

University of Cyprus – MSc Artificial Intelligence

MAI644 – COMPUTER VISION Lecture 9: RANSAC, Panorama Stitching

Melinos Averkiou

CYENS Centre of Excellence University of Cyprus - Department of Computer Science m.averkiou@cyens.org.cy

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

Last time

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations

Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching

[material based on Joseph Redmon's course]

Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching

Want to solve overdetermined linear system:

- M a = b

Want to minimize squared error:

|| b - M a ||² =

Want to solve overdetermined linear system:

- M a = b

Want to minimize squared error:

```
|| b - M a ||<sup>2</sup> =
```

(b - M a)^T(b - M a)

Want to solve overdetermined linear system:

- M a = b

Want to minimize squared error:

|| b - M a ||² =

 $(b - M a)^{T}(b - M a) =$

 $b^{\mathsf{T}}b - a^{\mathsf{T}}M^{\mathsf{T}}b - b^{\mathsf{T}}Ma + a^{\mathsf{T}}M^{\mathsf{T}}Ma$

Want to solve overdetermined linear system:

- M a = b

Want to minimize squared error:

```
|| b - M a ||<sup>2</sup> =
```

```
(b - M a)^{T}(b - M a) =
```

 $b^{T}b - a^{T}M^{T}b - b^{T}Ma + a^{T}M^{T}Ma =$

 $b^{\mathsf{T}}b - 2a^{\mathsf{T}}M^{\mathsf{T}}b + a^{\mathsf{T}}M^{\mathsf{T}}Ma$

- Want to minimize squared error: $|| b M a ||^2 =$
- $b^{T}b 2a^{T}M^{T}b + a^{T}M^{T}Ma$
- This is convex and minimized when gradient = 0. So we take the derivative wrt a and set = 0.
- $-M^{\mathsf{T}}b + (M^{\mathsf{T}}M)a = 0$
- $(M^{T}M)a = M^{T}b$
- $a = (M^{\mathsf{T}}M)^{-1}M^{\mathsf{T}}b$

So what does linear least squares do?

So what does linear least squares do?

Not a problem for us, our data is perfect...

Not really ...

Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching

- How can we fit model to inliers but ignore outliers?
- Try a bunch of models, see which ones are best!
- Inliers will all agree on a model
- Outliers are basically random, will not agree

RANSAC: RANdom SAmple Consensus

RANSAC: RANdom SAmple Consensus

0

 Parameters: data, model, n points to fit model, k iterations, t threshold, d "good" fit cutoff

bestmodel = None bestfit = -INF While i < k: sample = draw n random points from data Fit model to sample inliers = data within t of model if inliers > bestfit: Fit model to all inliers bestfit = fit bestmodel = model if inliers > d: return model return bestmodel

return bestmodel

- Works well even with extreme noise.

- Works well even with extreme noise.

- Parameters: data, model, n points to fit model, k iterations, t threshold, d "good" fit cutoff
- Lots of tunable parameters
- Want high probability of recovering "right" model
- t: often quite small, assume "good" inliers
- n: should be just enough to fit model, no extra
- k: can be very high
- d: should be >> n

We can estimate affine..

- How many knowns do we get with one match?
 - $n_x = a_{00}^* m_x + a_{01}^* m_v + a_{02}^* 1$
 - $n_v = a_{10}^* m_x + a_{11}^* m_v + a_{12}^* 1$
 - Solve linear system of equations M a = b
 - $M^{-1} M a = M^{-1} b \Rightarrow a = M^{-1} b$
 - But M⁻¹ does not exist in general Why?
 - Still works if overdetermined
 - Why???

Connecting Europe Facility

- Pseudoinverse least squares solution
- $M^{T}Ma = M^{T}b$
- $(M^{T} M)^{-1} (M^{T} M) a = (M^{T} M)^{-1} M^{T} b$
- $=> a = (M^{T} M)^{-1} M^{T} b$

b M a **a**₀₀ \mathbf{n}_{x1} \mathbf{m}_{x1} \mathbf{m}_{y} **a**₀₁ $\mathbf{m}_{x1} \mathbf{m}_{y1}$ n **'**y1 **a**₀₂ $m_{x2} m_{y2}$ n_{x2} **a**₁₀ $m_{x2} m_{y2}$ ()n_{y2} **a**₁₁ $m_{x3} m_{y3}$ n_{x3} **a**₁₂ n_{y3} 0 $m_{x3} m_{y3}$

- What are our equations now?
 - $n_x = (h_{00} m_x + h_{01} m_y + h_{02} m_w) / (h_{20} m_x + h_{21} m_y + h_{22} m_w)$
 - $n_y = (h_{10}^2 * m_x^2 + h_{11}^2 * m_y^2 + h_{12}^2 * m_w^2) / (h_{20}^2 * m_x^2 + h_{21}^2 * m_y^2 + h_{22}^2 * m_w^2)$

 $\begin{vmatrix} \widetilde{\mathbf{x}'} \\ \widetilde{\mathbf{y}'} \\ \widetilde{\mathbf{y}'} \end{vmatrix} = \begin{vmatrix} \mathbf{h}_{00} & \mathbf{h}_{01} & \mathbf{h}_{02} \\ \mathbf{h}_{10} & \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{10} & \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{20} & \mathbf{h}_{21} & \mathbf{h}_{22} \end{vmatrix} \begin{vmatrix} \widetilde{\mathbf{x}} \\ \widetilde{\mathbf{w}} \end{vmatrix}$

- What are our equations now?
 - $n_x = (h_{00} * m_x + h_{01} * m_y + h_{02} * m_w) / (h_{20} * m_x + h_{21} * m_y + h_{22} * m_w)$
 - $n_y = (h_{10} * m_x + h_{11} * m_y + h_{12} * m_w) / (h_{20} * m_x + h_{21} * m_y + h_{22} * m_w)$
- Assume h_{22} and m_w are 1, now 8 DOF
 - $n_x = (h_{00} * m_x + h_{01} * m_y + h_{02}) / (h_{20} * m_x + h_{21} * m_y + 1)$
 - $n_y = (h_{10} * m_x + h_{11} * m_y + h_{12}) / (h_{20} * m_x + h_{21} * m_y + 1)$

 $\begin{vmatrix} \widetilde{\mathbf{x}'} \\ \widetilde{\mathbf{y}'} \\ \widetilde{\mathbf{y}'} \end{vmatrix} = \begin{vmatrix} \mathbf{h}_{00} & \mathbf{h}_{01} & \mathbf{h}_{02} \\ \mathbf{h}_{10} & \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{10} & \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{20} & \mathbf{h}_{21} & \mathbf{h}_{22} \end{vmatrix} \begin{vmatrix} \widetilde{\mathbf{x}} \\ \widetilde{\mathbf{w}} \end{vmatrix}$

- What are our equations now?
 - $n_x = (h_{00} m_x + h_{01} m_y + h_{02} m_w) / (h_{20} m_x + h_{21} m_y + h_{22} m_w)$
 - $n_y = (h_{10} * m_x + h_{11} * m_y + h_{12} * m_w) / (h_{20} * m_x + h_{21} * m_y + h_{22} * m_w)$
- Assume h_{22} and m_w are 1, now 8 DOF
 - $n_x = (h_{00} + m_x + h_{01} + m_y + h_{02}) / (h_{20} + m_x + h_{21} + m_y + 1)$
 - $n_y = (h_{10} * m_x + h_{11} * m_y + h_{12}) / (h_{20} * m_x + h_{21} * m_y + 1)$
- More algebra on n_x
 - $n_x^* (h_{20}^* m_x + h_{21}^* m_y^- + 1) = (h_{00}^* m_x + h_{01}^* m_y^- + h_{02}^-)$
 - $n_x * h_{20} * m_x + n_x * h_{21} * m_y + n_x = h_{00} * m_x + h_{01} * m_y + h_{02}$
 - $n_x = h_{00} * m_x + h_{01} * m_y + h_{02} n_x * h_{20} * m_x n_x * h_{21} * m_y$
- Similar for n_y

- What are our equations now?
 - $n_x = h_{00} * m_x + h_{01} * m_y + h_{02} n_x * h_{20} * m_x n_x * h_{21} * m_y$
 - $n_y = h_{10}^* m_x + h_{11}^* m_y + h_{12} n_x^* h_{20}^* m_x n_x^* h_{21}^* m_y$
- New matrix equations:

M		a	b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \end{bmatrix}$	$ = \begin{bmatrix} n_{x1} \\ n_{y1} \\ n_{x2} \\ n_{y2} \\ n_{x3} \\ n_{y3} \\ n_{x4} \\ n_{y4} \end{bmatrix} $

We want projective (homography)

- New matrix equations:

- Same procedure, Solve **M a** = **b**
 - Exact if #rows of M = 8
 - Least squares if #rows of M > 8

Are there any problems with this??

- New matrix equations:

- Same procedure, Solve **M a** = **b**
 - Exact if #rows of **M** = 8
 - Least squares if #rows of M > 8

Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching

Panorama algorithm

- Find corners in both images
- Calculate descriptors
- Match descriptors
- RANSAC to find homography
- Stitch together images with homography

Stitching panoramas

- We know homography is right choice under certain assumption:
 - Assume we are taking multiple images of planar object

In practice

In practice

In practi

Visual Computing Group

Very bad for big panoramas!

Very bad for big panoramas!

Very bad for big panoramas!

Fails :-(

How do we fix it? Cylinders!

This Master is run under the context of Action

No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

How do we fix it? Cylinders!

Dependant on focal length!

f = 300

f = 500

f = 1000

f = 1400

f = 10,000

f = 10,000

Co-financed by the European Union Connecting Europe Facility

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

Does it work?

Does it work?

Does it work?

Master programmes in Artificial Intelligence 4 Careers in Europe

Does it work?

Master programmes in Artificial Intelligence 4 Careers in Europe

Yes! Assuming camera is level and rotating around its vertical axis

Master programmes in Artificial Intelligence 4 Careers in Europe

Thank you.

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

