University of Cyprus - MSc Artificial Intelligence

MAI644 - COMPUTER VISION
 Lecture 9: RANSAC, Panorama Stitching

Melinos Averkiou
CYENS Centre of Excellence
University of Cyprus - Department of Computer Science
m.averkiou@cyens.org.cy

CENTRE OF EXCELLENCE

Last time

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations

Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching

Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching

Linear least squares

Want to solve overdetermined linear system:

- $\mathrm{Ma}=\mathrm{b}$

Want to minimize squared error:
$||b-M a||^{2}=$

Linear least squares

Want to solve overdetermined linear system:

- $\mathrm{Ma}=\mathrm{b}$

Want to minimize squared error:
$||b-M a||^{2}=$
$(b-M a)^{\top}(b-M a)$

Linear least squares

Want to solve overdetermined linear system:

- $\mathrm{Ma}=\mathrm{b}$

Want to minimize squared error:
$||\mathrm{b}-\mathrm{Ma}||^{2}=$
$(b-M a)^{\top}(b-M a)=$
$b^{\top} b-a^{\top} M^{\top} b-b^{\top} M a+a^{\top} M^{\top} M a$

Linear least squares

Want to solve overdetermined linear system:

- $M a=b$

Want to minimize squared error:
$||b-M a||^{2}=$
$(b-M a)^{\top}(b-M a)=$
$b^{\top} b-a^{\top} M^{\top} b-b^{\top} M a+a^{\top} M^{\top} M a=$
$b^{\top} b-2 a^{\top} M^{\top} b+a^{\top} M^{\top} M a$

Linear least squares

Want to minimize squared error: || b-M a || $\left.\right|^{2}=$
$b^{\top} b-2 a^{\top} M^{\top} b+a^{\top} M^{\top} M a$
This is convex and minimized when gradient $=0$. So we take the derivative wrt a and set $=0$.
$-M^{\top} b+\left(M^{\top} M\right) a=0$
$\left(M^{\top} M\right) a=M^{\top} b$
$a=\left(M^{\top} M\right)^{-1} M^{\top} b$

So what does linear least squares do?

So what does linear least squares do?

Error based on squared residual
Very scared of being wrong, even for just one point

Very bad at handling outliers in data

Not a problem for us, our data is perfect...

Not really ...

Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching

RANSAC: RANdom SAmple Consensus

- How can we fit model to inliers but ignore outliers?
- Try a bunch of models, see which ones are best!
- Inliers will all agree on a model
- Outliers are basically random, will not agree

RANSAC: RANdom SAmple Consensus

RANSAC: RANdom SA le Consensus

Inliers: 4

RANSAC: RANdom SAmple Consensus

RANSAC: RANdom SAmple Consensus

Inliers: 5

RANSAC: RANdom SAmple Consensus

RANSAC: RANdom SAmple Consensus

- Parameters: data, model, n points to fit model, k iterations, t threshold, d "good" fit cutoff

```
bestmodel = None
bestfit = -INF
While i < k:
    sample = draw n random points from data
    Fit model to sample
    inliers = data within t of model
    if inliers > bestfit:
            Fit model to all inliers
            bestfit = fit
            bestmodel = model
            if inliers > d:
                return model
return bestmodel
```


RANSAC: RANdom SAmple Consensus

- Works well even with extreme noise.

RANSAC: RANdom SAmple Consensus

- Works well even with extreme noise.

RANSAC: RANdom SAmple Consensus

- Parameters: data, model, n points to fit model, k iterations, t threshold, d "good" fit cutoff
- Lots of tunable parameters
- Want high probability of recovering "right" model
- t: often quite small, assume "good" inliers
- n : should be just enough to fit model, no extra
- k: can be very high
- d: should be >>n

We can estimate affine..

- How many knowns do we get with one match?
- $\mathrm{n}_{\mathrm{x}}=\mathrm{a}_{00} * \mathrm{~m}_{\mathrm{x}}+\mathrm{a}_{01} * \mathrm{~m}_{\mathrm{y}}+\mathrm{a}_{02} * 1$
- $\quad n_{y}=a_{10} * m_{x}+a_{11} * m_{y}+a_{12}^{*} 1$
- Solve linear system of equations $\mathrm{Ma}=\mathrm{b}$
- $\quad M^{-1} M a=M^{-1} b=>a=M^{-1} b$
- But M^{-1} does not exist in general - Why?
- Still works if overdetermined

M

$\begin{array}{llllll} m_{x 1} & m_{1} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{x 1} & m_{y 1} & 1 \\ m_{x 2} & m_{y 2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{x 2} & m_{y 2} & 1 \\ m_{x 3} & m_{y 3} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{x 3} & m_{y 3} & 1 \end{array}$	$\left[\begin{array}{l}a_{00} \\ a_{01} \\ a_{02} \\ a_{10} \\ a_{11} \\ a_{12}\end{array}\right.$	$=$

We want projective (homography)

- What are our equations now?
- $n_{x}=\left(h_{00} * m_{x}+h_{01}{ }^{*} m_{y}+h_{02}^{*} m_{w}\right) /\left(h_{20} * m_{x}+h_{21} * m_{y}+h_{22}{ }^{*} m_{w}\right)$
- $\mathrm{n}_{\mathrm{y}}=\left(\mathrm{h}_{10} * \mathrm{~m}_{\mathrm{x}}+\mathrm{h}_{11} * \mathrm{~m}_{\mathrm{y}}+\mathrm{h}_{12}{ }^{*} \mathrm{~m}_{\mathrm{w}}\right) /\left(\mathrm{h}_{20} * \mathrm{~m}_{\mathrm{x}}+\mathrm{h}_{21}{ }^{*} \mathrm{~m}_{\mathrm{y}}+\mathrm{h}_{22}{ }^{*} \mathrm{~m}_{\mathrm{w}}\right)$

$$
\left[\begin{array}{c}
\tilde{x}^{\prime} \\
\tilde{y}^{\prime} \\
\tilde{w}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{w}
\end{array}\right]
$$

We want projective (homography)

- What are our equations now?
- $n_{x}=\left(h_{00}{ }^{*} m_{x}+h_{01}{ }^{*} m_{y}+h_{02}{ }^{*} m_{w}\right) /\left(h_{20}{ }^{*} m_{x}+h_{21}{ }^{*} m_{y}+h_{22}{ }^{*} m_{w}\right)$
- $n_{y}=\left(h_{10} * m_{x}+h_{11} * m_{y}+h_{12}^{*} m_{w}\right) /\left(h_{20} * m_{x}+h_{21} * m_{y}+h_{22}^{*} m_{w}\right)$
- Assume h_{22} and m_{w} are 1, now 8 DOF
- $n_{x}=\left(h_{00}{ }^{*} m_{x}+h_{01}{ }^{*} m_{y}+h_{02}\right) /\left(h_{20}{ }^{*} m_{x}+h_{21}{ }^{*} m_{y}+1\right)$
- $\mathrm{n}_{\mathrm{y}}=\left(\mathrm{h}_{10} * \mathrm{~m}_{\mathrm{x}}+\mathrm{h}_{11} * \mathrm{~m}_{\mathrm{y}}+\mathrm{h}_{12}\right) /\left(\mathrm{h}_{20} * \mathrm{~m}_{\mathrm{x}}+\mathrm{h}_{21} * \mathrm{~m}_{\mathrm{y}}+1\right)$

$$
\left[\begin{array}{l}
\tilde{x}^{\prime} \\
\tilde{y}^{\prime} \\
\tilde{w}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{w}
\end{array}\right]
$$

We want projective (homography)

- What are our equations now?
- $n_{x}=\left(h_{00}{ }^{*} m_{x}+h_{01}{ }^{*} m_{y}+h_{02}{ }^{*} m_{w}\right) /\left(h_{20} * m_{x}+h_{21} * m_{y}+h_{22}{ }^{*} m_{w}\right)$
- $n_{y}=\left(h_{10} * m_{x}+h_{11} * m_{y}+h_{12}^{*} m_{w}\right) /\left(h_{20} * m_{x}+h_{21} * m_{y}+h_{22}^{*} m_{w}\right)$
- Assume h_{22} and m_{w} are 1, now 8 DOF
- $n_{x}=\left(h_{00} * m_{x}+h_{01}{ }^{*} m_{y}+h_{02}\right) /\left(h_{20}{ }^{*} m_{x}+h_{21}{ }^{*} m_{y}+1\right)$
$-n_{y}=\left(h_{10} * m_{x}+h_{11} * m_{y}+h_{12}\right) /\left(h_{20} * m_{x}+h_{21} * m_{y}+1\right)$
- More algebra on n_{x}
- $n_{x} *\left(h_{20}{ }^{*} m_{x}+h_{21}{ }^{*} m_{y}+1\right)=\left(h_{00}{ }^{*} m_{x}+h_{01}{ }^{*} m_{y}+h_{02}\right)$
- $n_{x}{ }^{*} h_{20}{ }^{*} m_{x}+n_{x}{ }^{*} h_{21}{ }^{*} m_{y}+n_{x}=h_{00} * m_{x}+h_{01} * m_{y}+h_{02}$
- $n_{x}=h_{00}{ }^{*} m_{x}+h_{01}{ }^{*} m_{y}+h_{02}-n_{x}{ }^{*} h_{20}{ }^{*} m_{x}-n_{x}{ }^{*} h_{21}{ }^{*} m_{y}$
- Similar for n_{y}

We want projective (homography)

- What are our equations now?
- $n_{x}=h_{00} * m_{x}+h_{01} * m_{y}+h_{02}-n_{x} * h_{20} * m_{x}-n_{x} * h_{21} * m_{y}$
$-\mathrm{n}_{\mathrm{y}}=\mathrm{h}_{10}{ }^{*} \mathrm{~m}_{\mathrm{x}}+\mathrm{h}_{11}{ }^{*} \mathrm{~m}_{\mathrm{y}}+\mathrm{h}_{12}-\mathrm{n}_{\mathrm{x}}{ }^{*} \mathrm{~h}_{20}{ }^{*} \mathrm{~m}_{\mathrm{x}}-\mathrm{n}_{\mathrm{x}}{ }^{*} \mathrm{~h}_{21}{ }^{*} \mathrm{~m}_{\mathrm{y}}$
- New matrix equations:

$$
\begin{aligned}
& \text { M }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21}
\end{array}\right]=\left[\begin{array}{l}
n_{x 1} \\
n_{y 1} \\
n_{x 2} \\
n_{y 2} \\
n_{x 3} \\
n_{y 3} \\
n_{x 4} \\
n_{y 4}
\end{array}\right]}
\end{aligned}
$$

We want projective (homography)

- New matrix equations:
- Same procedure, Solve Ma=b
- Exact if \#rows of $M=8$
- Least squares if \#rows of $M>8$

Are there any problems with this??

- New matrix equations:
- Same procedure, Solve Ma=b
- Exact if \#rows of $M=8$
- Least squares if \#rows of $M>8$

Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching

Panorama algorithm

Find corners in both images
Calculate descriptors
Match descriptors
RANSAC to find homography
Stitch together images with homography

Stitching panoramas

- We know homography is right choice under certain assumption:
- Assume we are taking multiple images of planar object

In practice

In practice

\qquad
ing

Co-financed by the European Union

MAI4CAREU

What's happehing?

What's happening?

What's happening?

What's happening?

What's happêhing?

What's happening?

What's happening?

What's happêhing?

What's happening?

Very bad for big panoramas!

Very bad for big panoramas!

MAI4CAREU

Very bad for big panoramas!

Fails :-(

How do we fix it? Cylinders!

How do we fix it?

How do we fix it?

How do we fix it? ع-

How do we fix it?

How do we fix it?

How do we fix it? Cylinders!

Calculate angle and height:
$\boldsymbol{\theta}=(\mathrm{x}-\mathrm{xc}) / \mathrm{f}$
$h=(y-y c) / f$
Find unit cylindrical cóords:
$X^{\prime}=\sin (\theta)$
$Y^{\prime}=h$
$Z^{\prime}=\cos (\theta)$
Project to image plane:
$x^{\prime}=f X^{\prime} / Z^{\prime}+x c$
$y^{\prime}=f Y^{\prime} / Z^{\prime}+y c$

Dependant on focal length!

$f=300$

$f=500$

$f=1000$

$f=1400$

$f=10,000$

$f=10,000$

Does it work?

Yes! Assuming camera is level and rotating around its vertical axis

Thank you.

