

University of Cyprus – MSc Artificial Intelligence

MAI644 – COMPUTER VISION Lecture 5: Filters – Convolution

Melinos Averkiou

CYENS Centre of Excellence University of Cyprus - Department of Computer Science m.averkiou@cyens.org.cy

Last time

- Image basics
 - What is an image addressing pixels
 - Image as a function image coordinates
- Image interpolation
 - Nearest neighbor
 - Bilinear
 - Bicubic
- Image resizing
 - Enlarge
 - Shrink

Today's Agenda

- Averaging vs Interpolation
- Systems filters
- Convolution
 - Box Filter
 - Gaussian
 - Cross correlation vs Convolution
- Examples of filters

[material based on Joseph Redmon's course]

Today's Agenda

- Averaging vs Interpolation
- Systems filters
- Convolution
 - Box Filter
 - Gaussian
 - Cross correlation vs Convolution
- Examples of filters

Is this all there is ??

Lots of issues

- NN and Bilinear only look at small area
- Lots of artifacting
- Staircase pattern on diagonal lines
- We'll fix this with filters!

ΝN

Bilinear

There is a better way!

Look at how much better

How?

How? Averaging!

How? Averaging!

What is averaging?

What is averaging? A weighted sum

What is averaging? A weighted sum

What are the weights here ?

Today's Agenda

- Averaging vs Interpolation
- Systems filters
- Convolution
 - Box Filter
 - Gaussian
 - Cross correlation vs Convolution
- Examples of filters

Moving average is a filter

Filter or kernel

| 1× | 1 × |] × |
|------------|------------|------------|------------|------------|------------|------------|
| 1× | 1 × |
| 1 × |
| 1 × |
1×] ×] ×	1 ×] ×	1 ×	1 ×
1×	1 ×					
1 ×] ×] ×	1 ×] ×] ×	1 ×

Filtering

- Filtering
 - Forming a new image whose pixel values are transformed from original pixel values
- Goal is to extract useful information from images, or transform images into another domain where we can modify/enhance image properties
 - Features (edges, corners, blobs...)
 - Applications: super-resolution (resizing); in-painting; de-noising;

[Slide by Niebles]

Applications

De-noising

Salt and pepper noise

In-painting

18

Super-resolution

Bertamio et al

Co-financed by the European Union Connecting Europe Facility

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

Systems

- We define a system as a unit that converts an input function f[x,y] into an output (or response) function g[x,y], where (x,y) are the independent variables.
 - In the case of images, (x,y) represents the **spatial position in the image**.

[Slide by Niebles]

Moving average - example F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Moving average - example F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Moving average - example F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

Moving average - example F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Moving average - example F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

[Slide by Seitz]

24

Moving average - example F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Properties of systems

- Amplitude properties
 - Additivity $S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$
 - Homogeneity $S[\alpha f_i[n,m]] = \alpha S[f_i[n,m]]]$
 - Superposition $S[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[n,m]]$
 - Stability $|f[n,m]| \leq k \implies |g[n,m]| \leq ck$
 - Invertibility $S^{-1}[S[f_i[n,m]]] = f[n,m]$

[Slide by Niebles]

Properties of systems

- Spatial properties
 - Causality for $n < n_0, m < m_0$, if $f[n, m] = 0 \implies g[n, m] = 0$
 - Shift invariance $f[n n_0, m m_0] \xrightarrow{\mathcal{S}} g[n n_0, m m_0]$

[Slide by Niebles]

Linear Systems - filters

- Linear filtering
 - Form a new image whose pixels are a weighted sum of original pixel values
 - Use the same set of weights at each point
- S is a linear system (function) iff S satisfies

 $S[\alpha f_i[n,m] + \beta f_j[h,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[h,m]]$

superposition property

[Slide by Niebles]

Linear Shift Invariant Systems

- We call systems which satisfy the superposition and shiftinvariant property *Linear Shift Invariant Systems* (LSI)
- Not all filters are LSI

$$_{\circ}$$
 $\,$ Is thresholding linear?
 $g[n,m] = \left\{ \begin{array}{cc} 1, & f[n,m] > 100 \\ 0, & \text{otherwise.} \end{array} \right.$

- Consider: f1[n,m] + f2[n,m] > T f1[n,m] < T f2[n,m]<T

- LSI systems can be described by the **convolution** operation

Today's Agenda

- Averaging vs Interpolation
- Systems filters
- Convolution
 - Box Filter
 - Gaussian
 - Cross correlation vs Convolution
- Examples of filters

Call this operation "convolution"

Filter or kernel

Note: multiplying an image section by a filter is actually called "correlation" and convolution involves inverting the filter first

Convolutions on larger images

]×	1×	1×	1×	1×	1×] ×
1×	1 ×	1 ×	1 ×	1 ×	1×	1 ×
1 ×						
1 ×	1 ×	1 ×	1 ×	1×	1 ×	1 ×
1 ×	1 ×	1×	1 ×	1×	1 ×	1 ×
1×	1 ×	1 ×	1×	1 ×	1×	1×
1×] ×	1 ×				

Kernel slides across image

Convolutions on larger images

*

This is called box filter

Box filters smooth image

Now we resize our smoothed image

So much better!

Compare to interpolation

Box filters have artifacts

Box filters have artifacts

We want a smoothly weighted kernel

Today's Agenda

- Averaging vs Interpolation
- Systems filters
- Convolution
 - Box Filter
 - Gaussian
 - Cross correlation vs Convolution
- Examples of filters

Gaussians

Gaussians – how σ affects the shape

2D Gaussian

Co-financed by the European Union Connecting Europe Facility

Example 7x7 Gaussian

0.0	000	0.000	0.001	0.001	0.001	0.000	0.000
0.0	000	0.002	0.012	0.020	0.012	0.002	0.000
0.0	001	0.012	0.068	0.109	0.068	0.012	0.001
0.0	001	0.020	0.109	0.172	0.109	0.020	0.001
0.0	001	0.012	0.068	0.109	0.068	0.012	0.001
0.0	000	0.002	0.012	0.020	0.012	0.002	0.000
0.0	000	0.000	0.001	0.001	0.001	0.000	0.000

Better smoothing with Gaussians

Better smoothing with Gaussians

Co-financed by the European Union Connecting Europe Facility

Better smoothing with Gaussians

Co-financed by the European Union Connecting Europe Facility

Today's Agenda

- Averaging vs Interpolation
- Systems filters
- Convolution
 - Box Filter
 - Gaussian
 - Cross correlation vs Convolution
- Examples of filters

So what is convolution??

Cross-Correlation vs Convolution

Cross-Correlation

 $q = a \times r + b \times s + c \times t + d \times u + e \times v + f \times w + g \times x + h \times y + i \times z$

Convolution

 $q = i \times r + h \times s + g \times t + f \times u + e \times v + d \times w + c \times x + b \times y + a \times z$

Image support and edge effect

- •A computer will only convolve **finite support signals**
- What happens at the edge?

- zero "padding"
- edge value replication
- mirror extension

• ...

58

[Slide by Niebles]

m

2D convolution example

1	2	3
4	5	6
7	8	9

Input

Kernel

-13	-20	-17
-18	-24	-18
13	20	17

Output

1	2	1	
0	<mark>0</mark> 1	<mark>0</mark> 2	3
-1	-2 4	<mark>-1</mark> 5	6
	7	8	9

Co-financed by the European Union

Connecting Europe Facility

 $= x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1]$ $+ x[-1,0] \cdot h[1,0] + x[0,0] \cdot h[0,0] + x[1,0] \cdot h[-1,0]$ $+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1]$ $= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13$

-13	-20	-17
-18	-24	-18
13	20	17

Output

1	2	1
<mark>0</mark> 1	<mark>0</mark> 2	<mark>0</mark> 3
-1 4	<mark>-2</mark> 5	-1 6
7	8	9

 $= x[0,-1] \cdot h[1,1] + x[1,-1] \cdot h[0,1] + x[2,-1] \cdot h[-1,1]$ $+ x[0,0] \cdot h[1,0] + x[1,0] \cdot h[0,0] + x[2,0] \cdot h[-1,0]$ $+ x[0,1] \cdot h[1,-1] + x[1,1] \cdot h[0,-1] + x[2,1] \cdot h[-1,-1]$ $= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) = -20$

-13	-20	-17
-18	-24	-18
13	20	17

Output

 $x[1,-1] \cdot h[1,1] + x[2,-1] \cdot h[0,1] + x[3,-1] \cdot h[-1,1]$ $+ x[1,0] \cdot h[1,0] + x[2,0] \cdot h[0,0] + x[3,0] \cdot h[-1,0]$ $+ x[1,1] \cdot h[1,-1] + x[2,1] \cdot h[0,-1] + x[3,1] \cdot h[-1,-1]$ $= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) = -17$

-13	-20	-17
-18	-24	-18
13	20	17

Output

2D convolution example

1	2 1	1 2	3
0	<mark>0</mark> 4	<mark>0</mark> 5	6
-1	<mark>-2</mark> 7	-1 8	9

Co-financed by the European Union

Connecting Europe Facility

 $= x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1]$ $+ x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0]$ $+ x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1]$ $= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) = -18$

-13	-20	-17
-18	-24	-18
13	20	17

Output

2D convolution example

1 1	<mark>2</mark> 2	1 3
<mark>0</mark>	<mark>0</mark>	<mark>0</mark>
4	5	6
<mark>-1</mark>	-2	-1
7	8	9

 $= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1]$ $+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0]$ $+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1]$ $= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 0 + 7 \cdot (-1) + 8 \cdot (-2) + 9 \cdot (-1) = -24$

-13	-20	-17
-18	-24	-18
13	20	17

Output

 $= x[1,0] \cdot h[1,1] + x[2,0] \cdot h[0,1] + x[3,0] \cdot h[-1,1]$ $+ x[1,1] \cdot h[1,0] + x[2,1] \cdot h[0,0] + x[3,1] \cdot h[-1,0]$ $+ x[1,2] \cdot h[1,-1] + x[2,2] \cdot h[0,-1] + x[3,2] \cdot h[-1,-1]$ $= 2 \cdot 1 + 3 \cdot 2 + 0 \cdot 1 + 5 \cdot 0 + 6 \cdot 0 + 0 \cdot 0 + 8 \cdot (-1) + 9 \cdot (-2) + 0 \cdot (-1) = -18$

-13	-20	-17
-18	-24	-18
13	20	17

Output

[Slide by Song Ho Ahn]

Co-financed by the European Union Connecting Europe Facility

Calculate it!

Calculate it!

Today's Agenda

- Averaging vs Interpolation
- Systems filters
- Convolution
 - Box Filter
 - Gaussian
 - Cross correlation vs Convolution
- Examples of filters

Guess that kernel!

Highpass Kernel: finds edges

applied to grayscale

Guess that kernel!

Identity Kernel: Does nothing!

Guess that kernel!

Sharpen Kernel: sharpens!

applied to all three channels

Note: sharpen = highpass + identity! Why ?

Sharpen Kernel: sharpens!

What does blurring take away?

Highpass

=

=

Let's add it back:

Identity + Highpass

[Slide by D. Lowe]

Co-financed by the European Union Connecting Europe Facility

Guess that kernel!

Emboss Kernel: styling

applied to all three channels

Guess those kernels!

Sobel Kernels: edges and...

applied to grayscale and thresholded

Sobel Kernels: edges and gradient!

Sobel Kernels: edges and gradient!

This visualization is showing the magnitude and direction of the gradient

And so much more!!

• Next time

- \circ Edges
- Features

Thank you.

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

