
X. Mobile Operating 
Systems

Prof. Tsvetozar Georgiev

University of Ruse



Popularity of mobile operating systems 2007-2013



Popularity of mobile operating systems 2009-2018



1. Symbian

1.1. Characteristics

 Symbian is the first operating system for mobile devices. 
Symbian is the most popular mobile OS until the end of 
2010. It is partially open source, designed for mobile 
devices.

 Symbian architecture is based on a single microkernel, 
which only deals with memory protection and message 
brokering between active processes.

 The rest of the functionality is implemented using server 
processes, which are used asynchronously by sending 
messages to them, rather than traditionally through 
system calls.



1. Symbian

1.1. Characteristics

 Symbian OS is written in C++, but does not use its 
standard libraries, but implements its own, which are 
designed from the beginning to use less memory (and, 
accordingly, less electrical energy needed to power the 
device running under operating system).

 These libraries are somewhat lower-level than the 
language's standard ones, which makes them more 
difficult to use and slows down the programming of 
applications for the operating system.



S60 software stack



1. Symbian

1.2. Symbian software stack 60

 The software layers of the platform allow supporting the 
different needs of Nokia, the network operator and the 
developer.

 The topmost layer is Applications, in which S60 licensed, 
operator or user programs run.

 Below this layer is the S60 Scalable UI layer. It is 
developed and licensed by Nokia. Contains the 
structures of the user interface (UI frameworks).



1. Symbian

1.2. Symbian software stack 60

 The visual components of these structures adapt to 
different screen sizes or when the orientation of the 
device changes from a vertical to a horizontal position. 
SVG-T (Scalabe Vector Graphics – Tiny) and relative 
positioning 

 These UI components also adapt device localization 
settings and policies, as well as which direction to 
display text and how to display the calendar and time. 
A toolkit of ready-to-use components is also provided: 
lists, editable forms etc.



1. Symbian

1.2. Symbian software stack 60

 The next layer is Runtimes. As its name suggests, it 
contains executable libraries that support various 
programming languages, interactive content rendering, 
and web rendering.

 For example, this layer contains the executable libraries 
for the Symbian C++ and Open C/C++ programming 
languages. It also contains the Java ME executable. 
Web support for the S60 browser as well as Web 
Runtime (WRT) add-ons is provided via the WebKit 
rendering engine. The layer also supports other 
executables, such as Falsh Lite and Phyton.



1. Symbian

1.2. Symbian software stack 60

 The Platform layer Libraries and Middleware contains 
the structures used to implement specific services for 
the higher-level layers, or provides APIs for developers to 
work with the low-level operating system.

 also contains various application engines that manage 
personal information data, messaging and data 
synchronization.



1. Symbian

1.2. Symbian software stack 60

 Multimedia content processing (e.g. video decoding) is 
performed in this layer.

 Interfaces for multimedia applications for camera 
operation and sound recording are also provided.

 Security framework manages the security certificates 
and keys used in secure data sessions.



1. Symbian

1.2. Symbian software stack 60

 The layer Symbian OS and Security Platform is at the 
lowest level of the layers.

 Symbian OS provides core system services for the S60 
platform.

 The operating system is based on a microkernel, with 
the microkernel residing in the kernel space while the 
rest of the operating system and software stack reside in 
higher layers. This provides security and memory 
protection for important low-level services.



1. Symbian

1.2. Symbian software stack 60

 In addition, the operating system places each 
application in its own address space, which isolates it 
from the operating system and from other applications, 
ensuring security and reliability.

 layer enables businesses to lock or wipe lost mobile 
devices.



2. Google Android

2.1. Characteristics

 Android is a mobile operating system running on the 
Linux kernel.

 It allows developers to write code in the Java language 
using Google-created Java libraries.

 The applications are written in Java, but Android is not 
Java ME and does not support such applications.

 The development of Android is taken care of by a large 
number of software developers who create so-called 
apps - small applications that expand the functionality 
of the system.



2. Google Android

2.1. Characteristics

 Applications can be downloaded from various sites on 
the Internet or from large online stores such as for 
example Google Play - Google's store.

 Google Android has its own integrated application 
development environment - the Android SDK, which 
includes a mobile emulator for mobile devices, 
debugging tools, profiling, as well as a plug-in to the 
popular Eclipse environment for developing Java-based 
applications.

 The latest version the operating system is Android 13 as 
of August 15, 2022.



Android software stack



2. Google Android

2.2. Android 

 The Android software stack consists of four layers.

 Applications layer contains all Android and third-party 
applications, and multiple applications can be run at 
the same time.

 Below this layer is the Android Frameworks layer. This 
layer consists of Java classes that provide functions for 
applications such as window management, displaying 
content in a window, passing messages between 
applications, and intercepting phone calls.



2. Google Android

2.2. Android 

 Because the interface is built with the Java language 
and sorc code is available, the user can modify these 
classes to extend their capabilities or change their 
behavior.

 Some of the lowest layers in the stack represent 
interfaces written in C++.



2. Google Android

2.2. Android 

 The next layer is Libraries & Runtime. The libraries provide 
support for 2D and 3D graphics and decoding of 
multimedia content.

 This layer holds engines supporting application functions 
such as SQLite for working with databases and WebKit 
for rendering web content.



2. Google Android

2.2. Android 

 Like Java ME, hardware independence is provided by 
using a bytecode interpreter that runs Android 
applications.

 But it doesn't use Sun 's JVM (Java Virtual Machine), it 
uses its own DVM (Dalvik Virtual Machine).

 The advantage of using a different bytecode interpreter 
is that the DVM is designed so that multiple instances of 
it can be run, each in its own protected memory space, 
and each can run an application.



2. Google Android

2.2. Android 

 The lowest layer of the software stack is the Linux Kernel. 
It provides multitasking and system services such as 
threads, network services, and process management.

 This layer contains all the low-level drivers and manages 
the power consumption of the device.



3. Apple iOS

3.1. Characteristics

 iOS is a mobile operating system of Apple Inc.

 Developed for the iPhone, it is also used in Apple's iPod 
Touch, iPad and Apple TV mobile devices.

 Apple does not allow iOS to work with third-party 
hardware.

 iOS is the second most popular mobile operating system 
in the world after Android.

 The current version of the operating system is iOS 16, 
released on September 12, 2022.



iPhone OS software stack



3. Apple iOS

3.2. Software stack

 Like other mobile platforms, the top layer of the iPhone 
OS stack houses the Application layer.

 Applications developed by Apple can run 
simultaneously, but only one external application can 
work together with them.

 The platform does not have any Java support, so Java 
ME applications cannot run.



3. Apple iOS

3.2. Software stack

 Below the first layer is the Cocoa Touch layer.

 It contains structures that manage the user interface (to 
intercept actions, to manage windows, to display 
graphics in those windows).

 Cocoa Touch is a subversion of the Apple Cocoa 
framework that is object-oriented and written in 
Objective-C.

 Cocoa provides many classes or components through 
which the user can create a fully functional application.



3. Apple iOS

3.2. Software stack

 But Cocoa Touch structures are limited to work only with 
this platform.

 They are well balanced between abstractly 
representing low-level hardware and allowing the 
developer to use mobile-specific features.

 For example, Cocoa Touch components handle most of 
the screen writing and media execution, while other 
APIs allow access to the acceleration sensor and the 
camera.



3. Apple iOS

3.2. Software stack

 At a lower level in the software stack is the Media layer.

 This layer controls the visualization of graphics, the 
generation of sound, and the playback of sound and 
video files.

 While Cocoa Touch provides a high level for generating 
animations and graphics, structures from the Media 
layer provide finer control over content playback.

 Three-dimensional objects are rendered using the 
OpenGL ES framework, which conforms to the OpenGL 
ES 1.1 specification.



3. Apple iOS

3.2. Software stack

 This framework uses hardware accelerators to provide 
full-screen animations at high frame rates.

 This layer also uses Quartz, a vector-based graphics 
engine for drawing 2D graphics and applying graphical 
effects. Quartz is identical to that used in Mac OS X.

 The Core Graphics structure supports complex 
animation and visual effects, and the main work in this 
case is taken over by the hardware. The structures for 
recording and playing back sound and video files are 
also located in this layer.



3. Apple iOS

3.2. Software stack

 Core Services layer provides system services for the 
higher-level layers. It contains structures and machines 
supporting an address book, a SQL database (SQLite), 
positioning services (using GPS coordinates), and 
communication services.

 The security framework manages the digital certificates, 
keys, and access policies that protect application data.



3. Apple iOS

3.2. Software stack

 Core layer provides the basic services of the operating 
system.

 consists of kernel, drivers and OS interfaces. The kernel is 
based on Mach and manages the low-level functions –
virtual memory, threads, sockets, math calculations, file 
system access, etc.

 Only a few higher-level structures have access to the 
kernel and drivers. If necessary, an application can 
indirectly access these services by using C-based 
interfaces from the LibSystem library.



4. RIM Blackberry OS

4.1. Characteristics

 It is a specialized operating environment created by a 
specific mobile phone manufacturer for use only in their 
branded devices (like Apple).

 In this case, it is about RIM (Research-In-Motion), one of 
the companies that is said to be the originator of the 
"business phone" class, thanks to their popular BlackBerry 
brand.



4. RIM Blackberry OS

4.1. Characteristics

 Most BlackBerry devices are known for their ability to 
send and receive instant messages and e-mail at the 
push of a button, while maintaining a high level of 
security for the message through an encryption device.

 The latest version of the operating system is BlackBerry 
10 (since 2013).



BlackBerry OS software stack



4. RIM Blackberry OS

4.2. Software stack

 At the top level is the Application s layer.

 It runs Java ME applications (MIDlets) and BlackBerry UI 
applications.

 possible to take existing Java ME code and add 
BlackBerry- specific classes to produce a hybrid Java 
ME application.

 For example, a call can be made to the BlackBerry API 
to select an audio output device (speakers or 
headphones), and then use a standard media player 
class to play the audio content.



4. RIM Blackberry OS

4.2. Software stack

 The next lower layer is Java Classes & Frameworks.

 This layer resembles the Java ME platform. Contains the 
usual MIDP MIDlet classes that manage the user 
interface and application lifecycle.

 They are based on Connected Limited Device 
Configuration (CLDC) classes that provide access to 
lower-level resources.



4. RIM Blackberry OS

4.2. Software stack

 This layer also supports useful Java Specification 
Request (JSR) API packages such as JSR-75 (personal 
information management and file handling services), 
JSR-135 (interception and playback of multimedia), JSR-
82 (Bluetooth support), JSR-120 (wireless messaging), 
and JSR-179 (positioning services), etc.

 All of these classes, as well as those of an application, 
are loaded and executed by the BlackBerry JVM.



4. RIM Blackberry OS

4.2. Software stack

 The BlackBerry API extensions found in this layer extend 
the capabilities of the platform in several ways.

 of all they provide UI API for user menu, addons and 
screens.

 Second, the Application class allows the application to 
remain and continue to run, unlike the MIDP Midlet 
class, which requires the application to terminate when 
it is closed.

 Other APIs manage network sessions or I/O to servers.



4. RIM Blackberry OS

4.2. Software stack

 Additionally, these APIs provide access to camera, 
media player, and web browser functionality.

 BlackBerry mobile application can only be created 
using CLDC and the BlackBerry API. Such an application 
has access to all the capabilities of the device -
Bluetooth, acceleration converter, touch display, etc.

 It can run concurrently with other applications.



4. RIM Blackberry OS

4.2. Software stack

 also possible for the application to be launched when 
the device is booted and then continue to run in the 
background.

 Creating an app that uses BlackBerry API extensions 
makes it dependent on them and can only run on that 
platform.



4. RIM Blackberry OS

4.2. Software stack

 The BlackBerry Device Software layer is a low-level 
multitasking, multithreaded operating system.

 It uses a method to track actions from a specific device 
using snooping threads. For example, such snooping 
threads manage push technology for e-mail and 
messaging.

 BlackBerry Device Software layer makes it possible to 
configure applications and turn off certain smartphone 
functions, as well as remotely wipe the contents of a lost 
device.



5. Windows Phone OS

5.1. Characteristics

 Windows Phone (abbreviated as WP) is an operating 
system for mobile devices (smartphones) developed by 
Microsoft and successor to the Windows Mobile 
platform.

 From version WP 7, the direction is more towards 
ordinary users and not so much towards enterprise 
customers.

 The emphasis in the functionality of the new versions of 
the operating system on the multimedia functionality.

 The current version is Windows Phone 10 (since 2016). 



Windows CE 5.0 software stack



5. Windows Phone OS

5.2. Software stack

 Applications layer contains all Windows, third-party, and 
user applications.

 In this layer are the modules for implementing the 
Internet services, as well as for maintaining the user 
interface and for its localization.

 The layer below Applications is the actual operating 
system layer.

 It houses the kernel, the multimedia file handling 
functions, the device management manager, the 
communication maintenance functions, the Graphics 
Windows and Events Subsystem (GWES), and more.



5. Windows Phone OS

5.2. Software stack

 The layer (Object Store module) also stores the file 
system, registers and database.

 The core (Kernel) provides the core functionality of any 
Windows based device.

 This functionality includes process, thread and memory 
management. The kernel also provides some file 
management features.



5. Windows Phone OS

5.2. Software stack

 At the lowest software level and closest to the hardware 
of the mobile device is the OEM layer.

 Windows adapts to a specific hardware platform by 
creating a thin layer of code that sits between the 
kernel and the hardware platform.

 This layer is known as OEM Adaptation Layer (OAL). OAL 
isolates mobile device-specific hardware functions from 
the kernel.



5. Windows Phone OS

5.2. Software stack

 On the other hand, the Windows kernel contains 
processor-specific code to work with the processor's 
functions.

 OAL is processor and hardware platform specific.

 The main task of OAL is to provide kernel access to the 
hardware. This includes managing hardware timers and 
interrupts, as well as managing device peripheral power 
consumption. This layer also houses the built-in drivers for 
managing the screen, keyboard, sound, battery, and 
more.



6. HarmonyOS

6.1. Characteristics

 HarmonyOS is an innovative, distributed operating system 
designed for use in the Internet of Everything (IoE) era.

 Developed by Huawei and intended for use in their mobile 
devices.

 Unlike traditional operating systems that run on a standalone 
device, HarmonyOS is built with a distributed architecture.

 It uses the same set of system capabilities to adapt to a wide 
range of devices (from phones and tablets to smart TVs and 
virtual reality helmets). 

 The current version is 3 as of July 27, 2022. 



HarmonyOS 



6. HarmonyOS

6.2. Software stack

 HarmonyOS is designed a with a multi-layered 
architecture, which from top to bottom consists of 
Application layer, Framework layer, System service layer 
and Kernel layers.

 System functions expand in levels, from system to 
subsystem and then to function/module.

 In a multi-device deployment scenario, unnecessary 
subsystems, functions or modules can be excluded from 
the system as required.



6. HarmonyOS

6.2. Software stack

 Application Layer

 This layer consists of system and third-party applications.

 Each HarmonyOS application supports one or more Feature 
Abilities (FA) or Particle Abilities (PA).

 FA provides a user interface for user interaction. PA has no user 
interface and provides background task processing as well as 
data access.

 During user interaction, FAs may need to retrieve data in the 
background from PAs.

 Applications developed on the basis of FA and PA fulfill specific 
business characteristics and can run on different devices.



6. HarmonyOS

6.2. Software stack

 Framework Layer

 This layer provides means for developing applications for 
HarmonyOS: application framework and ability framework 
specific to multiple programming languages (Java, C, C++, 
JavaScript (JS) and TypeScript (TS)), Java UI, JS/TS HuaweI ArkUI.

 The Framework Layer also provides multilingual APIs for hardware 
and software services.

 available for different HarmonyOS devices vary depending on 
component-based adaptation.



6. HarmonyOS

6.2. Software stack

 System Service Layer. This layer consists of the following 
parts:

 Basic system capability subsystem set: provides distributed 
application execution, scheduling and migration between 
HarmonyOS devices. It provides the following basic capabilities: 
DSoftBus (a standardized way to connect multiple devices (of 
different types) to create a single "super device". This allows one 
device to control others and data can be freely shared between 
them.), distributed data management, distributed scheduling, 
multilingual Ark execution, utilities, multimodal input, schedule 
maintenance, security, and AI. Ark provides compilation / execution 
of programs written in C, C++ and JavaScript and provides libraries 
of core system classes. It also provides execution of Java programs 
compiled by Ark.



6. HarmonyOS

6.2. Software stack

 Basic software service subsystem set: provides HarmonyOS with 
common and universal software services, including common 
events and notifications, telephony, multimedia, Design For X 
(DFX), as well as the Mobile Sensing Development Platform
(MSDP) and Device Virtualization (DV).

 Enhanced software service subsystem set: provides HarmonyOS 
with specific and enhanced software services, including those 
designed for smart TVs, wearables, IoT devices, and more.

 Hardware service subsystem set: Provides HarmonyOS hardware 
services including for location, for biometric recognition, as well 
as those designed for wearable and IoT devices.



6. HarmonyOS

6.2. Software stack

 Kernel Layer

 Kernel subsystem: HarmonyOS uses a multi-core design so 
that appropriate OS kernels can be selected for devices 
with different resource constraints. The Kernel Abstraction 
Layer (KAL) protects the various kernel implementations 
and provides the upper layer with basic kernel 
capabilities, including process and thread management, 
memory management, file system management, network 
management, and edge management.



6. HarmonyOS

6.2. Software stack

 Kernel Layer

 Driver subsystem: The Hardware Driver Foundation (HDF) 
lays the foundation for an open HarmonyOS hardware 
ecosystem. It allows unified access from peripheral 
devices and provides basic capabilities for driver 
development and management.



6. HarmonyOS

6.3. Application development languages

 For developing HarmonyOS applications provides APIs for 
multiple programming languages.

 You can choose between: Java, C/C ++, JavaScript, 
Cascading Style Sheets (CSS), Extensible Markup Language 
(XML), and HarmonyOS Markup Language (HML).



7. KaiOS

7.1. Characteristics

 KaiOS is a mobile operating system based on Linux. It was 
developed by KaiOS Technologies (Hong Kong) Limited.

 What makes KaiOS different is the goal of bringing 
"smartphone" capabilities to low-cost, resource-constrained 
(up to 256 MB memory), non-touchscreen cell phones. and 
with reduced energy consumption. These possibilities include
work with HTML5 applications, support for 4G LTE, GPS, Wi-Fi, 
NFC, as well as dual SIM compatibility. 

 The current version is 3.1 as of March 2022. There are currently 
over 170 million users.



KaiOS 



7. KaiOS

7.2. Software stack

 The KaiOS software stack is divided into two layers – App 
Profile and Core.

 App Profile : Contains a collection of built-in web applications 
that represents the features of the KaiOS user interface for a 
given device form factor.

 Core: Consists of Web application runtime (Gecko), hardware 
adaptation layer (HAL) and others supporting the module.



7. KaiOS

7.3. Technologies

 The KaiOS apps are based on web technologies – HTML, CSS 
and JavaScript and run by the Gecko runtime.

 Rendering is done through HTML/CSS parsing, and graphics 
APIs are used to render images.

 JavaScript is executed by JavaScript engine SpiderMonkey 
and can connect to C ++ components using XPConnect and 
WebIDL connections.


