝑠
𝑑𝑙(𝑑𝑗)
𝑎𝑣𝑑𝑙

) + 𝑡𝑓𝑖,𝑗

log(1 +
𝑑

𝑑𝑓𝑖
)

(9)

where:

k1 – constant set to 1.2 by default.

My experimental studies show that this seems to be the best algebraic model for computing

term weights used by the vector space model.

Rousseau and Vazirgiannis [6] propose another model for computing term weights using a

composite tf function (10), which also relies on Singhal's normalization on average document

length. Singhal's normalization is performed first, then lower bound δ normalization and finally

double logarithmic normalization.

𝑤𝑖,𝑗 = 1 + log(1 + log(
𝑡𝑓𝑖,𝑗

1 − 𝑠 + 𝑠
𝑑𝑙(𝑑𝑗)
𝑎𝑣𝑑𝑙

+ 𝛿)) log(
𝑑 + 1

𝑑𝑓𝑖
) (10)

where:

δ – lower bound. In fact, this is a constant. It should be 0.5, if δ is applied right after pivoted

normalization (as in this case).

Initially, the lower bound δ is proposed by Lv and Zhai [7]. With it, they try to solve the

following situation, which would occur with very long documents: If two documents exist, and in

one of them more words from the query are found, and in the other less, but more often, then the

similarity of the two to the query would be more or less commensurate. So, it is not clear which

will be ranked over the other. Using this lower bound δ, Lv and Zhai want to prioritize the

document that contains a higher number of unique words from the query and get a higher degree

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

of similarity with it than the other document that contains less number of words from the query,

but which occur more often in it.

According to the experimental studies of Rousseau and Vazirgiannis, their model (10) gives

slightly better results than BM 25, but my experiments do not fully confirm this statement. Yes, in

some cases their model outperforms BM25, especially in cases without stemming the words, but

with stemming in the vast majority of cases BM25 is better.

III. Influence of IDF on the search accuracy

You have probably already noticed that in the above models the inverse document

frequency (idf) of a given word is calculated in different ways.

𝑖𝑑𝑓𝑖 = log(
𝑑

𝑑𝑓𝑖
) (11)

𝑖𝑑𝑓𝑖 = log(
𝑑+1

𝑑𝑓𝑖
) (12)

𝑖𝑑𝑓𝑖 = log(
𝑑

𝑑𝑓𝑖
+ 1) (13)

𝑖𝑑𝑓𝑖 = log(
𝑑−𝑑𝑓𝑖+0.5

𝑑𝑓𝑖+0.5
) (14)

where

d – number of documents in the collection.

𝑑𝑓𝑖 – number of document, containing the term ti.

Option (11) is the so-called "classical" or traditional way of calculating the IDF. However,

there is a problem with it - if a word occurs in all documents, then idf will have a logarithm of 1,

which is actually 0. I.e. in this case, the resulting value for idf will cause the word to be completely

ignored - as if it is not present in the query and/or documents at all. This can be a problem for

some highly specialized document collections related to one or a few very close subject areas. And

if a search query contains a small number of words, many of which are terms that occur in all

documents, then the query may return nothing. Even if this scenario doesn't come true, ignoring

specialized terms is not a good idea and will in no way contribute to increasing search accuracy.

Therefore, option (12) makes a very slight correction by adding +1 to the numerator, ensuring that

idf will always have a non-zero value and the term that occurs in all documents will be given a very

low weight, but still not completely ignored. Variant (13) performs a more serious (called

“smoothing”) correction, greatly reducing the "depersonalization" of the word, and even if it

occurs in all documents, it will no longer receive too low a weight. This actually reduces the impact

of idf on words in the query and/or documents.

Variant (14) was originally proposed by Robertson and Sparck Jones for the BM25 model.

However, it also has a problem, and Robertson notes it in his publication [4] - if the given word

occurs in more than half of the documents, then the idf will become negative, i.e. the word will

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

not just be ignored, but its presence will make the document more likely to be avoided. To

overcome this "strange" effect, Robertson suggests simply dropping 𝑑𝑓𝑖 from the numerator.

Of the presented options for calculating the idf, the most used are (12) and (13), because

they solve the problem of the classical option without creating new ones.

The accuracy and adequacy of the results is influenced not only by the way idf is calculated,

but also by which documents it is applied to. It is known from the scientific literature (see [8] and

[9]) that the best results are obtained when idf is applied only to the words in the query, but not

to the words in the documents. There is logic in that. My experimental studies also support this

claim. When inverse frequency of occurrence (idf) is applied to words in a query, it significantly

reduces the weight of those that occur in all or most of the documents. And often these are

semantically insignificant words and parts of speech such as conjunctions, prepositions, adverbs,

pronouns, etc., which were not removed during the pre-processing of the text. In this sense,

applying idf to the term weights in the query is reasonable. Applying it to words in documents,

however, can greatly reduce the weight of common terms that truly describe the subject area of

the documents. This is especially true in the case of the highly specialized document collections

discussed earlier. In fact, it is possible for them to ignore the idf, even for the words in the query.

Or if idf is applicable, it should be used in its “smoothing correction” option.

IV. Using inverted index for more efficient implementation

In the vector space model, each document, including the query, is represented as a vector

with as many elements as the number of unique words in the entire document collection, i.e.

usually tens of thousands. Even more. In this case, about 99% of the elements in a given vector are

likely to be zeros, simply because the corresponding words are not present in the document at all,

and their tf=0. But even zero takes up space and needs to be processed. Processing is actually the

bigger problem. If the number of unique words in the collection is 50,000 (a traditional situation),

and the collection contains 5,000 documents, then to calculate the similarity between a query and

a document, the dot product between their vectors must be computed and then normalized. But

vectors are 50,000 elements in size. I.e. one loop with 50 thousand iterations must be

implemented to find the dot product and the lengths of the vectors. That's just to calculate the

similarity of the query with a single document! Then all this must be repeated another 4999 times

to compute the similarity with the other documents. Obviously, this calculation will happen very

slowly. But more importantly, it's also largely meaningless, because 99% of the elements in the

vectors will be 0, and so will their "local" product. Therefore, in order to optimize the practical

implementation of the VSM, we should use the so-called inverted index.

Instead of storing thousands of vectors with a dimension of tens of thousands of elements,

filled almost entirely with zeros, a dictionary is constructed. It's like an associative array whose

indexes are the unique words themselves. The value of each element is another array that

indicates in which document (dj) the given word (termi) occurs and how many times (tfi,j). The idea

is presented in Figure 3.

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

Doc # tf

doc 1 5

Term df doc 17 3

term 1 5 doc 21 1

term 2 m … …

term 3 16 doc m 6

… …

… …

… …

term i 3 Doc # tf

… … doc 11 7

… … doc 15 2

term n 14 doc 67 4

Figure 3. Inverted index.

Building an inverted index is easy - when a new document is added to the document

collection, each word in it is processed individually. Each is checked if it is already present in the

index. If yes, its global frequency of occurrence is updated (df+1) and a new element is added to

the array containing information in which documents it occurs and how often. If the word is not

present in the index, then it is added, its global df property is set to 1, and a (sub)array is created

whose first element contains the ID of the document in which it is found, as well as its frequency

of occurrence (tf) in it.

The figure shows multiple arrays (the number of words in the dictionary + 1). The left one is

the main one, in which words are stored, and the others store the identifiers of the documents in

which these words occur and their local tf characteristics. In practice, however, this complete

dictionary can also be implemented in a single dynamic multidimensional data structure of type

associative array, object, or structure.

It is known that associative arrays are usually represented as hash tables. Their elements are

not stored sequentially in memory, which immediately eliminates the requirement that they have

the same size, and hence also eliminates the requirement that they be of the same type. This

allows different elements in the array to be of different types and have different sizes. Not only

the values can be of different types, but also the indices themselves (in associative arrays, the

indices are called keys).

The inverted index could be stored in the following associative array:

index[<term>][df] = df;

index[<term>][documents][<docId_1>] = tf_1;

...

index[<term>][documents][<docId_m>] = tf_m;

In this case, the array is three-dimensional. The index in the first dimension is the word/term

itself (in its respective language, stemmed or not). In the second dimension, there are two possible

indices – df and documents. The df element contains the number of documents in which that

word occurs. The documents element is another one-dimensional array whose indices are the

identifiers of the documents in which the word is contained, and the values - the tf characteristics

of the word, relative to the particular document. For example, if word i in the figure is "rocket"

and it, as indicated in the figure, occurs in 3 documents (11, 15 and 67), this can be written in the

three-dimensional associative array like this:

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

index['rocket']['df'] = 3;

index['rocket']['documents']['doc_11'] = 7;

index['rocket']['documents']['doc_15'] = 2;

index['rocket']['documents']['doc_67'] = 4;

Where "rocket" is the dictionary word itself, and "doc_11", "doc_15", and "doc_67" are the

actual identifiers of the documents in which the word "rocket" occurs.

The time complexity to create the index is apparently linear with respect to the total number

of words (including duplicates) in the document collection. This may seem like a lot at first glance,

since in a large collection of long documents, the number of words can reach hundreds of

thousands, even millions. But firstly, the dependence is linear, and secondly, every single word of

every single document has to be processed individually anyway, regardless of whether it will be

searched through an inverted index or the extremely long document vectors will be formed. I.e.

the individual processing of every single word from every single document is unavoidable in

principle.

Calculating the degree of similarity between the query and the documents in the collection

using an inverted index is also easy to implement, but it is not done by applying the similarity

formulas quite directly, because when using the inverted index, there are de facto no vectors

formed. Instead, a similarity between each word from the query and each document containing it

is computed first, then these "partial" similarities are iteratively superimposed to obtain the full

similarity between the query and the documents. The process is presented in figure 4.

The main data structures used in the pseudo code are:

similarities[docId] – an array whose indices are the identifiers of the documents,

and in the values of the elements – the cumulative scalar products between the query and the

corresponding documents in which the words from the query are found. Since the words in the

query are processed iteratively, until the last word is reached, each scalar product is "partial",

calculated by summing the products of the weights of the already processed words of the query

with the weights of the same words in the corresponding documents. After processing all the

words and normalizing the full scalar products, the elements in this array contain the final

similarity coefficients between the query and each of the documents identified by its docId

identifier. After the algorithm ends, the similarities array can be sorted in descending order before

displaying the results. In this way, the documents most similar to the query will be displayed at the

top.

documentLen[docId] – an array whose indices are the IDs of the documents, and in the

value of each element the length of the corresponding document is calculated and stored.

index - a multidimensional associative array that stores the inverted index. The structure

of this array is detailed above.

calculateQueryWeight() – function that calculates the weight of a given word/term

from the query, using its local tf and global df characteristics. Any of the models for calculating the

term weights described earlier can be implemented in this function.

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

calculateDocumentWeight() - function that calculates the weight of a word/term

from the j-th document, using its local tf and global df features. This function is purposefully

defined separately from the previous one so that the term weights in the query and in the

documents can be calculated by different tf-idf models.

==

// Adding query to the index

addDocument(query, index);

// Calculating similarity between the query and each document

// The result is stored in similarities[docId] array.

similarities = array(); // initializing as an empty array

documentLen = array();

queryLen = 0;

for every word term_i from the query {

 if (term_i is present in the stopWords array) {

 // Since the word is semantically-insignificant, we skip it

 continue;

 }

 // tf_iq - tf (number of occurrences) of the i-th word in the query

 tf_iq = index[term_i]['documents']['query'];

 // df_i – number of documents that contain the i-th word

 df_i = index[term_i]['df'];

 // Calculating term weight (w_iq) of the i-th word in the query

 w_iq = calculateQueryWeight(tf_iq, df_i);

 // Calculating query length (without the square root)

 // i.e. the first multiplication of the denominator in eq. 6

 queryLen = queryLen + (w_iq * w_iq);

 for every document docId_j, that contains the word term_i

 in the index[term_i]['documents'] array {

 if (empty(similarities[docId_j])) {

 // the cumulative partial similarity between the processed, so far,

 // words from the query with the document docId_j

 // is stored in similarities[docId_j]

 similarities[docId_j] = 0;

 documentLen[docId_j] = 0;

 }

 tf_ij = index[term_i]['documents'][docId_j];

 // Calculating term weight (w_ij)

 // of the i-th word in the j-th document

 w_ij = calculateDocumentWeight(tf_ij, df_i);

 // Calculating partial cumulative

 // scalar (dot) product of the processed so far

 // words from the query

 // with the same words in docId_j,

 // i.e. the numerator of the eq. 6

 similarities[docId_j] =

 similarities[docId_j] + (w_iq * w_ij);

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

// Calculating vector’s length of the j-th document

 // i.e. the second multiplication in the denominator of eq. 6

documentLen[docId_j] =

 documentLen[docId_j] + (w_ij * w_ij);

 } // endfor every document docId_j

} // endfor every word term_i in the query

// Calculating final length of the query vector

queryLen = sqrt(queryLen);

// So far we have calculated the numerator of eq. 6

// as well as the two sums for the denominator.

// So the enture eq. 6 should be reconstructed

for every element with index docId in the similarities array {

 if (docId == 'query') continue;

 // Calculating final length of the docId document vector

 documentLen[docId] = sqrt(documentLen[docId]);

 // Calculating cosine normalization

 // i.e. the denominator of eq. 6

 cosNorm = queryLen * documentLen[docId];

 // normalizing the scalar (dot) product

 // with the query and document vectors’ length (i.e. cos norm)

 similarities[docId] = similarities[docId] / cosNorm;

}

===

Figure 4. An algorithm for content-based textual search by using an inverted index

Where does the improvement/speedup come from? Because the dot product is calculated

not between vectors with the size of the number of unique words in the collection (i.e. tens of

thousands), but between "vectors" with the size of the number of unique words in the query. Thus,

in the worst case (if all documents contain the query words), <number of documents> * <number

of unique words in the query> iterations will be performed. In comparison, if similarity is calculated

in the original way using vectors with length the number of words in the collection, then <number

of documents> * <number of unique words in the collection> iterations will need to be performed.

The number of unique words in the collection is typically in the tens of thousands, while the

unique words in the query most often range from just a few to a few hundred at most.

Information Retrieval – Vector Space Model

Yordan Kalmukov, jkalmukov@uni-ruse.bg

References:

1. Salton, G., A. Wong , C. S. Yang, A vector space model for automatic indexing,

Communications of the ACM, v.18 n.11, p.613–620, Nov. 1975

2. Singhal, A., C. Buckley, and M. Mitra. Pivoted document length normalization. In

Proceedings of SIGIR’96, pages 21–29, 1996.

3. Singhal, A., J. Choi, D. Hindle, D. Lewis, and F. Pereira. AT&T at TREC-7. In Proceedings of

TREC-7, pages 239–252, 1999.

4. Robertson, Stephen. "Understanding inverse document frequency: on theoretical

arguments for IDF." Journal of documentation, vol. 60 no. 5, pp 503–520, 2004.

5. Robertson, S. E., S. Walker, K. Spärck Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi

at TREC-3. In Proceedings of TREC-3, pages 109–126, 1994.

6. Rousseau, F., and M. Vazirgiannis. "Composition of TF normalizations: new insights on

scoring functions for ad hoc IR." In Proceedings of the 36th international ACM SIGIR

conference on Research and development in information retrieval, pp. 917-920. 2013.

7. Yuanhua Lv and ChengXiang Zhai. 2011. Lower-bounding term frequency normalization.

In Proceedings of the 20th ACM international conference on Information and knowledge

management (CIKM '11). Association for Computing Machinery, New York, NY, USA, 7–

16. DOI:https://doi.org/10.1145/2063576.2063584

8. Manning, C., P. Raghavan, H. Schütze. An Introduction to Information Retrieval,

Cambridge University Press, England, 2009.

9. Grossman, D., Frieder, O. Information Retrieval: Algorithms and Heuristics 2nd Ed.

Springer, The Netherlands, 2004, ISBN: 1-4020-3004-5.

