

Master programmes in Artificial Intelligence 4 Careers in Europe

University of Cyprus – MSc Artificial Intelligence

MAI644 – COMPUTER VISION Lecture 16: Stereo Vision

Melinos Averkiou

CYENS Centre of Excellence University of Cyprus - Department of Computer Science m.averkiou@cyens.org.cy

Co-financed by the European Union Connecting Europe Facility

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

Last time

Connecting Europe Facility

- Full camera model in matrix form
- Camera calibration
- Calibration Projective camera model
- Calibration Affine camera model

Today's Agenda

- Recovery of world position
- Triangulation
- Epipolar Geometry

Today's Agenda

- Recovery of world position
- Triangulation
- Epipolar Geometry

- Previously we saw that the imaging process can be described as a transformation in homogeneous coordinates.
- If we can invert this transformation, the world coordinates of each pixel in the image can be computed.
- Recovering world coordinates of objects based on the projection on an image is known as shape recovery or depth recovery.

- Is this possible using a single camera?
- The camera needs to be calibrated, i.e. we know all its parameters
- Remember the projective camera model:

$$
\widetilde{w} = P\widetilde{X}
$$

\n
$$
\Leftrightarrow \begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ Z \\ 1 \end{bmatrix}
$$

• Unfortunately the transformation described in P is not invertible and the world point X cannot be uniquely determined

Master programmes in Artificial Intelligence 4 Careers in Europe

Recovery of world position

• Depth ambiguity

Courtesy slide S. Lazebnik

• Each observed feature on the image gives 2 equations with 3 unknowns and therefore defines a line (a ray) of solutions for X

- Each observed feature on the image gives 2 equations with 3 unknowns and therefore defines a line (a ray) of solutions for X
- This system of equations is under-constrained.
- This can be seen by the size of *. There are more columns than rows.*

$$
\widetilde{w} = P\widetilde{X}
$$

\n
$$
\Leftrightarrow \begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ Z \\ 1 \end{bmatrix}
$$

- Under-constrained problems never have a unique solution.
- To uniquely recover X , additional views must be used, so that the transformation between w (pixel coordinates) and X (world coordinates) is *forced* to become invertible.
- This is the subject of stereo vision.

• Two eyes/cameras help.

Today's Agenda

- Recovery of world position
- Triangulation
- Epipolar Geometry

- In stereo vision at least two cameras are set up to view the $3D$ scene.
- Each 3D world location X projects to pixel w on camera 1 (O) and to pixel w' on camera 2 (O') .

• If both cameras are calibrated, the $3D$ world location \boldsymbol{X} projected on the pair of corresponding pixel locations w and w' can be estimated via a process known as triangulation.

• Consider the projection of X onto w :

$$
\widetilde{w} = P\widetilde{X}
$$

\n
$$
\Leftrightarrow \begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ Z \\ 1 \end{bmatrix}
$$

• Compute the equation for u and rearrange so our unknowns X, Y, Z are on the left:

$$
u = \frac{su}{s} = \frac{p_{11}X + p_{12}Y + p_{13}Z + p_{14}}{p_{31}X + p_{32}Y + p_{33}Z + p_{34}}
$$

\n
$$
\Rightarrow p_{11}X + p_{12}Y + p_{13}Z + p_{14} = p_{31}uX + p_{32}uY + p_{33}uZ + p_{34}u
$$

\n
$$
\Rightarrow (p_{11} - p_{31}u)X + (p_{12} - p_{32}u)Y + (p_{13} - p_{33}u)Z = p_{34}u - p_{14}
$$

• Compute the equation for u and rearrange so our unknowns X, Y, Z are on the left:

$$
u = \frac{su}{s} = \frac{p_{11}X + p_{12}Y + p_{13}Z + p_{14}}{p_{31}X + p_{32}Y + p_{33}Z + p_{34}}
$$

\n
$$
\Rightarrow p_{11}X + p_{12}Y + p_{13}Z + p_{14} = p_{31}uX + p_{32}uY + p_{33}uZ + p_{34}u
$$

\n
$$
\Rightarrow (p_{11} - p_{31}u)X + (p_{12} - p_{32}u)Y + (p_{13} - p_{33}u)Z = p_{34}u - p_{14}
$$

• Put this in matrix form:

$$
[p_{11} - p_{31}u \quad p_{12} - p_{32}u \quad p_{13} - p_{33}u] \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = [p_{34}u - p_{14}]
$$

$$
\Leftrightarrow Ax = b
$$

• Put this in matrix form:

$$
[p_{11} - p_{31}u \quad p_{12} - p_{32}u \quad p_{13} - p_{33}u] \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = [p_{34}u - p_{14}]
$$

$$
\Leftrightarrow Ax = b
$$

- \bullet *A* is a 1 $x3$ matrix
- The resulting system is under-constrained

• Put this in matrix form:

$$
[p_{11} - p_{31}u \quad p_{12} - p_{32}u \quad p_{13} - p_{33}u] \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = [p_{34}u - p_{14}]
$$

$$
[p_{21} - p_{31}v \quad p_{22} - p_{32}v \quad p_{23} - p_{33}v] \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = [p_{34}v - p_{24}]
$$

$$
\Leftrightarrow Ax = b
$$

• By computing v in the same way as u and rearranging we can add a new row in \boldsymbol{A} and in \boldsymbol{b} , making it 2x3

• Put this in matrix form:

$$
[p'_{11} - p'_{31}u' \quad p'_{12} - p'_{32}u' \quad p'_{13} - p'_{33}u'] \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = [p'_{34}u' - p'_{14}]
$$

$$
[p'_{21} - p'_{31}v' \quad p'_{22} - p'_{32}v' \quad p'_{23} - p'_{33}v'] \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = [p'_{34}v' - p'_{24}]
$$

$$
\Leftrightarrow Ax = b
$$

• By also considering the projection of X onto w' , a new pair of rows will be added to A , thus forcing it to be $4x3$, i.e. over-constrained

• Here is the resulting system

$$
\begin{bmatrix} p_{11} - p_{31}u & p_{12} - p_{32}u & p_{13} - p_{33}u \\ p_{21} - p_{31}v & p_{22} - p_{32}v & p_{23} - p_{33}v \\ p'_{11} - p'_{31}u' & p'_{12} - p'_{32}u' & p'_{13} - p'_{33}u' \\ p'_{21} - p'_{31}v' & p'_{22} - p'_{32}v' & p'_{23} - p'_{33}v' \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_{34}u - p_{14} \\ p_{34}v - p_{24} \\ p'_{34}u' - p'_{14} \\ p'_{34}v' - p'_{24} \end{bmatrix}
$$

• Where p'_{11} etc. are the parameters inside the camera projection matrix for camera 2 (O'), and $w' = (u', v')$ are the pixel coordinates of X projected on the image plane I' of the second camera

 \bullet Using an additional camera has forced \bm{A} to become over-constrained.

$$
\begin{bmatrix} p_{11} - p_{31}u & p_{12} - p_{32}u & p_{13} - p_{33}u \\ p_{21} - p_{31}v & p_{22} - p_{32}v & p_{23} - p_{33}v \\ p'_{11} - p'_{31}u' & p'_{12} - p'_{32}u' & p'_{13} - p'_{33}u' \\ p'_{21} - p'_{31}v' & p'_{22} - p'_{32}v' & p'_{23} - p'_{33}v' \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_{34}u - p_{14} \\ p_{34}v - p_{24} \\ p'_{34}u' - p'_{14} \\ p'_{34}v' - p'_{24} \end{bmatrix}
$$

• Therefore we can now find a least-squares solution:

$$
Ax = b
$$

$$
\Leftrightarrow x = (A^T A)^{-1} A^T b
$$

Today's Agenda

- Recovery of world position
- Triangulation
- Epipolar Geometry

Beyond triangulation

We have seen the simplest form of stereo vision: Given a pair of *calibrated* cameras observing a single feature at *corresponding* pixel locations $w \leftrightarrow w'$, the 3D position of the corresponding world location \boldsymbol{X} can be estimated via triangulation

Beyond triangulation

How is the correspondence problem solved if there are several points $W_i\}_{i=1}^{N_1}$ N_{1} in image 1 and several points $\{ {\boldsymbol{w}'}_{\boldsymbol{j}} \}$ $j=1$ N_2 in image 2 ?

Beyond triangulation

SIFT will give us a set of proposed correspondences $\{w_i \leftrightarrow w'_j\}$ but there will be many outliers in these proposals

The question is then how can we remove outliers ?

Using the epipolar constraint

25

Epipolar Geometry

- To understand the epipolar constraint, we first need to understand the geometry that relates the
	- cameras
	- points in $3D$ space
	- and their corresponding observations $\{ {\boldsymbol{w}}_{{\boldsymbol{i}}} \leftrightarrow {\boldsymbol{w}}'{}_{{\boldsymbol{j}}}$

• This type of geometry is referred to as the epipolar geometry

Lets revisit our stereo pair

The **baseline** l_b is the line joining the two optical centers.

The epipolar plane Π is the plane defined by the 3D point X and the optical centers of the cameras.

An epipole is the point of intersection of the baseline with the image plane. There are two epipoles e and e' , one for each image.

An epipolar line is a line of intersection of the epipolar plane with an image plane. It is the image, in one camera, of the ray from the other camera's optical centre to the point X .

For different world points X , the epipolar plane rotates about the baseline. All epipolar lines intersect at their corresponding epipole.

The **epipolar constraint** limits the search for correspondences, from the region of the whole image, to only the pixels spanned by the epipolar line.

If a point feature w is observed in one image, then its location w' in the other image must lie on its corresponding epipolar line l'

So a simple algorithm for determining correspondences is to match each feature w_i from camera 1 to a feature $w^\prime{}_j$ from camera 2 which is close to the epipolar line of camera 2, provided that the SIFT descriptors for w_i and $w^\prime{}_j$ are similar. epiline

Therefore, we must calculate the equation of the epipolar lines.

This Master is run under the context of Action

under GA nr. INEA/CEF/ICT/A2020/2267423

No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

• Firstly, lets assume that the 1st camera is located at the world origin \boldsymbol{O}

• This means that every point X is expressed in the camera coordinates of the 1st camera, since its optical center coincides with the world origin \Rightarrow $X \rightarrow X_c$

• If this is the case, the 2nd camera is at a location \boldsymbol{O}' in world coordinates, which can be expressed by a translation t and rotation R , w.r.t. 1st camera, i.e., the world origin

- Every 3D point X can be expressed as X_c , which is the cameracentered coordinate system of the 1st camera, and as X_c' , which is the camera-centered coordinate system of the 2nd camera.
- Since $X = X_c$, we can relate $X \leftrightarrow X_c'$ or $X_c \leftrightarrow X_c'$ using a Euclidean transformation composed by the translation \boldsymbol{t} and rotation \boldsymbol{R} of the 2nd camera, w.r.t. the 1st camera

Here is how to find an expression for the epipolar line:

$$
\widetilde{X'_c} = P_e \widetilde{X_c}
$$
\n
$$
\Leftrightarrow X'_c = R X_c + t
$$
\n
$$
\Leftrightarrow t \times X'_c = t \times R X_c + t \times t^0
$$
\n
$$
\Leftrightarrow t \times X'_c = t \times R X_c + t \times t^0
$$
\n
$$
\Leftrightarrow X'_{c} \cdot (t \times X'_{c}) = X'_{c} \cdot (t \times R X_{c})
$$
\n
$$
\Leftrightarrow 0 = X'_{c} \cdot (t \times R X_{c})
$$
\n
$$
\Leftrightarrow 0 = X'_{c} \cdot (t \times R X_{c})
$$
\n
$$
\Leftrightarrow 0 = X'_{c} \cdot (t \times R X_{c})
$$

This can be rewritten in matrix form:

 $X'_{c} \cdot (t \times RX_{c}) = 0$ $\Leftrightarrow X_c^{\prime T} E X_c = 0$

Where $\mathbf{E} = \mathbf{T}_{\times} \mathbf{R}$ is the essential matrix, and

$$
\boldsymbol{T}_{\times} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}
$$

is a matrix representing the cross product with **t** such that $\mathbf{t} \times \mathbf{v} = T_{\times} \mathbf{v}$

Fundamental Matrix

Recall that for $X_c \leftrightarrow w$: $\widetilde{w} = K X_c \Leftrightarrow X_c = K^{-1} \widetilde{w}$

and similarly, for $X'_c \leftrightarrow w' \colon \hat{w}' = K'X'_c \Leftrightarrow X'_c = K'^{-1}\tilde{w}'$

Combining the two equations yields the equation of the two epipolar lines in pixel coordinates:

$$
X_c^{\prime T} \mathbf{E} \mathbf{X_c} = 0
$$

\n
$$
\Rightarrow (\mathbf{K'}^{-1} \widetilde{\mathbf{w}}')^T \mathbf{E} (\mathbf{K}^{-1} \widetilde{\mathbf{w}}) = 0
$$

\n
$$
\Rightarrow \widetilde{\mathbf{w}}^{\prime T} (\mathbf{K'}^{-T} \mathbf{E} \mathbf{K}^{-1}) \widetilde{\mathbf{w}} = 0
$$

\n
$$
\Rightarrow \widetilde{\mathbf{w}}^{\prime T} \mathbf{F} \widetilde{\mathbf{w}} = 0
$$

where $\boldsymbol{F} = \boldsymbol{K}'^{-T}\boldsymbol{E}\boldsymbol{K}^{-1}$ is the fundamental matrix.

Fundamental Matrix

This is the equation of the epipolar line in either camera:

 $\widetilde{w}^{\prime T} F \ \widetilde{w} = 0$

Assuming we know the fundamental matrix, for every point w in image 1, this expression gives us the line in image 2 on which the corresponding ′ must lie, and *vice versa.*

- $l' = F \widetilde{w}$ is the epipolar line in the 2nd image, associated with \bm{w}
- $l = \boldsymbol{F}^T \boldsymbol{\widetilde{w}}'$ is the epipolar line in the 1st image, associated with \boldsymbol{w}'
- $l_i: ax + by + c = 0$

Master programmes in Artificial Intelligence 4 Careers in Europe

Examples

Here are a few examples of the epipolar constraint

Epipolar constraint examples: Parallel image planes

- Baseline intersects the image planes at infinity
- Epipoles are at infinity

Co-financed by the European Union

Connecting Europe Facility

• Epipolar lines are parallel to the u -axis of each image plane

Epipolar constraint examples: Parallel image planes

Epipolar constraint examples: Forward translation

• The **epipoles** have the same position in both images

Epipolar constraint examples: Forward translation

Co-financed by the European Union Connecting Europe Facility

Fundamental Matrix

In order to apply the epipolar constraint we need to know the fundamental matrix:

> $F = K'^{-T} E K^{-1}$ $= K'^{-T}T_{\times}RK^{-1}$

All the parameters of \bm{F} come from the calibration of the two cameras.

Remember that the perspective camera model $P_{ps} = K[R|T]$ contains this information.

If, however, these are not available (e.g., because we used a projective camera model to calibrate our cameras), \bm{F} must be estimated using known image correspondences.

To estimate the fundamental matrix, we follow a similar approach as in camera calibration

$$
\widetilde{\mathbf{w}}^{T} \mathbf{F} \; \widetilde{\mathbf{w}} = 0 \Rightarrow [u' \; v' \; 1] \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0
$$

Each point correspondence $w \leftrightarrow w'$ generates a single equation for estimating the parameters inside \bm{F} .

Here are *N* such correspondences:
\n
$$
\begin{bmatrix}\nu_1 u'_1 & v_1 u'_1 & u'_1 & u_1 v'_1 & v_1 v'_1 & v'_1 & u_1 & v_1 \\
u_N u'_N & v_N u'_N & u'_N & u_N v'_N & v_N v'_N & v'_N & u_N & v_N\n\end{bmatrix}\n\begin{bmatrix}\nf_{11} \\
f_{12} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32}\n\end{bmatrix} =\n\begin{bmatrix}\n-1 \\
\vdots \\
-1\n\end{bmatrix}
$$

The minimal number for N is 8, because \bm{F} has 8 degrees of freedom (we can set $f_{33} = 1$)

This Master is run under the context of Action

under GA nr. INEA/CEF/ICT/A2020/2267423

No 2020-EU-IA-0087, co-financed by the EU CEF Telecom

• In practise, 8 clearly indicated correspondences are never available

• What is available is a set of correspondences proposed by SIFT, for a large set of features, in which there are always errors

- We can use RANSAC to solve this problem
	- 1. Obtain 8 random SIFT correspondences. Use them to estimate \bm{F} .
	- 2. For every feature w_i in image 1 calculate the epipolar line in image 2. Check if the corresponding feature $\bm{w'}_{\bm{j}}$ in image 2 proposed by SIFT falls **"close"** to the epipolar line. Count the number S of such "inliers".
	- 3. If $S \geq T$ where T is a threshold, then there is consensus with the random sample taken in the first step. Calculate \bm{F} for all inliers and terminate here.
	- 4. If $S < T$ then no consensus is reached. Repeat from step 1.
	- 5. If after N iterations no consensus is reached, select the model that gave the highest S, calculate F using all inliers in S and terminate

Master programmes in Artificial Intelligence 4 Careers in Europe

Thank you.

Co-financed by the European Union Connecting Europe Facility

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

