University of Cyprus - MSc Artificial Intelligence

MAI644 - COMPUTER VISION
 Lecture 4: Interpolation - Resizing

Melinos Averkiou
CYENS Centre of Excellence
University of Cyprus - Department of Computer Science
m.averkiou@cyens.org.cy

CENTRE OF EXCELLENCE

Last time

- Pinhole Camera model
- Aperture
- Camera Obscura
- Cameras with lenses
- Thin lens equation
- Depth of field
- Field of view
- Digital cameras
- Bayer filters
- Debayering

Today’s Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink

Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink

Eyes: projection onto retina

Model: pinhole camera

At each point we record incident light

How do we record color?

Bayer pattern for CMOS sensors

An image is a matrix of light

Values in matrix = how much light

Values in matrix = how much light

- Higher = more light

Columns

- Lower = less light
- Bounded
- No light = 0
- Sensor/device limit = max
- Typical ranges:
- [0-255], fit into byte
- [0-1], floating point
- Called pixels

Addressing pixels

- Ways to index:
- (x, y)
- Like cartesian coordinates
- $(3,6)$ is column 3 row 6
- (r, c)
- Like matrix notation
- $\quad(3,6)$ is row 3 column 6
- We use (x,y)
- Arbitrary
- Only thing that matters is consistency

Color image: 3d tensor in colorspace

RGB information in separate "channels"

Remember: we can match "real" colors using a mix of primaries.

Each channel encodes one primary. Adding the light produced from each primary mimics the original color.

Addressing pixels

- We use (x, y, c)
- $(1,2,0)$:
- column 1, row 2 , channel 0
- Still doesn't matter, just be consistent
- Also for size:
- $1920 \times 1080 \times 3$ image:
- 1920 px wide
- 1080 px tall
- 3 channels

Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink

An image is like a function

An image is a mapping from indices to pixel value:

- Im:|x|x|->R

We may want to pass in nonintegers:

- Im': R×R×I->R

A note on coordinates in images

integer pixels

A note on coordinates in images

We can think of their values as being at the centers.

A note on coordinates in images

Now we can move to a real coordinate system.

A note on coordinates in images

A note on coordinates in images

So, the value of the pixel (x, y) is now centered at (x, y).

A note on coordinates in images

But there are other

A note on coordinates in images

Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink

Interpolation

How do we find out the VALUE of a non-integer point, when the image only comes with integer points, i.e. $(25,45,3)$.

Two simple ideas:

1. Nearest-Neighbor Interpolation
2. Bilinear Interpolation

Nearest neighbor: what it sounds like
$f(x, y, z)=\operatorname{Im}($ round (x), round $(y), z)$

- Looks blocky
- Note: z is still int

Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink

Bilinear interpolation: for grids, pretty good
This time find the closest pixels in a box

Bilinear interpolation: for grids, pretty good
This time find the closest pixels in a box

Connecting Europe Facility

Bilinear interpolation: for grids, pretty good
This time find the closest pixels in a box

Bilinear interpolation: for grids, pretty good
This time find the closest pixels in a box

Weighted sum based on area of opposite rectangle
$\mathrm{q}=\mathrm{V} 1^{*} \mathrm{~A} 1+\mathrm{V} 2^{*} \mathrm{~A} 2+\mathrm{V} 3^{*} \mathrm{~A} 3+\mathrm{V} 4^{*} \mathrm{~A} 4$
Need to normalize!
Or do we?

Bilinear interpolation: for grids, pretty good

```
q= V1*A1 + V2*A2 + V3*A3 + V4*A4
A1 = d2*d4
A2 = d1* d4
A3 = d2*d3
A4 = d1* d3
=> q = V1*d2*d4 + V2*d1*d4 + V3*d2*d3 +
V4*d1*d3
```


Bilinear interpolation: for grids, pretty good
Alternatively, linear interpolation of linear interpolates
$\mathrm{q} 1=\mathrm{V} 1^{*} \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$

Bilinear interpolation: for grids, pretty good
$\mathrm{q} 1=\mathrm{V} 1 * \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$
Equivalent:
$q=q 1 * d 4+q 2 * d 3$

Bilinear interpolation: for grids, pretty good
$\mathrm{q} 1=\mathrm{V} 1 * \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$
Equivalent:

```
q = q1*d4 + q2*d3
q=(V1*d2 +V2*d1)*d4 + (V3*d2 + V4*d1)*d3 (subst)
```


Bilinear interpolation: for grids, pretty good
$\mathrm{q} 1=\mathrm{V} 1 * \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$
Equivalent:

```
q=q1*d4 +q2*d3
q = (V1*d2 + V2*d1)*d4 + (V3*d2 + V4*d1)*d3 (subst)
q=V1*d2*d4 + V2*d1*d4 +V3*d2*d3 + V4*d1*d3 (distribution)
```


Bilinear interpolation: for grids, pretty good
$\mathrm{q} 1=\mathrm{V} 1^{*} \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$

Equivalent:

```
q=q1*d4 +q2*d3
Recall:
A1 = d2*d4
A2 = d1*d4
A3 = d2*d3
A4 = d1*d3
```

$\mathrm{q}=(\mathrm{V} 1 * \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1)^{*} \mathrm{~d} 4+\left(\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4 * \mathrm{~d} 1\right)^{*} \mathrm{~d} 3$ (subst)
$q=V 1^{*} d 2{ }^{*} d 4+V 2^{*} d 1^{*} d 4+V 3^{*} d 2 * d 3+V 4^{*} d 1^{*} d 3$ (distribution)

Bilinear interpolation: for grids, pretty good
$\mathrm{q} 1=\mathrm{V} 1 * \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$

Equivalent:

```
q=q1*d4 + q2*d3
q = (V1*d2 + V2*d1)*d4 + (V3*d2 + V4*d1)*d3 (subst)
q=V1*d2*d4 +V2*d1*d4 +V3*d2*d3 +V4*d1*d3 (distribution)
Recall:
A1 = d2*d4
A2 = d1*d4
A3 = d2*d3
A4 = d1*d3
q= V1*A1 + V2*A2 + V3*A3 + V4*A4
```


Bilinear interpolation: for grids, pretty good

- Smoother than NN
- More complex
- 4 lookups
- Some math
- Often the right tradeoff of speed vs final result

Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink

Bicubic sampling: more complex, maybe better?

- A cubic interpolation of 4 cubic interpolations
- Smoother than bilinear, no "star"
- 16 nearest neighbors
- Fit 3rd order poly:

Bilinear

Bicubic

- Interpolate along axis
- Fit another poly to interpolated values

Bicubic vs bilinear

Bicubic vs bilinear

$$
1
$$

Resize algorithm:

- For each pixel in new image:
- Map to old im coordinates
- Interpolate value
- Set new value in image

So what is this interpolation useful for?

Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink

Image resizing!

Say we want to increase the size of an image...

This is a beautiful image of a sunset... it's just very small...

Image resizing!

Say we want to increase the size of an image...

This is a beautiful image of a sunset... it's just very small...

Say we want to increase size 4×4 > 7x7

Resize 4×4-> 7x7

- Create our new image

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates

Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$

Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a^{*} 7=4$

Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $\quad a * 7=4$
- $a=4 / 7$

Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$

Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$
- $\quad a^{*}-.5+b=-.5$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$
- $\quad a^{*}-.5+b=-.5$
- $4 / 7^{*}-1 / 2+b=-1 / 2$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$
- $\quad a^{*}-.5+b=-.5$
- $4 / 7^{*}-1 / 2+b=-1 / 2$
- $-4 / 14+b=-7 / 14$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$
- $\quad a^{*}-.5+b=-.5$
- $4 / 7^{*}-1 / 2+b=-1 / 2$
- $-4 / 14+b=-7 / 14$
- $b=-3 / 14$

Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$
- $b=-3 / 14$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$
- 4/7*1-3/14
- $4 / 7 * 3-3 / 14$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$
- 4/7*1-3/14
- 4/7*3-3/14
- $(5 / 14,21 / 14)$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values
- Size of opposite rects

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> (5/14, 21/14)
- Interpolate old values
- Size of opposite rects
- OR find q1 and q2, then interpolate between them

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> ($5 / 14,21 / 14)$
- Interpolate old values

$$
\begin{array}{ll}
- & q 1=r 1, g 1, b 1 \\
- & r 1=.5^{*} 0+.5^{*} 241 \\
- & \mathrm{g} 1=.5^{*} 255+.5^{*} 90 \\
- & \mathrm{b} 1=.5^{*} 255+.5^{*} 36
\end{array}
$$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
\text { - } \quad q 1=(120.5,172.5,145.5)
$$

- $\quad q 2=r 2, g 2, b 2$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

> - q1 = (120.5, 172.5, 145.5)

- $\quad q 2=r 2, g 2, b 2$
- \quad r2 $=.5 * 241+.5 * 255$
- $\quad \mathrm{g} 2=.5 * 90+.5 * 255$
- $\quad \mathrm{b} 2=.5 * 36+.5 * 0$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

> - q1 = (120.5, 172.5, 145.5)

- $\quad q 2=(248,172.5,18)$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
\text { - } \quad q 1=(120.5,172.5,145.5)
$$

- $\quad q 2=(248,172.5,18)$
- $\quad q=r, g, b$
- $\quad q=9 / 14^{*} q 1+5 / 14^{*} q 2$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \times-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
\begin{array}{ll}
- & q 1=(120.5,172.5,145.5) \\
- & q 2=(248,172.5,18) \\
- & q=r, g, b \\
- & q=9 / 14^{*} q 1+5 / 14^{*} q 2 \\
- & r=9 / 14^{*} 120.5+5 / 14^{*} 248 \\
- & g=9 / 14^{*} 172.5+5 / 14^{*} 172.5 \\
- & b=9 / 14^{*} 145.5+5 / 14^{*} 18
\end{array}
$$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
\text { - } \quad q 1=(120.5,172.5,145.5)
$$

- $\quad q 2=(248,172.5,18)$
- $\quad q=(166,172.5,100)$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
-\quad q=(166,172.5,100)
$$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values
- $\quad q=(166,172.5,100)$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7$ X-3/14 = Y
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
\text { - } \quad q=(166,172.5,100)
$$

- Fill in the rest

Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> ($5 / 14,21 / 14)$
- Interpolate old values

$$
-\quad q=(166,172.5,100)
$$

- Fill in the rest
- On outer edges use padding!

Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
-\quad q=(166,172.5,100)
$$

- Fill in the rest

Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
\text { - } \quad q=(166,172.5,100)
$$

- Fill in the rest

We did it!

Different scales

256×256

32×32

Connecting Europe Facility

MAl4CAREU

Different methods

Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink

Want to make image smaller

448×448-> 64×64

MAILCAREU

448×448-> 64×64

MAILCAREU

448×448-> 64×64

MAI4CAREU

448×448-> 64×64

MAI4CAREU

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

448×448-> 64×64

MAI4CAREU

448×448-> 64×64

448×448-> 64×64

			\bigcirc							\bigcirc							\bigcirc		
			\bigcirc							0							\bigcirc		
			\bigcirc							\bigcirc							\bigcirc		

448×448-> 64×64

Lots of issues

- NN and Bilinear only look at small area
- Lots of artifacting
- Staircase pattern on diagonal lines
- We'll fix this with filters!

MAI4CAREU

IS THIS ALL THERE IS??

MAI4CAREU

THERE IS A BETTER WAY!

Thank you.

