University of Cyprus - MSc Artificial Intelligence

MAI644 - COMPUTER VISION
 Lecture 8: Feature Descriptors and Image Transforms

Melinos Averkiou
CYENS Centre of Excellence
University of Cyprus - Department of Computer Science
m.averkiou@cyens.org.cy

Last time

- Features
- Self-difference
- Harris corner detection

Today's Agenda

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations

Today's Agenda

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations

Ok, we found corners, now what?

- Need to match image patches to each other
- Need to figure out transform between images

Ok, we found corners, now what?

- Need to match image patches to each other
- What is a match? How do we look for matches? Pixels?
- Need to figure out transform between images

Matching patches: descriptors!

- We want a way to represent an image patch
- Can be very simple, just pixels!
- Finding matching patch is easy, distance metric:
- $\quad \Sigma_{x, y}(I(x, y)-J(x, y))^{2}$
- What problems are there with just using pixels?

Matching patches: descriptors!

- We want a way to represent an image patch
- Can be very simple, just pixels!
- Finding matching patch is easy, distance metric:
- $\quad \Sigma_{x, y}(I(x, y)-J(x, y))^{2}$
- Not invariant to some image transformations (e.g. rotation, scaling) !

Matching patches: descriptors!

- We want a way to represent an image patch
- Can be very simple, just pixels!
- Finding matching patch is easy, distance metric:
- $\quad \Sigma_{x, y}(I(x, y)-J(x, y))^{2}$
- Not invariant to lighting changes !

Matching patches: descriptors!

- We want feature descriptors invariant to lighting and image transforms !
- Descriptors can be more complex
- Gradient information
- How much context?

Today's Agenda

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations

Histogram of Oriented Gradients (HOG)

- By Dalal and Triggs 2005
- Better image descriptor
- Not reliant on magnitude, just direction
- Invariant to some lighting changes
- They used it to train an SVM to recognize people

Histogram of Oriented Gradients (HOG)

Steps to calculate HOG Feature Descriptor

1. Compute gradients
2. Bin gradient directions to create histogram
3. Normalize histograms of gradients

Histogram of Oriented Gradients (HOG)

Steps to calculate HOG Feature Descriptor

1. Compute gradients

Gaussian smoothing (experimented with various σ), followed by a derivative filter

- $\sigma=0$, i.e., no smoothing gave best results
- 1 D filter $[-1,0,1]$ gave best results

Histogram of Oriented Gradients (HOG)

Steps to calculate HOG Feature Descriptor
2. Bin gradient directions to create histogram

Split image into 8×8 'cells' and compute histogram for each cell

- Unsigned gradients, i.e., $\theta=0-180$ degrees gave best results
- 9 bins gave best results

Histogram of Oriented Gradients (HOG)

Steps to calculate HOG Feature Descriptor
3. Normalize histograms of gradients

Gather overlapping 'cells' into 'blocks', concatenate histograms and normalize

- 16×16 blocks of $4(2 \times 2)$ cells gave best results
- L2 Normalization gave best results

Histogram of Oriented Gradients (HOG)

For each training image of 64×128 there are 7×15 blocks, so the overall descriptor is $7 \times 15 \times 36=3780$ dimensions

Training image

HOG descriptor of the image visualized for each 16×16
block

Descriptor weighted by the SVM weights

This is as good as it gets ?

- Not so fast...
- Harris has some issues:
- Corner detection is rotation invariant
- Harris not invariant to scale
- Descriptors are also hard
- Just looking at pixels is not rotation invariant!
- HOG also not rotation invariant

Not Corner

18

Today's Agenda

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations

Want features invariant to scaling, rotation, etc.

- Scale Invariant Feature Transform (SIFT)
- Lowe et al. 2004, many images from that paper
- Get scale-invariant response map
- Find keypoints
- Extract rotation-invariant descriptors
- Normalize based on orientation
- Normalize based on lighting

Extract DoG features at multiple scales

Scale space

0.797107	1.090900	1.414214	2.900060	2.828427
1.414214	$2.00000{ }^{\text {a }}$	2.828427	4．9日成碞	5.656854
2.828427	$4.0909 \square \square$	5.656854		11.313708
5.656854	8.000000	11.313708	16.000000	22.627417

Co－financed by the European Union
Connecting Europe Facility

Find local-maxima in location and scale

Throw out weak responses and edges

- Estimate gradients
- Similar to before, look at nearby responses
- Not whole image, only a few points! Faster!
- Throw out weak responses
- Find cornery things
- Same deal, structure matrix, use det and trace information
- $\quad r$: ratio of larger to smaller eigenvalue

$$
\begin{aligned}
& \frac{\operatorname{Tr}(\mathbf{H})^{2}}{\operatorname{Det}(\mathbf{H})}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}=\frac{(r \beta+\beta)^{2}}{r \beta^{2}}=\frac{(r+1)^{2}}{r} ; \\
& \operatorname{Tr}(\mathbf{H})^{2} \\
& \underline{(r+1)^{2}} \\
& \operatorname{Det}(\mathbf{H}) \\
& r
\end{aligned}
$$

Find main orientation of patches

- Look at weighted histogram of nearby gradients
- Any gradient within 80% of peak gets its own descriptor
- Multiple keypoints per pixel
- Descriptors are normalized based on main orientation

Keypoints are normalized gradient histograms

- Divide into subwindows (4×4)
- Bin gradients within subwindow, get histogram
- Normalize to unit length
- Clamp at maximum . 2
- Normalize again
- Helps with lighting changes!

SIFT is great!

- Find good keypoints, describe them
- Finding objects, recognition, panoramas, etc.

SIFT is great!

Today's Agenda

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations

Matching patches: descriptors!

- Already have our patches that are likely "unique"-ish
- Loop over good patches in one image
- Find best match in other image
- Do something with them?

Ok, we found corners, now what?

- Need to match image patches to each other
- Need to figure out transform between images

Ok, we found corners, now what?

- Need to match image patches to each other
- Need to figure out transform between images
- How can we transform images?
- How do we solve for this transformation given matches?

How can we transform images?

- Need to warp one image into the other
- Many different image transforms
- Nested hierarchy of transformations

How can we transform images?

- x is a point in our image where:
- $\quad x=(x, y)$ or in matrix terms

Say we want new coordinate system

- Map points from one image into another
- Often we can use matrix operations
- Given a point x, map to new point x' using M

$\mathbf{x}^{\prime}=\mathbf{M} \mathbf{x}$

Scaling is just a matrix operation

- Map points from one image into another
- Often we can use matrix operations
- Given a point x, map to new point x^{\prime} using M

$$
\mathbf{x}^{\prime}=\mathbf{S} \mathbf{x} \quad \mathbf{x}^{\prime}=\left[\begin{array}{ll}
\mathrm{S} & 0 \\
0 & S
\end{array}\right] \mathbf{x}
$$

Translation is harder...

- $\mathrm{x}^{\prime}=\mathrm{Mx}$
- Want to move x^{\prime} by $d x$ and y^{\prime} by dy
- How do we pick M?
- Can only add up multiples of x or y

Translation: add another row

- $\overline{\mathrm{x}}$ is x but with an added 1
- Augmented vector

Translation: add another row

- $\overline{\mathbf{x}}$ is \mathbf{x} but with an added 1
- Augmented vector
- Now translation is easy
$\bar{x}=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

$x^{\prime}=[1+1 \bar{x}$

Reminder, I = Identity

Common to just use I as a generic, whatever size identity fits here.

Translation: add another row

- $\overline{\mathbf{x}}$ is \mathbf{x} but with an added 1
- Augmented vector
- Now translation is easy

$$
\overline{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\mathbf{x}^{\prime}=\left[\begin{array}{lll}
1 & 0 & d x \\
0 & 1 & d y
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Translation: add another row

- $\overline{\mathbf{x}}$ is \mathbf{x} but with an added 1
- Augmented vector
- Now translation is easy
- $x^{\prime}=1^{*} x+0 * y+d x * 1$
- $y^{\prime}=0 * x+1^{*} y+d y^{*} 1$

$$
\overline{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
I & t
\end{array}\right] \overline{\mathbf{x}}
$$

Translation: add another row

- $\overline{\mathbf{x}}$ is \mathbf{x} but with an added 1
- Augmented vector
- Now translation is easy

$$
\overline{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- $y^{\prime}=0^{*} x+1^{*} y+d y^{*} 1$

$$
\mathbf{x}^{\prime}=\left[\begin{array}{lll}
1 & 0 & d x \\
0 & 1 & d y
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
x^{\prime}=[1+\bar{x}
$$

Euclidean: rotation + translation

- Want to translate and rotate at same time
- Still just matrix operation

Euclidean: rotation + translation

- Want to translate and rotate at same time
- Still just matrix operation
$\mathbf{x}^{\prime}=[\mathbf{R} \boldsymbol{\dagger}] \overline{\mathbf{x}}$

Euclidean: rotation + translation

- Want to translate and rotate at same time
- Still just matrix operation
- R is rotation matrix, t is translation

$\mathbf{x}^{\prime}=[\mathbf{R} \boldsymbol{\dagger}] \overline{\mathbf{x}}$

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Euclidean: rotation + translation

- Want to translate and rotate at same time
- Still just matrix operation
- $\quad \mathrm{R}$ is rotation matrix, t is translation

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & d x \\
\sin \theta & \cos \theta & d y
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad \begin{aligned}
& \mathbf{x}^{\prime}=\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \overline{\mathbf{x}} \\
& \mathbf{R}=\left[\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
\end{aligned}
$$

Similarity: scale, rotate, translate

Similarity: scale, rotate, translate
$\mathbf{x}^{\prime}=[\mathrm{sR} \boldsymbol{t}] \overline{\mathbf{x}}$

Similarity: scale, rotate, translate

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
s \mathbf{R} & \boldsymbol{t}] \overline{\mathbf{x}} .
\end{array}\right.
$$

Affine: scale, rotate, translate, shear

Affine: scale, rotate, translate, shear

Affine: scale, rotate, translate, shear
General case of 2×3 matrix

$$
x^{\prime}=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Combinations are still affine

Say you want to translate, then rotate, then translate back, then scale.
$x^{\prime}=S t R t \bar{x}=M \bar{x}$,
If $M=(S t R t)$
M is still affine transformation
Wait, but these are all 2×3, how to we multiply them together?

Added row to transforms

$$
\begin{array}{ll}
\overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
1 & 0 & d x \\
0 & 1 & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & \overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & d x \\
\sin \theta & \cos \theta & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
\overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
a & -b & d x \\
b & a & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] & \overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{array}
$$

Projective transform

- Also known as homography
- Wait but affine was any 2×3 matrix...

Need some new coordinates!

- Homogeneous coordinate system
- Each point in 2 d is actually a vector in 3 d
- Equivalent up to scaling factor
- Have to normalize to get back to 2d
$\tilde{\mathbf{x}}=\left[\begin{array}{c}\tilde{x} \\ \tilde{y} \\ \tilde{w}\end{array}\right]$

$$
\overline{\mathbf{x}}=\tilde{\mathbf{x}} / \tilde{\mathbf{w}}
$$

Why does this make sense?

- Remember our pinhole camera model
- Every point in 3d projects onto our viewing plane through our aperture
- Points along a vector are indistinguishable

Projective transform

- Also known as homography
- Wait but affine was any 2×3 matrix...
- Homography is general 3×3 matrix
- Multiplication by scalar is equivalent

$\tilde{\mathbf{x}}^{\prime}=\tilde{\mathrm{H}} \tilde{\mathrm{x}}$

Projective transform

- Also known as homography
- Wait but affine was any 2×3 matrix...
- Homography is general 3×3 matrix
- Multiplication by scalar: equivalent projection

$$
\tilde{\mathbf{x}}^{\prime}=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
\tilde{\mathbf{x}} \\
\tilde{y} \\
\tilde{w}
\end{array}\right] \quad \tilde{\mathbf{x}}^{\prime}=\tilde{\mathbf{H}} \tilde{\mathbf{x}}
$$

Using homography to project point

- Multiply x^{\sim} by H^{\sim} to get $\mathrm{x}^{\boldsymbol{\sim}}$
- Convert to x’ by dividing by w~

$$
\tilde{\mathbf{x}}^{\prime}=\tilde{\mathbf{H}} \tilde{\mathbf{x}}
$$

$$
\left[\begin{array}{c}
\tilde{x}^{\prime} \\
\tilde{y}^{\prime} \\
\tilde{w}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{w}
\end{array}\right]
$$

$$
\overline{\mathbf{x}}=\tilde{\mathbf{x}} / \tilde{w}
$$

Lots to choose from

- What do each of them do?
- Which is right for panorama stitching?

Today's Agenda

- Basic descriptor and matching
- Image transformations
- Estimate transformations

How hard are they to recover?

$$
\begin{gathered}
\overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
1 & 0 & d x \\
0 & 1 & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
y \\
1
\end{array}\right] \quad \overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & d x \\
\sin \theta & \cos \theta & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
y \\
1
\end{array}\right] \\
\overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
a & -b & d x \\
b & a & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
y
\end{array}\right] \quad \overline{\mathbf{x}}^{\prime}=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \tilde{\mathbf{x}}^{\prime}=\left[\begin{array}{cc}
h_{00} & h_{01} \\
h_{02} \\
h_{10} & h_{11} \\
h_{20} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{l}
\tilde{x} \\
\tilde{y} \\
\tilde{w}
\end{array}\right]
\end{gathered}
$$

Lots to choose from

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[\mathbf{I} \mid \mathbf{t}]_{2 \times 3}$	2	orientation	\square
rigid (Euclidean)	$[\mathbf{R} \mid \mathbf{t}]_{2 \times 3}$	3	lengths	
similarity	$[\mathbf{s} \mathbf{R} \mid \mathbf{t}]_{2 \times 3}$	4	angles	
affine	$[\mathbf{A}]_{2 \times 3}$	6	parallelism	\square
projective	$[\tilde{\mathbf{H}}]_{3 \times 3}$	8	straight lines	\square

Say we want affine transformation

- Have our matched points
- Want to estimate A that maps from \mathbf{x} to \mathbf{x}^{\prime}
- $A x=x^{\prime}$

Say we want affine transformation

- Have our matched points
- Want to estimate \mathbf{A} that maps from \mathbf{x} to \mathbf{x}^{\prime}
- $A x=x^{\prime}$
- How many degrees of freedom?

Say we want affine transformation

- Have our matched points
- Want to estimate A that maps from x to x^{\prime}
- $A x=x^{\prime}$
- How many degrees of freedom?
- 6
- How many knowns do we get with one match?

$$
\mathbf{x}^{\prime}=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Say we want affine transformation

- Have our matched points
- Want to estimate \mathbf{A} that maps from \mathbf{x} to \mathbf{x}^{\prime}
- $A x=x^{\prime}$
- How many degrees of freedom?
- 6
- How many knowns do we get with one match?
- 2
- $n_{x}=a_{00} * m_{x}+a_{01} * m_{y}+a_{02}{ }^{*} 1$
- $\mathrm{n}_{\mathrm{y}}=\mathrm{a}_{10}{ }^{*} \mathrm{~m}_{\mathrm{x}}+\mathrm{a}_{11}{ }^{*} \mathrm{~m}_{\mathrm{y}}+\mathrm{a}_{12}{ }^{*} 1$

$$
x^{\prime}=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Say we want affine transformation

- How many knowns do we get with one match?
- $n_{x}=a_{00}{ }^{*} m_{x}+a_{01}{ }^{*} m_{y}+a_{02} * 1$
- $n_{y}=a_{10} * m_{x}+a_{11} * m_{y}+a_{12} * 1$
- Solve linear system of equations $\mathbf{M a}=\mathrm{b}$
- $M^{-1} M a=M^{-1} b=>a=M^{-1} b$
- But M^{-1} does not exist in general - Why?

M
a b

- Still works if overdetermined
- Why???
- Pseudoinverse - least squares solution
- $M^{\top} M a=M^{\top} b$
- $\left(M^{\top} M\right)^{-1}\left(M^{\top} M\right) a=\left(M^{\top} M\right)^{-1} M^{\top} b$
- $\quad=>a=\left(M^{\top} M\right)^{-1} M^{\top} b$

$\begin{array}{llllll} m_{x 1} & m_{1} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{x \times 1} & m_{y 1} & 1 \\ m_{x 2} & m_{y 2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{x 2} & m_{y 2} & 1 \\ m_{x 3} & m_{y 3} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{x 3} & m_{y 3} & 1 \end{array}$	$\begin{aligned} & a_{01} \\ & a_{02} \\ & a_{10} \\ & a_{11} \\ & a_{12} \end{aligned}$	

Thank you.

