

# Natural Language Processing Introduction and Course Overview

Demetris Paschalides

Department of Computer Science

University of Cyprus







#### **About the Instructor**

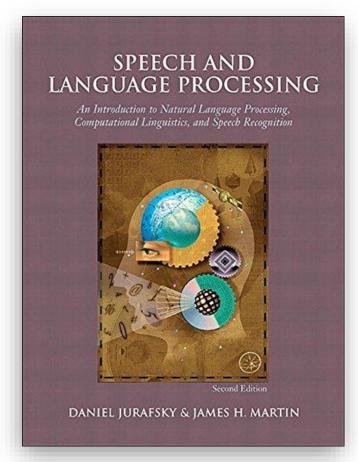
- Name: Demetris Paschalides
- **Professional Experience**: 7.5 years of Academic Research
- Research Interest: Use of Natural Language Processing (NLP) and Machine Learning (ML) to address social and ethical challenges.
  - <u>Examples</u>: misinformation, hate-speech, and polarization (social or political).





#### **Textbook**

### **MAI4CAREU**









#### Introduction to NLP







## From Language to Information







## From Language to Information

- □ Automatically extracting meaning and structure from:
- Human language text and speech (news, social media, etc.)
- Social networks
- Genome sequences









## From Language to Information

- □ Automatically extracting meaning and structure from:
- Human language text and speech (news, social media, etc.)
- Social networks
- Genome sequences
- □Interacting with humans via language
- Dialog systems/Chatbots
- Question Answering
- Recommendation Systems







Industry and commercial applications MAI4CARI

of Cyprus

Connecting Europe Facility

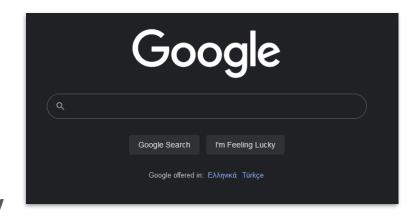


under GA nr. INEA/CEF/ICT/A2020/2267423

# Extracting Information from Language MAI4CAREU

#### □Information retrieval

- Year 2020: 6.9 billion daily
   Google searches (estimate).
- Text-based information retrieval → the most frequently used software in the world.

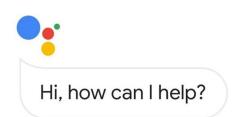




## **Conversational Agents**

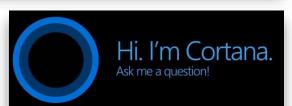
- □ Speech Recognition
- □ Language Analysis
- ■Dialogue Processing
- □Information Retrieval
- ☐Text-to-speech





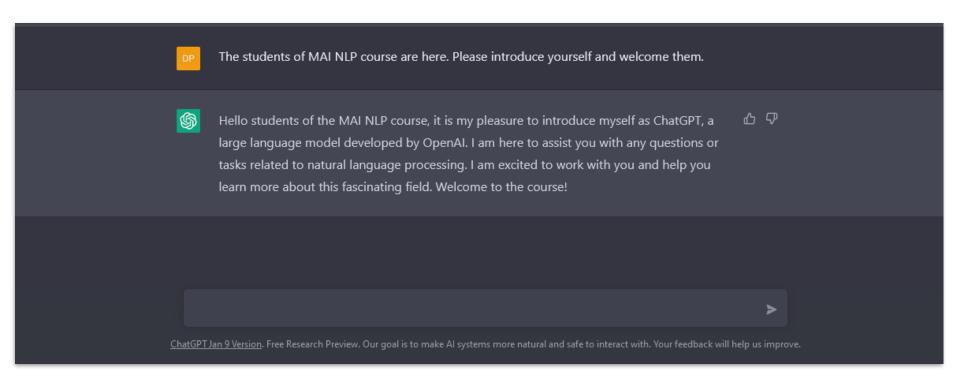








#### **ChatGPT Revolution**









#### **ChatGPT LLMs** Revolution











#### **ChatGPT LLMs Revolution**

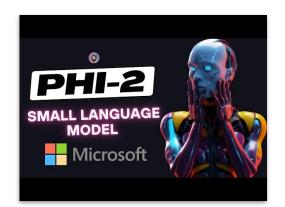




















# Text classification: Disaster Response

- ☐ Haiti earthquake 2010
- ☐ Classifying SMS messages

Haitian Creole: "Mwen thomassin 32 nan pyron mwen ta renmen jwen yon ti dlo gras a dieu bo lakay mwen anfom se sel dlo nou bezwen"



**English**: "I am in Thomassin number 32, in the area named Pyron. I would like to have some water. Thank God we are fine, but we desperately need water."

Meier, P., & Munro, R. (2010). The unprecedented role of SMS in disaster response: Learning from Haiti. SAIS Rev. Int'l Aff., 30, 91. Caragea, C., McNeese, N. J., Jaiswal, A. R., Traylor, G., Kim, H. W., Mitra, P., & Yen, J. (2011, May). Classifying text messages for the Haiti earthquake. In ISCRAM.









## **Recommendation engines**

#### The good:

- Products: Amazon, ebay
- Content: Netflix, Spotify











## **Recommendation engines**

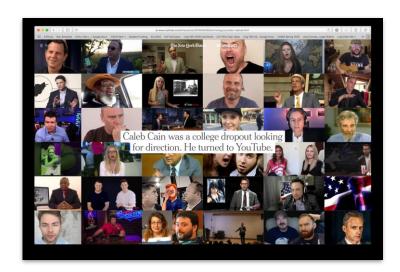
#### The good:

- Products: Amazon, ebay
- Content: Netflix, Spotify



#### The bad

Youtube radicalization



Papadamou, K., Zannettou, S., Blackburn, J., De Cristofaro, E., Stringhini, G., & Sirivianos, M. (2021). "How over is it?" Understanding the Incel Community on YouTube. Proceedings of the ACM on Human-Computer Interaction. 5(CSCW2). 1-25.





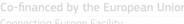


## **Recommendation engines**



Papadamou, K., Zannettou, S., Blackburn, J., De Cristofaro, E., Stringhini, G., & Sirivianos, M. (2021). "How over is it?" Understanding the Incel Community on YouTub Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1-25.









## **Linguistic Knowledge Levels**

Speech
Orthography
Morphology
Lexemes
Syntax
Semantics
Pragmatics
Discourse

Text
Phonetics

Phonology

Shallower deeper







## **Phonetics and Phonology**

Pronunciation Modeling

Sounds: The idea si

N





#### Words

- Language Modeling
- □ Tokenization
- □ Spelling Correction

Words:

nce

This is a simple sente







## Morphology

- Morphology Analysis
- □ Tokenization
- □ Lemmatization

Words:

nce

Morphology:

be

present









## Part-of-Speech

☐ Part-of-Speech (PoS) Tagging

PoS: DT VBZ DT JJ NN

<u>Words</u>: This <u>is</u> a simple sente

nce

Morphology: be

present







## **Syntax**

Syntactic Parsing

Syntax:

<u>PoS</u>:

Words:

nce

**Morphology**:

Co-financed by the European Union
Connecting Europe Facility

University
of Cyprus

VP NP NP NP NN

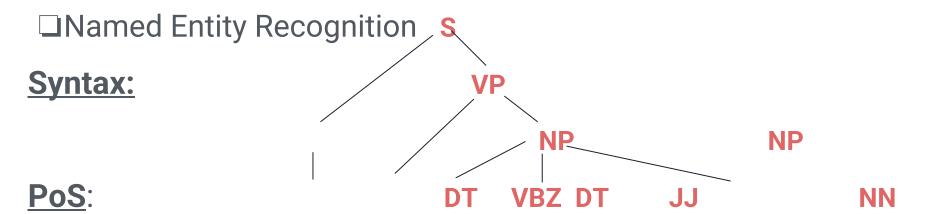
This **is** a simple sente

be

present



#### **Semantics**



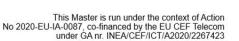
Words: This is a simple sente

n c e

Morphology: be present











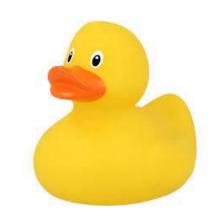
## Language Interpretation is Hard



## Language Interpretation is Hard

#### **Ambiguity**

Sentence: "I made her duck"







## Language interpretation is hard

#### **Ambiguity**

- Sentence: "I made her duck"
- At least 6 different meanings:
  - I cooked waterfowl for her (to eat)
  - I cooked waterfowl of her
  - I created the plastic waterfowl she owns
  - I caused her to quickly lower her head or body











## Language interpretation is hard

#### **Ambiguity**

- Sentence: "I made her duck"
- At least 6 different meanings:
  - I cooked waterfowl for her (to eat)
  - I cooked waterfowl of her
  - I created the plastic waterfowl she owns
  - I caused her to quickly lower her head or body

"Duck" can be a Noun or Verb





## Language interpretation is hard

#### **Ambiguity**

- Sentence: "I made her duck"
- At least 6 different meanings:
  - I cooked waterfowl for her (to eat)
  - I cooked waterfowl of her
  - I created the plastic waterfowl she owns
  - I caused her to quickly lower her head or body

#### "her" can be:

- a **possessive** pronoun "of her"
- ■a dative pronoun "for her"









## Language Interpretation is Hard

#### **Ambiguity**

- Sentence: "I made her duck"
- At least 6 different meanings:
  - I cooked waterfowl for her (to eat)
  - I cooked waterfowl of her
  - I created the plastic waterfowl she owns
  - I caused her to quickly lower her head or body

"make" can mean "cooked", "created", or "caused"





- "OMG" =
- **■** "w8" =
- **■** "brb" =





- $\blacksquare$  "OMG" = Oh my god
- **■** *"w8"* = wait
- "brb" = be right back



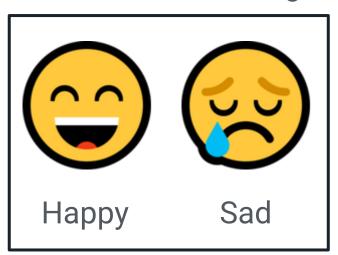


- "OMG" = Oh my god
- **■** *"w8"* = wait
- "brb" = be right back





- "OMG" = Oh my god
- **■** *"w8"* = wait
- "brb" = be right back





- "OMG" = Oh my god
- **■** *"w8"* = wait
- "brb" = be right bac









## **Challenges on PoS Tagging**

kr smh he asked fir yo last name

so he can add u on fb lololol









## **Challenges on PoS Tagging**

| I know, right | shake my head |    |       | for | your |      |      |
|---------------|---------------|----|-------|-----|------|------|------|
| ikr           | smh           | he | asked | fir | yo   | last | name |

so he can add u on fb lololol







## **Challenges on PoS Tagging**







# Challenging Morphology and Syntax MAI4CAREU

"A ship-shipping ship, shipping shipping-ships".







## Tackling the problem

#### What tools do we need?

- ☐ Knowledge about language and the world.
- Ways to combine knowledge sources.

#### How we do this?

□ Neural and other machine learning models build from language data





#### Models and tools

- Regular Expressions
- Edit Distance
- Language Models
- Neural WordEmbeddings
- Machine LearningClassifiers

- Sentiment Lexicons
- Emotion Lexicons
- Network Algorithms
- RecommendationAlgorithms

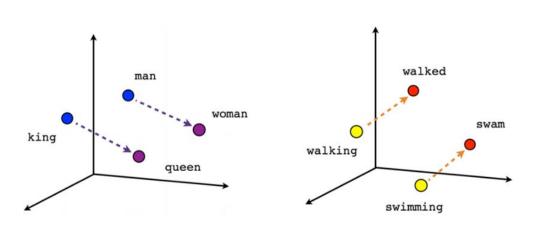


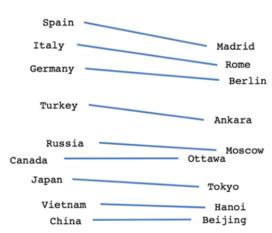




## Word embeddings

#### A word's semantic meaning as a 300-dimensional vector





Male-Female

Verb tense

Country-Capital

Image taken from: <a href="https://towardsdatascience.com">https://towardsdatascience.com</a></a>
Plots are a product of dimensionality reduction to 3D and 2D.









## **Embeddings are the core of NLP**

Word embeddings are the core technology for any NLP task:

- ☐ Finding synonyms of words.
- ☐ Deciding the similarity of two sentences.
- ☐ Capturing the context of a text.







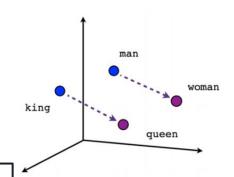
## How to learn the embeddings?

Push co-occurring words together in space:

☐ Read millions of words → Study their co-

occurrence.

"Elizabeth II is **Queen** of the United Kingdom ... **Her father** ascended the throne in 1936 upon the abdication of **his** brother, **King** Edward VIII ... **She** was educated privately at home ... In November 1947, **she** married Philip Mountbatten, a former prince of Greece and Denmark ... When **her** father died in February 1952, Elizabeth—then 25 years old—became **queer** 









#### **Course Outline**

- 1. Text Pre-processing
- 2. Language Modeling
- 3. Text Classification
- 4. Word Vector Representation
- 5. Distributed Contextual Embeddings
- 6. Application of NLP in:
  - a. Hate-speech Identification
  - b. Fake News Detection
  - c. Political Polarization
- 7. Introduction to Large Language Models









#### **Thank You**



