University of Cyprus - MSc Artificial Intelligence

MAI644 - COMPUTER VISION
 Lecture 1: Introduction to Computer Vision

Melinos Averkiou
CYENS Centre of Excellence
University of Cyprus - Department of Computer Science
m.averkiou@cyens.org.cy

Today's Agenda

- Who we are
- Introduction to Computer Vision
- What is Computer Vision
- How hard is Computer Vision
- Why is Computer Vision so hard
- How to organize Computer Vision
- Why study Computer Vision
- Applications
- What we do ϕ

Who we are

Visual Computing Group at CYENS Centre of Excellence

Marios Loizou
Research Associate

Yeshwanth Kumar Adimoolam
Research Associate (DTP)

Today's Agenda

- Course Overview
- Introduction to Computer Vision
- What is Computer Vision
- How hard is Computer Vision
- Why is Computer Vision so hard
- How to organize Computer Vision
- Why study Computer Vision
- Applications
- What we do

Biology

What is (Computer) Vision ?

What is (Computer) Vision?

- Vision is about discovering from images
- what is present in the scene, and
- where it is
- In Computer Vision a camera (or several cameras) is linked to a computer
- The computer interprets images of a scene to obtain information
- Useful for tasks such as navigation, manipulation and recognition

What is Computer Vision?

Computer Vision's goal is to obtain a high-level understanding of the world using images as input

Understand = Obtain Semantics \& Geometry

3D Object layout Input: RGBD Image

Building facade segmentation Input: RGB Image

Object semantic segmentation Input: 3D Mesh

Understanding the world is hard for machines

What we see

What the machine sees

Today's Agenda

- Course Overview
- Introduction to Computer Vision
- What is Computer Vision
- How hard is Computer Vision
- Why is Computer Vision so hard
- How to organize Computer Vision
- Why study Computer Vision
- Applications
- What we do

How hard is Computer Vision ?

- The Summer Vision Project - MIT AI Memo 100, 1966
- 'Solve vision in a summer project' - almost an urban legend
- Basic foreground/background segmentation,
- Analyse scenes with simple non-overlapping objects,
- Extend the system to more complex objects.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 PROJECT MAC```
Artificial Intelligence Group July 7, }196
```

Vision Memo. No. 100.

## THE SUMMER VISION PROJECT

## Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition". 8 Group

## How hard is Computer Vision ?



## How hard is Computer Vision ?



Flickr 'solved' it

## Today's Agenda

- Course Overview
- Introduction to Computer Vision
- What is Computer Vision
- How hard is Computer Vision
- Why is Computer Vision so hard
- How to organize Computer Vision
- Why study Computer Vision
- Applications
- What we do


## Why is Computer Vision so hard?

## Because it is an ill-posed problem


[Sinha and Adelson 1993]

## Challenge 1: viewpoint variation



Madonna della Pietà,
Michelangelo Buonarroti, 1498-99



## Challenge 2: illumination




## Challenge 3: occlusion

The Blank Signature,
Rene Magritte, 1965

[Fei Fei, Fergus \& Torralba]

Challenge 4: scale

## Challenge 5: deformation



Six Galloping Horses,
Xu Beihong, 1942
[Fei Fei, Fergus \& Torralba]


## Challenge 6: background clutter

The Maiden,
Gustav Klimt, 1913

[Fei Fei, Fergus \& Torralba]

Challenge 7: object intra-class variation

[Fei Fei, Fergus \& Torralba]


## Challenge 8: local ambiguity


[Fei Fei, Fergus \& Torralba]


## Today's Agenda

- Course Overview
- Introduction to Computer Vision
- What is Computer Vision
- How hard is Computer Vision
- Why is Computer Vision so hard
- How to organize Computer Vision
- Why study Computer Vision
- Applications
- What we do


## How to organize Computer Vision ?

| 0 | 3 |  | 25 | 5 | 47 | 6 | 59 | 8 |  | 0 | 3 | 2 | 5 | 4 |  | 7 | 6 |  | 9 | 8 | 0 |  | 3 | 2 | 5 | 4 | 7 | 6 |  | 9 | 8 | 0 | 3 |  | 2 | 5 | 4 | 7 | 6 | 9 |  | 8 | 0 | 3 | 2 | 5 | 4 | 7 | 6 | 9 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 |  | 12 | 23 | 3 | 5 | 6 | 7 | 3 | 3 | 0 | 1 | 2 | 3 | 3 | 4 | 5 |  | 6 | 7 | 3 |  | 0 | 1 | , 2 | 3 | 4 | 5 |  | 6 | 7 | 3 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 5 | 7 | 3 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 1 |  | 03 | 3 | $2{ }^{2} 5$ | 4 | 47 | 76 | 5 | 2 | 1 | 0 | - | 2 | 2 | - | 4 |  | 7 | 6 | 2 |  | 1 | 0 | ${ }^{3}$ | 2 | 5 | 4 |  | 7 | 6 | 2 | 1 |  | 0 | 3 | 2 | 5 | 4 | 7 | 7 | 6 | 2 | 1 | 0 | 3 | 2 | 5 | 4 | 7 | 6 |
| 5 | 2 |  | 30 | , | 2 | , | $3{ }^{4} 4$ | 5 | 5 | 5 | 2 | 3 | 0 | 1 | 1 | 2 | 3 |  | 4 | 5 | 5 |  | 2 | 3 | 0 | 1 | 2 | 3 |  | 4 | 5 | 5 | 2 |  | 3 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 5 | 2 | 3 | 0 | 1 | 2 | 3 | 4 | 5 |
| 4 | 3 |  | 21 | 10 | , | 2 | $2{ }^{2} 5$ | 5 | 4 | 4 | 3 | 2 | 1 | 0 | 0 | , | 2 |  | 5 | 4 | 4 |  | 3 | 2 | 1 | 0 | 3 | 2 |  | 5 | 4 | 4 | 3 |  | 2 | 1 | 0 | 3 | 2 | 5 |  | 4 | 4 | 3 | 2 | 1 | 0 | 3 | 2 | 5 | 4 |
| 7 | 4 |  | 52 | 23 | 30 | , | 12 | 23 |  | 7 | 4 | 5 | 2 | 3 |  | 0 | 1 |  | 2 | 3 | 7 |  | 4 | 5 | 2 | 3 | 0 | 1 |  | 2 | 3 | 7 | , 4 |  | 5 | 2 | 3 | 0 | 1 | 2 |  | 3 | 7 | 4 | 5 | 2 | 3 | 0 | 1 | 2 | 3 |
| 6 | 5 | 4 | 4 | 3 | 2 | 10 | 0 | 2 |  | 6 | 5 | 4 | 3 | 2 |  | 1 | 0 |  | 3 | 2 | 6 |  | 5 | 4 | ${ }^{3}$ | 2 | 1 | 0 |  | 3 | 2 | 6 | 5 |  | 4 | 3 | 2 | 1 | 0 | 3 |  | 2 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 3 | 2 |
| 9 | 6 | 7 | 74 | 4 | 52 | 3 | 0 | 1 |  | 9 | 6 | 7 | 4 | 4 |  | 2 | 3 |  | 0 | 1 | 9 |  | 6 | 7 | 4 | 5 | 2 | 3 |  | 0 | 1 | 9 | 6 |  | 7 | 4 | 5 | 2 | 3 | 0 |  | 1 | 9 | 6 | 7 | 4 | 5 | 2 | 3 | 0 | 1 |
| 8 | 7 | 6 | 65 | 54 | 43 | 2 | 20 | 10 |  | 8 | 7 | 7 6 | 5 | 5 |  | 3 | 2 |  | 1 | 0 | 8 |  | 7 | 6 | 5 | 4 | 3 | 2 |  | 1 | 0 | 8 | 7 |  | 6 | 5 | 4 | 3 | 2 |  | 1 | 0 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 3 |  | 2 | 4 | 47 | 6 | 59 | 8 |  |  | 3 | 2 | 5 | 4 |  | 7 | 6 |  |  | 8 | 0 |  | 3 | 2 | 5 | 4 | 7 | 6 |  | 9 | 8 | 0 | 3 |  | 2 | 5 | 4 | 7 | 6 |  |  | 8 | 0 | 3 | 2 | 5 | 4 | 7 | 6 | 9 | 8 |
| 3 | 0 | 1 | 12 | 2 | $3{ }^{4} 4$ | 5 | 56 | 7 |  |  | 0 | 1 | 2 | 3 |  | 4 | 5 |  | 6 | 7 | 3 |  | 0 | 1 | 2 | 3 | 4 | 5 |  |  | 7 | 3 | 0 |  | 1 | 2 | 3 | 4 | 5 |  |  | 7 | 3 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 |  | 0 | $0{ }^{1} 1$ | 2 | 5 | 4 | 47 | - 6 |  |  | 1 | 0 | 3 | 2 |  | 5 | 4 |  | 7 | 6 | 2 |  | 1 | 0 | ${ }^{3}$ | 2 | 5 | 4 |  | 7 | 6 | 2 | 1 |  | 0 | 3 | 2 | 5 | 4 |  |  | 6 | 2 | 1 | 0 | 3 | 2 | 5 | 4 | 7 | 6 |
| 5 | 2 | 3 | 30 | D 1 | 2 | 3 | 3 4 | 5 |  |  | 2 | 3 | 0 | 1 |  | 2 | 3 |  | 4 | 5 | 5 |  | 2 | 3 | 0 | 1 | 2 | 3 |  | 4 | 5 | 5 | 2 |  |  | 0 | 1 | 2 | 3 |  | 4 | 5 | 5 | 2 | 3 | 0 | 1 | 2 | 3 | 4 | 5 |
| 4 | 3 | 2 | $2{ }^{2} 1$ | 0 | D 3 | 2 | 2 | , 4 |  |  |  | 2 | 1 | 0 |  | 3 | 2 |  |  | 4 |  |  | 3 | 2 | 1 | 0 | 3 | 2 |  | 5 | 4 | 4 | 3 |  | 2 | 1 | 0 | 3 | 2 |  |  | 4 | 4 | 3 | 2 | 1 | 0 | 3 | 2 | 5 | 4 |
| 7 | 4 | 5 | 52 | 3 | 0 | 1 | 2 | 3 |  |  | 4 | 5 | 2 | 3 |  | 0 | 1 |  | 2 | 3 | 7 |  | 4 | 5 | 2 | 3 | 0 | 1 |  | 2 | 3 | 7 | 4 |  | 5 | 2 | 3 | 0 | 1 |  | 2 | 3 | 7 | 4 | 5 | 2 | 3 | 0 | 1 | 2 | 3 |
| 6 | 5 | 4 | 43 | 2 | 1 | 0 | 3 | 2 |  |  | 5 | 4 | 3 | 2 |  | 1 | 0 |  |  | 2 | 6 |  | 5 | 4 | 3 | 2 | 1 | 0 |  | , | 2 | 6 | 5 |  | 4 | 3 | 2 | 1 | 0 | 3 | 3 | 2 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 3 | 2 |
| 9 | 6 | 7 | 74 | 4 | 2 | 3 | 0 | 1 |  |  | 0 | 7 | 4 | 5 |  | 2 | 3 |  |  | 1 | 9 |  | 6 | 7 | 4 | 5 | 2 | 3 |  | 0 | 1 | 9 | 6 |  | 7 | 4 | 5 | 2 | 3 | 0 | 0 | 1 | 9 | 6 | 7 | 4 | 5 | 2 | 3 | 0 | 1 |
| 8 | 7 | 6 | 6 | 54 | 4 | 2 | 21 | 0 |  |  | 7 | 6 | 5 | 4 |  | 3 | 2 |  |  | 0 | 8 |  | 7 | 6 | 5 | 4 | 3 | 2 |  | 1 | 0 | 8 | 7 |  | 6 | 5 | 4 | 3 | 2 |  |  | 0 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 3 | 2 | $2{ }^{2} 5$ | 4 | 7 | 6 | 9 | 8 |  |  | 3 | 2 | 5 | 4 |  | 7 | 6 | 9 |  | 8 | - |  | 3 | 2 | 5 | 4 | 7 | 6 |  | 9 | 8 | 0 | 3 |  |  | 5 | 4 | 7 | 6 | 9 |  | 8 | 0 | 3 | 2 | 5 | 4 | 7 | 6 | 9 | 8 |
| 3 | 0 | 1 | 12 | 3 | 4 | 5 | 5 | 7 |  |  | 0 | 1 | 2 | 3 |  | 4 | 5 | 5 |  | 7 | 3 |  | 0 | 1 | , |  | 4 | 5 |  | 5 | 7 | 3 | 0 |  |  | 2 | 3 | 4 | 5 | 5 |  | 7 | 3 | 0 | - | , | 3 | 4 | 5 | 6 | 7 |
| 2 | 1 | 0 | 03 | 2 | 5 | 5 | 7 | 6 |  |  | 1 | 0 | 3 | 2 |  | 5 | 4 |  |  | 6 | 2 |  | 1 | 0 | 3 | 2 | 5 | 4 |  | 7 | 6 | 2 | 1 |  | 0 | 3 | 2 | 5 | 4 |  |  | 6 | 2 | 1 | 0 | 3 | 2 | 5 | 4 | 7 | 6 |
| 5 | 2 | 3 | 30 | 1 | 2 | 3 | 4 | 5 |  |  | 2 | 3 | 0 | 1 |  | 2 | 3 | 4 |  | 5 | 5 |  | 2 | 3 | 0 | 1 | 2 | 3 |  | 4 | 5 | 5 | 2 |  | 3 | 0 | 1 | 2 | 3 |  |  | 5 | 5 | 2 | , | 0 | 1 | 2 | 3 | 4 | 5 |
| 4 | 3 | 2 | $2{ }^{2} 1$ | 0 | D 3 | 2 | 5 | 4 |  |  | 3 | 2 | 1 | 0 |  | 3 | 2 | 5 |  | 4 | 4 |  | 3 | 2 | 1 | 0 | 3 | 2 |  | 5 | 4 | 4 | 3 |  | 2 | 1 | 0 | 3 | 2 |  |  | 4 | 4 | 3 | 2 | 1 | 0 | 3 | 2 | 5 | 4 |
| 7 | 4 | 5 | 52 | 23 | 0 | 1 | 2 | 3 |  |  | 4 | 5 | 2 | 3 |  | 0 | 1 |  |  | 3 | 7 |  | 4 | 5 | 2 | 3 | 0 | 1 |  | 2 | 3 | 7 | 4 |  |  | 2 | 3 | 0 | 1 |  |  | 3 | 7 | 4 | 5 | 2 | 3 | 0 | 1 | 2 | 3 |
| 6 | 5 | 4 | 43 | 2 | 1 | 0 | 3 | 2 |  |  | 5 | 4 | 3 | 2 |  | 1 | 0 | 3 |  | 2 | 6 |  | 5 | 4 | 3 | 2 | 1 | 0 |  | 3 | 2 | 6 | 5 |  | 4 | 3 | 2 | 1 | 0 | 3 | 3 | 2 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 3 | 2 |
| 9 | 6 | 7 | 74 | 5 | 2 | 3 | 0 | 1 |  | 9 | 6 | 7 | 4 | 5 |  | 2 | 3 | 0 |  | 1 | 9 |  | 6 | 7 | 4 | 5 | 2 | 3 |  | 0 | 1 | 9 | 6 |  | 7 | 4 | 5 | 2 | 3 | 0 | 0 | 1 | 9 | 6 | 7 | 4 | 5 | 2 | 3 | 0 | 1 |
| 8 | 7 | 6 | 65 | 4 | 3 | 2 | 1 | 0 |  |  | 7 | 6 | 5 | 4 |  | , | 2 |  |  | 0 | 8 |  | 7 | - | 5 | 4 | 3 | 2 |  | 1 | 0 | 8 | 7 |  |  | 5 | 4 | 3 | 2 | 1 |  | 0 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | $\square$ | 0 |



## How to organize Computer Vision ?

- Low Level Vision

```
- Measurements
- Enhancements
- Region segmentation
- Features
```

- Mid Level Vision
- Reconstruction
- Depth
- Motion Estimation
- High Level Vision
- Category detection
- Activity recognition

- Deep understanding


## How to organize Computer Vision ?

- Low Level Vision
- Measurements
- Enhancements
- Region segmentation
- Features
- Mid Level Vision
- Reconstruction
- Depth
- Motion Estimation
- High Level Vision
- Category detection
- Activity recognition

- Deep understanding


## Low-Level: Exposure


[Redmon]

## Low-Level: Edges


[Redmon]

## Low-Level: Segmentation (color)


[Redmon]

## How to organize Computer Vision ?

- Low Level Vision
- Measurements
- Enhancements
- Region segmentation
- Features
- Mid Level Vision
- Reconstruction
- Depth
- Motion Estimation
- High Level Vision
- Category detection
- Activity recognition

- Deep understanding


## Mid-Level: Panorama Stitching


[Redmon]

## Mid-Level: Panorama Stitching



## Mid-Level: Panorama Stitching


[Redmon]

## Mid-Level: Multi-View Stereo


[Redmon]

## Mid-Level: Multi-View Stereo


[Redmon]

## Mid-Level: Multi-View Stereo

[Building Rome in a Day, Agarwal et al., ICCV 2009]

The Colosseum, 2,106 images, 819,242 points

## Mid-Level: Optical Flow


[Redmon]

## Mid-Level: Optical Flow


[Redmon]

## How to organize Computer Vision ?

- Low Level Vision
- Measurements
- Enhancements
- Region segmentation
- Features
- Mid Level Vision
- Reconstruction
- Depth
- Motion Estimation
- High Level Vision
- Category detection
- Activity recognition

- Deep understanding


## High-Level: Classification

- What is in the image?

[Redmon]


## High-Level: Tagging

- What are ALL the things in the image?

[Redmon]


## High-Level: Detection

- What are ALL the things in the image?
- Where are they?

[Redmon]


## High-Level: Semantic Segmentation


[Redmon] Group
, -

## High-Level: Instance Segmentation



## Today's Agenda

- Course Overview
- Introduction to Computer Vision
- What is Computer Vision
- How hard is Computer Vision
- Why is Computer Vision so hard
- How to organize Computer Vision
- Why study Computer Vision
- Applications
- What we do


## Why study Computer Vision?

- Match (or beat) human vision
$\rightarrow$ central to Artificial Intelligence, countless applications
- Understand human vision $\rightarrow$ neuroscience
- Do research with huge impact
- Get a job in the industry
- Timing is perfect: Al revolution - big data, faster hardware, deep learning

Group


## Do research with huge impact

## $\equiv$ Google Scholar

- Top publications
- Top publications

| Categories |  |
| :--- | :--- |
| 1. | Nature |
| 2. | The New England Journal of Medicine |
| 3. | Science |
| 4. | The Lancet |
| 5. | IEEE/CVF Conference on Computer Vision and Pattern Recognition |
| 6. | Advanced Materials |
| 7. | Nature Communications |
| 8. | Cell |
| 9. | Chemical Reviews |
| 10. | Chemical Society reviews |
| 11. | Journal of the American Chemical Society |
| 12. | Angewandte Chemie |
| 13. | Proceedings of the National Academy of Sciences |
| 14. | JAMA |
| 15. | Nucleic Acids Research |

2021
Categories *
Publication
h5-indexh5-median
607

1. Nature ..... 410
2. Science ..... 391
3. IEEE/CVF Conference on Computer Vision and Pattern Recognition ..... 356
4. The Lancet ..... 345
5. Advanced Materials ..... $\underline{294}$
6. Cell ..... 288
7. Nature Communications ..... 287
8. Chemical Reviews ..... 270
9. International Conference on Learning Representations ..... $\underline{253}$
10. JAMA ..... $\underline{253}$
11. Neural Information Processing Systems ..... $\underline{245}$
12. Proceedings of the National Academy of Sciences ..... $\underline{245}$
13. Journal of the American Chemical Society ..... 245
14. Angewandte Chemie ..... $\underline{235}$

## Get a job in the industry



Co-financed by the European Union

## Today's Agenda

- Course Overview
- Introduction to Computer Vision
- What is Computer Vision
- How hard is Computer Vision
- Why is Computer Vision so hard
- How to organize Computer Vision
- Why study Computer Vision
- Applications
- What we do


## Segmentation and Matting



## 3D Maps



## Computational photography



Portrait mode simulating wider aperture

$\nabla$

## Even wider aperture...



How scientists captured the first image of a black hole, 2019

## 3D photos



## 3D Photos on Facebook

Estimate depth from photo to create animation


## Age Simulation



From CNET
Snapchat Time Machine

## Face recognition



SEe national geochurhic Explomer everi sunnay on nickelodion calle ti
Who is she?

## Vision-based biometrics


"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

[Seitz, Szeliski]


## Object recognition




## Special effects: shape capture



The Matrix movies, ESC Entertainment, XYZRGB, NRC

## Sports - VAR



Connecting Europe Facility

## Games



Microsoft's XBox Kinect

$\nabla$

## Virtual Reality - Metaverse



Oculus Quest, Beat Saber

## Augmented Reality - Metaverse



Microsoft Hololens 2
$>$ Group

## Augmented Reality - Metaverse

## HoloLens2 Sensors



## Augmented Reality


[Seitz, Szeliski]

$\qquad$

## Phone-based AR


http://www.youtube.com/watch?v=OPi-izy6ESE


## Robotics


[Seitz, Szeliski]


## Smart cars



## Mobileye

- Vision systems currently in high-end BMW, GM, Volvo models


## Self-driving cars



## https://waymo.com/tech/

## Drones


https://www.skydio.com/
[Seitz, Szeliski]
 Group $\nabla$

## Research: Yolo


http://www.youtube.com/watch?v=MPU2Histivl
[Seitz, Szeliski] Group

## Research: StyleGan



## Today's Agenda

- Who are we?
- Introduction to Computer Vision
- What is Computer Vision
- How hard is Computer Vision
- Why is Computer Vision so hard
- How to organize Computer Vision
- Why study Computer Vision
- Applications
- What we do


## 3D Shape Understanding

3D Building Semantic Understanding


Geometric/Semantic Decomposition


Cross-shape semantic segmentation


Shape Collection


Neural 3D Reconstruction


## Texture Generation for 3D Data



Interactive Texturing

## Urban Semantic Understanding from Remote Sensing Data Sources

Semantic Segmentation of Buildings


Building Footprint Extraction


## Final

 Building Polygons

Thank you.

University of Cyprus - MSc Artificial Intelligence

## MAI644 - COMPUTER VISION <br> Lecture 2: Fundamentals - Color

Melinos Averkiou<br>CYENS Centre of Excellence<br>University of Cyprus - Department of Computer Science<br>m.averkiou@cyens.org.cy



## Last time

- Course Overview
- Introduction to Computer Vision
- What is Computer Vision
- How hard is Computer Vision
- Why is Computer Vision so hard
- How to organize Computer Vision
- Why study Computer Vision
- Applications


## Today's Agenda - Overview of Color

- Physics of color
- Human encoding of color
- Color spaces


## What is color?

- The result of interaction between physical light in the environment and our visual system.
- A psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights.



## Color and light

White light: composed of almost equal energy in all wavelengths of the visible spectrum


Try it:
https://micro.magnet.fsu.edu/primer/java/scienceopticsu/newton/

## Electromagnetic Spectrum




# Human Luminance Sensitivity Function 

## http://www.yorku.ca/eve/photopik.htm

## Visible Light

## Why do we see light of these wavelengths?



## Sun's temperature makes it emit yellow light more than any other color



## The Physics of Light

Any source of visible light can be completely described physically by its spectrum:
the amount of energy emitted (per time unit) at each wavelength 400-700 nm.
s

## The Physics of Light

## Some examples of the spectra of light sources


© Stephen E. Palmer, 2002

## The Physics of Light

Some examples of the reflectance spectra of surfaces





## Interaction of light and surfaces

Reflected color is the result of interaction of light source spectrum with surface reflectance





From Foundation of Vision by Brian Wandell, Sinauer Associates, 1995


1

## Interaction of light and surfaces

What is the observed color of any surface under monochromatic light?


Olafur Eliasson, Room for one color

## Interaction of light and surfaces



See here

## Overview of Color

- Physics of color
- Human encoding of color
- Color spaces


## Two types of light-sensitive receptors



## Cones

- cone-shaped
- less sensitive
- operate in high light
- color vision


## Rods

- rod-shaped
- highly sensitive
- operate at night
- gray-scale vision
http://www.blueconemonochromacy.org/how-the-eye-functions/ Group


## Rod / Cone sensitivity



## Physiology of Color Vision

## Three kinds of cones: Short (S), Medium (M), Long (L)



## Cone mosaic


© Stephen E. Palmer, 2002

## Color perception



Wavelength

## Rods and cones act as filters on the spectrum

- To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
- Each cone yields one number
- Q: How can we represent an entire spectrum with 3 numbers?
- A: We can't! Most of the information is lost.
- As a result, two different spectra may appear indistinguishable - such spectra are known as metamers (see demo)


## We need metamers!



## We need metamers!



Green Ink SPD


Lettuce SPD
stimulating
$\mathrm{S}=0.2, \mathrm{M}=0.8$, $\mathrm{L}=0.8$
SPD of"real lettuce"

Green ink SPD
stimulating
$\mathrm{S}=0.2, \mathrm{M}=0.8$, $\mathrm{L}=0.8$

[Seitz]

## Standardizing color experience

- We would like to understand which spectra produce the same color sensation in people under similar viewing conditions
- Color matching experiments

(B)


Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

## Trichromacy

- In color matching experiments, most people can match any given light with three primaries
- Primaries must be independent
- For the same light and same primaries, most people select the same weights
- Exception: color blindness
- Trichromatic color theory
- Three numbers seem to be sufficient for encoding color
- Dates back to $18^{\text {th }}$ century (Thomas Young)


## Color matching experiment 1



Color matching experiment 1


Color matching experiment 1


## Color matching experiment 1

 Group

## Color mixing



Source: W. Freeman Group

## Additive color mixing



Colors combine by adding color spectra


Light adds to existing black.

## Examples of additive color systems



CRT phosphors


## Color matching experiment 2



## Color matching experiment 2



## Color matching experiment 2

 Group

## Color matching experiment 2

 Group

## Subtractive color mixing





Colors combine by multiplying color spectra.


Pigments remove color from incident light (white).

## Examples of subtractive color systems

- Printing on paper
- Crayons
- Photographic film



## Overview of Color

- Physics of color
- Human encoding of color
- Color spaces


## Linear color spaces

- Defined by a choice of three primaries
- The coordinates of a color are given by the weights of the primaries used to match it

mixing two lights produces colors that lie along a straight line in color space

mixing three lights produces colors that lie within the triangle
they define in color space


## Linear color spaces

- Pick some primaries
- Can mix those primaries to match any color inside the triangle
- There is a commission that studies color!
- Commission internationale de l'éclairage (CIE) is a 100-year-old organization that creates international standards related to light and color.


## CIE 1931 XYZ color space



- First attempt to produce a color space based on measurements of human color perception
- Y corresponds to brightness or luminance of a color. $Z$ is like blue light stimulation, and $X$ is a mix (a linear combination) of cone response curves chosen to be nonnegative.
- 2D visualization - draw $(x, y)$, where: $x=X /(X+Y+Z), y=Y /(X+Y+Z)$


## ‘Theoretical’ CIE RGB primaries



## Practical sRGB primaries, MSFT 1996



- sRGB (standard Red Green Blue) is an RGB color space that HP and Microsoft created cooperatively in 1996 to use on monitors, printers, and the Internet
- It was subsequently standardized by the IEC (International Electrotechnical Commission) as IEC 61966-2-1:1999


## What does this mean for computers?

- We represent images as grids of pixels
- Each pixel has a color, 3 components: RGB
- Not every color can be represented in RGB!
- Have to go out in the real world sometimes
- RGB is not fully accurate
- We can represent a color with 3 numbers
- \#ff0off; (1.0, 0.0, 1.0); 255,0,255
- What color is this?


## Image: 2d array of color

- Some range
- [0,255]
- [0.0,1.0]
- We'll talk more about this later.



## RGB is a cube...



## Non-linear color spaces: Hue, Saturation, Value

- Different model based on perception of light
- Hue: what color
- Saturation: how much color
- Value: how bright
- Allows easy image transforms
- Shift the hue
- Increase saturation



## Hue, Saturation, Value: cylinder!



## An RGB Image



## Still 3d tensor, different info



## Hue <br> Saturation <br> Value



## More saturation $=$ intense colors



## More value = lighter image



Group

## Shift hue = shift colors



Group

## Set hue to your favorite color!


$\square$

## Or pattern...



## Increase and threshold saturation




## Thank you.

University of Cyprus - MSc Artificial Intelligence

## MAI644 - COMPUTER VISION <br> Lecture 3: Fundamentals - Cameras

Melinos Averkiou<br>CYENS Centre of Excellence<br>University of Cyprus - Department of Computer Science<br>m.averkiou@cyens.org.cy


CENTRE OF EXCELLENCE

## Last time

- Physics of color
- Human encoding of color
- Color spaces


## Today's Agenda - Overview of Cameras

- Pinhole Camera model
- Aperture
- Camera Obscura
- Cameras with lenses
- Thin lens equation
- Depth of field
- Field of view
- Digital cameras
- Bayer filters
- Debayering


## Today's Agenda - Overview of Cameras

- Pinhole Camera model
- Aperture
- Camera Obscura
- Cameras with lenses
- Thin lens equation
- Depth of field
- Field of view
- Digital cameras
- Bayer filters
- Debayering


## Let's design a camera



- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?


## Pinhole camera



Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?


## Pinhole Camera model

- Captures pencil of rays - all rays through a single point
- The point is called Center of Projection
- The image is formed on the Image Plane

[Slide by Steve Seitz]


## Pinhole cameras everywhere




## Pinhole cameras everywhere



Sun "shadows" during a solar eclipse
http://www.flickr.com/photos/73860948@N08/6678331997/

## Pinhole cameras everywhere



Tree shadow during a solar eclipse
photo credit: Nils van der Burg http://www.physicstogo.org/index.cfm

## Today's Agenda - Overview of Cameras

- Pinhole Camera model
- Aperture
- Camera Obscura
- Cameras with lenses
- Thin lens equation
- Depth of field
- Field of view
- Digital cameras
- Bayer filters
- Debayering


## Pinhole Camera - Camera Obscura

## The first camera

- Known to Aristotle


Gemma Frisius, 1558

## How to Turn a Room into a Camera Obscura


https://www.youtube.com/watch?v=hsXo4gD7iWI\&ab channel=GeorgeEastmanMuseum

## Home-made pinhole camera


http://www.debevec.org/Pinhole/


## Pinhole Camera - Camera Obscura

## The first camera

- Known to Aristotle
- How does the aperture size affect the image?



## Shrinking the aperture

Why not make the aperture as small as possible?



## Shrinking the aperture

Why not make the aperture
as small as possible?

- Less light gets through
- Diffraction effects



Large Aperture -Low Levels of Diffraction

0.6 mm

[Slide by Steve Seitz]

## Today's Agenda - Overview of Cameras

- Pinhole Camera model
- Aperture
- Camera Obscura
- Cameras with lenses
- Thin lens equation
- Depth of field
- Field of view
- Digital cameras
- Bayer filters
- Debayering


## Adding a lens



A lens focuses light onto the film

- Rays passing through the center are not deviated
- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image


## Lenses



A lens focuses rays parallel to its axis onto a single focal point

- Focal point is on a plane located at a distance $f$ (focal length) beyond the plane of the lens
- $f$ is a function of the shape and index of refraction of the lens
- Aperture of diameter $D$ restricts the range of rays
- aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)


## Today's Agenda - Overview of Cameras

- Pinhole Camera model
- Aperture
- Camera Obscura
- Cameras with lenses
- Thin lens equation
- Depth of field
- Field of view
- Digital cameras
- Bayer filters
- Debayering


## Thin lenses



See here
Converging - Convex lens


Diverging - Concave lens

## Thin lenses - ray tracing

- Five rules for image formation with thin lenses

1. A ray entering a converging lens parallel to its axis passes through the focal point $F$ of the lens on the other side.
2. A ray entering a diverging lens parallel to its axis seems to come from the focal point $F$.
3. A ray passing through the center of either a converging or a diverging lens does not change direction.
4. A ray entering a converging lens through its focal point exits parallel to its axis.
5. A ray that enters a diverging lens by heading toward the focal point on the opposite side exits parallel to the axis.

See here


## Thin lens equation



Thin lens equation: $\quad \frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}$

- Any object point satisfying this equation is in focus
- Thin lens applet (needs java player): http://www.phy.ntnu.edu.tw/java/Lens/lens e.html (by Fu-Kwun Hwang)


## Thin lens formula



## Thin lens formula

## Use similar triangles!



## Thin lens formula

$$
y^{\prime} / y=d_{i} / d_{0}
$$



## Thin lens formula

$$
\begin{aligned}
& y^{\prime} / y=d_{i} / d_{o} \\
& y^{\prime} / y=\left(d_{i}-f\right) / f
\end{aligned}
$$



## Thin lens formula



Any point satisfying the thin lens equation is in focus.

## Today's Agenda - Overview of Cameras

- Pinhole Camera model
- Aperture
- Camera Obscura
- Cameras with lenses
- Thin lens equation
- Depth of field
- Field of view
- Digital cameras
- Bayer filters
- Debayering


## Depth of field


http://www.cambridgeincolour.com/tutorials/depth-of-field.htm


## Depth of field



Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus
- But small aperture reduces amount of light - need to increase exposure

Flower images from Wikipedia http://en.wikipedia.org/wiki/Depth of field

## Depth of field



Large aperture = small DOF


Small aperture = large DOF
[Slide by A. Efros]


## Today's Agenda - Overview of Cameras

- Pinhole Camera model
- Aperture
- Camera Obscura
- Cameras with lenses
- Thin lens equation
- Depth of field
- Field of view
- Digital cameras
- Bayer filters
- Debayering


## Field of view



From London and Upton
[Slide by A. Efros]

## Field of view



From London and Upton
[Slide by A. Efros]

## Field of view



FOV depends on focal length $f$ and size of the camera sensor size $d$

$$
\varphi=\tan ^{-1}\left(\frac{d}{2 f}\right)
$$

Smaller FOV = larger Focal Length

## Today's Agenda - Overview of Cameras

- Pinhole Camera model
- Aperture
- Camera Obscura
- Cameras with lenses
- Thin lens equation
- Depth of field
- Field of view
- Digital cameras
- Bayer filters
- Debayering



## From light to pixels

## RGB Inside the Camera


https://sites.google.com/a/globalsystemsscience.org /digital-earth-watch/tools/digital-cameras/light-entering-a-camera

## Bayer filters


https://en.wikipedia.org/wiki/Bayer filter
$1 / 4$ of pixels see red light (e.g.)

- Q: how do you get red at every pixel?
- A: Need to interpolate -- called debayering


## Today's Agenda - Overview of Cameras

- Pinhole Camera model
- Aperture
- Camera Obscura
- Cameras with lenses
- Thin lens equation
- Depth of field
- Field of view
- Digital cameras
- Bayer filters
- Debayering


## Debayering


$1 / 4$ of pixels see red light (e.g.)

- Q: how do you get red at every pixel?
- A: Need to interpolate -- called debayering


## RGB images (three channel)

What we see


What we get out of the camera


## From now on: what to do with these RGB images



## Thank you.

University of Cyprus - MSc Artificial Intelligence

## MAI644 - COMPUTER VISION <br> Lecture 4: Interpolation - Resizing

Melinos Averkiou<br>CYENS Centre of Excellence<br>University of Cyprus - Department of Computer Science<br>m.averkiou@cyens.org.cy


(2) (

## Last time

- Pinhole Camera model
- Aperture
- Camera Obscura
- Cameras with lenses
- Thin lens equation
- Depth of field
- Field of view
- Digital cameras
- Bayer filters
- Debayering


## Today’s Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink


## Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink


## Eyes: projection onto retina



## Model: pinhole camera



## At each point we record incident light



## How do we record color?



## Bayer pattern for CMOS sensors



## An image is a matrix of light



## Values in matrix = how much light



MAI4CAREU

## Values in matrix = how much light

- Higher = more light

Columns

- Lower = less light
- Bounded
- No light = 0
- Sensor/device limit = max
- Typical ranges:
- [0-255], fit into byte
- [0-1], floating point
- Called pixels



## Addressing pixels

- Ways to index:
- ( $\mathrm{x}, \mathrm{y}$ )
- Like cartesian coordinates
- $(3,6)$ is column 3 row 6
- $\quad(r, c)$
- Like matrix notation
- $\quad(3,6)$ is row 3 column 6
- We use (x,y)
- Arbitrary
- Only thing that matters is consistency



## Color image: 3d tensor in colorspace



## RGB information in separate "channels"

Remember: we can match "real" colors using a mix of primaries.

Each channel encodes one primary. Adding the light produced from each primary mimics the original color.


## Addressing pixels

- We use ( $x, y, c$ )
- $(1,2,0)$ :
- column 1, row 2 , channel 0
- Still doesn't matter, just be consistent
- Also for size:
- $1920 \times 1080 \times 3$ image:
- 1920 px wide
- 1080 px tall
- 3 channels



## Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink


## An image is like a function

An image is a mapping from indices to pixel value:

- Im:|x|x|->R

We may want to pass in nonintegers:

- Im': R×R×I->R



## A note on coordinates in images


integer pixels


## A note on coordinates in images



We can think of their values as being at the centers.

## A note on coordinates in images



Now we can move to a real coordinate system.

## A note on coordinates in images



## A note on coordinates in images

So, the value of the pixel $(x, y)$ is now centered at $(x, y)$.


## A note on coordinates in images

But there are other
real-valued points.


## A note on coordinates in images



## Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink


## Interpolation

How do we find out the VALUE of a non-integer point, when the image only comes with integer points, i.e. $(25,45,3)$.

Two simple ideas:

1. Nearest-Neighbor Interpolation
2. Bilinear Interpolation

Nearest neighbor: what it sounds like
$f(x, y, z)=\operatorname{Im}($ round $(x)$, round $(y), z)$

- Looks blocky
- Note: $z$ is still int



## Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink

Bilinear interpolation: for grids, pretty good
This time find the closest pixels in a box


Bilinear interpolation: for grids, pretty good
This time find the closest pixels in a box

Bilinear interpolation: for grids, pretty good
This time find the closest pixels in a box


Bilinear interpolation: for grids, pretty good
This time find the closest pixels in a box

Weighted sum based on area of opposite rectangle
$\mathrm{q}=\mathrm{V} 1^{*} \mathrm{~A} 1+\mathrm{V} 2^{*} \mathrm{~A} 2+\mathrm{V} 3^{*} \mathrm{~A} 3+\mathrm{V} 4^{*} \mathrm{~A} 4$
Need to normalize!
Or do we?


Bilinear interpolation: for grids, pretty good

```
q= V1*A1 + V2*A2 + V3*A3 + V4*A4
A1 = d2*d4
A2 = d1* d4
A3 = d2*d3
A4 = d1* d3
=> q = V1*d2*d4 + V2*d1*d4 + V3*d2*d3 +
V4*d1*d3
```



Bilinear interpolation: for grids, pretty good
Alternatively, linear interpolation of linear interpolates
$\mathrm{q} 1=\mathrm{V} 1^{*} \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$


Bilinear interpolation: for grids, pretty good
$\mathrm{q} 1=\mathrm{V} 1 * \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$
Equivalent:
$q=q 1 * d 4+q 2 * d 3$


Bilinear interpolation: for grids, pretty good
$\mathrm{q} 1=\mathrm{V} 1 * \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$
Equivalent:

```
q=q1*d4 +q2*d3
q=(V1*d2 +V2*d1)*d4 + (V3*d2 + V4*d1)*d3 (subst)
```



Bilinear interpolation: for grids, pretty good
$\mathrm{q} 1=\mathrm{V} 1 * \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$
Equivalent:

```
q=q1*d4 +q2*d3
q = (V1*d2 + V2*d1)*d4 + (V3*d2 + V4*d1)*d3 (subst)
q=V1*d2*d4 + V2*d1*d4 + V3*d2*d3 + V4*d1*d3 (distribution)
```



Bilinear interpolation: for grids, pretty good
$\mathrm{q} 1=\mathrm{V} 1^{*} \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$

## Equivalent:

```
q=q1*d4 +q2*d3
Recall:
A1 = d2*d4
A2 = d1*d4
A3 = d2*d3
A4 = d1*d3
```

$\mathrm{q}=(\mathrm{V} 1 * \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1)^{*} \mathrm{~d} 4+\left(\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4 * \mathrm{~d} 1\right)^{*} \mathrm{~d} 3$ (subst)
$q=V 1^{*} d 2{ }^{*} d 4+V 2^{*} d 1^{*} d 4+V 3^{*} d 2 * d 3+V 4^{*} d 1^{*} d 3$ (distribution)


Bilinear interpolation: for grids, pretty good
$\mathrm{q} 1=\mathrm{V} 1 * \mathrm{~d} 2+\mathrm{V} 2 * \mathrm{~d} 1$
$q 2=\mathrm{V} 3^{*} \mathrm{~d} 2+\mathrm{V} 4^{*} \mathrm{~d} 1$
$q=q 1^{*} d 4+q 2^{*} d 3$

## Equivalent:

```
q=q1*d4 +q2*d3
q = (V1*d2 + V2*d1)*d4 + (V3*d2 + V4*d1)*d3 (subst)
q=V1*d2*d4 + V2*d1*d4 + V3*d2*d3 + V4*d1*d3 (distribution)
Recall:
A1 = d2*d4
A2 = d1*d4
A3 = d2*d3
A4 = d1*d3
q= V1*A1 + V2*A2 + V3*A3 + V4*A4
```



Group

Bilinear interpolation: for grids, pretty good

- Smoother than NN
- More complex
- 4 lookups
- Some math
- Often the right tradeoff of speed vs final result



## Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink

Bicubic sampling: more complex, maybe better?

- A cubic interpolation of 4 cubic interpolations
- Smoother than bilinear, no "star"
- 16 nearest neighbors
- Fit 3rd order poly:


Bilinear


Bicubic

- Interpolate along axis
- Fit another poly to interpolated values


## Bicubic vs bilinear




## Bicubic vs bilinear



$$
\theta
$$

${ }^{2}$

## Resize algorithm:

- For each pixel in new image:
- Map to old im coordinates
- Interpolate value
- Set new value in image


So what is this interpolation useful for?

## Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink


## Image resizing!

Say we want to increase the size of an image...

This is a beautiful image of a sunset... it's just very small...

## Image resizing!

Say we want to increase the size of an image...

This is a beautiful image of a sunset... it's just very small...

Say we want to increase size $4 \times 4$ > 7x7


## Resize $4 \times 4$-> 7x7

- Create our new image


## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates


## Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$



## Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a^{*} 7=4$



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $\quad a * 7=4$
- $a=4 / 7$


## Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$



## Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$
- $\quad a^{*}-.5+b=-.5$


## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$
- $\quad a^{*}-.5+b=-.5$
- $4 / 7^{*}-1 / 2+b=-1 / 2$


## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$
- $\quad a^{*}-.5+b=-.5$
- $4 / 7^{*}-1 / 2+b=-1 / 2$
- $-4 / 14+b=-7 / 14$


## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$
- $\quad a^{*}-.5+b=-.5$
- $4 / 7^{*}-1 / 2+b=-1 / 2$
- $-4 / 14+b=-7 / 14$
- $b=-3 / 14$



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$
- $b=-3 / 14$


## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords



## Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$
- $4 / 7 * 1-3 / 14$
- $4 / 7 * 3-3 / 14$



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$
- 4/7*1-3/14
- 4/7*3-3/14
- $(5 / 14,21 / 14)$



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values


## Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \times-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values
- Size of opposite rects



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> (5/14, 21/14)
- Interpolate old values
- Size of opposite rects
- OR find q1 and q2, then interpolate between them



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> ( $5 / 14,21 / 14)$
- Interpolate old values

$$
\begin{array}{ll}
- & q 1=r 1, g 1, b 1 \\
- & r 1=.5^{*} 0+.5^{*} 241 \\
- & \mathrm{g} 1=.5^{*} 255+.5^{*} 90 \\
- & \mathrm{b} 1=.5^{*} 255+.5^{*} 36
\end{array}
$$

## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

> - q1 = (120.5, 172.5, 145.5)

- $\quad q 2=r 2, g 2, b 2$


## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

> - q1 = (120.5, 172.5, 145.5)

- $\quad q 2=r 2, g 2, b 2$
- $\quad$ r2 $=.5 * 241+.5 * 255$
- $\quad \mathrm{g} 2=.5 * 90+.5 * 255$
- $\quad \mathrm{b} 2=.5 * 36+.5 * 0$


## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

> - q1 = (120.5, 172.5, 145.5)

- $\quad q 2=(248,172.5,18)$



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
\text { - } \quad q 1=(120.5,172.5,145.5)
$$

- $\quad q 2=(248,172.5,18)$
- $\quad q=r, g, b$
- $\quad q=9 / 14^{*} q 1+5 / 14^{*} q 2$


## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \times-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
\begin{array}{ll}
- & q 1=(120.5,172.5,145.5) \\
- & q 2=(248,172.5,18) \\
- & q=r, g, b \\
- & q=9 / 14^{*} q 1+5 / 14^{*} q 2 \\
- & r=9 / 14^{*} 120.5+5 / 14^{*} 248 \\
- & g=9 / 14^{*} 172.5+5 / 14^{*} 172.5 \\
- & b=9 / 14^{*} 145.5+5 / 14^{*} 18
\end{array}
$$

## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
\text { - } \quad q 1=(120.5,172.5,145.5)
$$

- $\quad q 2=(248,172.5,18)$
- $\quad q=(166,172.5,100)$


## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
-\quad q=(166,172.5,100)
$$



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values
- $\quad q=(166,172.5,100)$



## Resize $4 \times 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
\text { - } \quad q=(166,172.5,100)
$$

- Fill in the rest



## Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
-\quad q=(166,172.5,100)
$$

- Fill in the rest
- On outer edges use padding!



## Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
-\quad q=(166,172.5,100)
$$

- Fill in the rest



## Resize $4 x 4$-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

$$
\text { - } \quad q=(166,172.5,100)
$$

- Fill in the rest


2
Group

## We did it!



## Different scales


$256 \times 256$

$32 \times 32$

MAl4CAREU

## Different methods



## Today's Agenda

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink


## Want to make image smaller



## $448 \times 448$-> $64 \times 64$



MAILCAREU

## $448 \times 448$-> $64 \times 64$



MAILCAREU

## $448 \times 448$-> $64 \times 64$



MAI4CAREU

## $448 \times 448$-> $64 \times 64$



MAI4CAREU

## $448 \times 448$-> $64 \times 64$



## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$




MAI4CAREU

## $448 \times 448$-> $64 \times 64$



## $448 \times 448$-> $64 \times 64$




## $448 \times 448$-> $64 \times 64$



## Lots of issues

- NN and Bilinear only look at small area
- Lots of artifacting
- Staircase pattern on diagonal lines
- We'll fix this with filters!


MAI4CAREU

## IS THIS ALL THERE IS??



MAI4CAREU

## THERE IS A BETTER WAY!



## Thank you.

University of Cyprus - MSc Artificial Intelligence

## MAI644 - COMPUTER VISION <br> Lecture 5: Filters - Convolution

Melinos Averkiou<br>CYENS Centre of Excellence<br>University of Cyprus - Department of Computer Science<br>m.averkiou@cyens.org.cy



## Last time

- Image basics
- What is an image - addressing pixels
- Image as a function - image coordinates
- Image interpolation
- Nearest neighbor
- Bilinear
- Bicubic
- Image resizing
- Enlarge
- Shrink


## Today's Agenda

- Averaging vs Interpolation
- Systems - filters
- Convolution
- Box Filter
- Gaussian
- Cross correlation vs Convolution
- Examples of filters


## Today's Agenda

- Averaging vs Interpolation
- Systems - filters
- Convolution
- Box Filter
- Gaussian
- Cross correlation vs Convolution
- Examples of filters

MAI4CAREU

## Is this all there is??



## Lots of issues

- NN and Bilinear only look at small area
- Lots of artifacting
- Staircase pattern on diagonal lines
- We'll fix this with filters!


MAI4CAREU

## There is a better way!



## Look at how much better



MAI4CAREU

## How?



## How? Averaging!




## How? Averaging!



MAI4CAREU

## What is averaging?




MAI4CAREU

## What is averaging? A weighted sum



## What is averaging? A weighted sum

## รயกૂ <br> 

What are the weights here ?

## Today's Agenda

\author{

- Averaging vs Interpolation
}
- Systems - filters
- Convolution
- Box Filter
- Gaussian
- Cross correlation vs Convolution
- Examples of filters


## Moving average is a filter

Filter or kernel

|  | 1x | | | | | | |
|---|---|---|---|---|---|---|---|
|  | 1x | $1 \times$ | 1x | 1× | 1x | 1x | 1x |
| 5 | 7x | 1x | 1x | 1x | 1x | 1x | 1x |
| A | 1x | $1 \times$ | 7x | 1× | 1x | 1x | 1× |
|  | 1x | 1x | 1x | 1× | 1x | 1x | 1x |
|  | 1x |
|  | 1x | 1× | 1x | 1× | 1x | 1x | 1x |

Filtering

- Filtering
- Forming a new image whose pixel values are transformed from original pixel values
- Goal is to extract useful information from images, or transform images into another domain where we can modify/enhance image properties
- Features (edges, corners, blobs...)
- Applications: super-resolution (resizing); in-painting; de-noising;


## Applications



In-painting

[Slide by Niebles]


## Systems

- We define a system as a unit that converts an input function $\mathrm{f}[\mathrm{x}, \mathrm{y}]$ into an output (or response) function $\mathrm{g}[\mathrm{x}, \mathrm{y}]$, where ( $\mathrm{x}, \mathrm{y}$ ) are the independent variables.
- In the case of images, ( $x, y$ ) represents the spatial position in the image.


## Moving average - example

$$
H[\mathscr{H}, \vartheta]
$$

$G[x, y]$

[Slide by Seitz]

## Moving average - example

$$
F[x, y]
$$

$G[x, y]$


|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 10 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

## Moving average - example

$$
H[\mathscr{H}, \mathscr{Y}]
$$

$\mathrm{T}[\mathscr{X}, Y]$


|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 10 | 20 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

## Moving average - example

$$
\boldsymbol{H}[\mathfrak{C}, \mathscr{Y}]
$$

$G[x, y]$


|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 10 | 20 | 30 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

## Moving average - example

$$
F[x, y]
$$

$G[x, y]$


|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 10 | 20 | 30 | 30 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 8 Group

## Moving average - example

$$
F[x, y]
$$

$G[x, y]$


|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 10 | 20 | 30 | 30 | 30 | 20 | 10 |  |
|  | 0 | 20 | 40 | 60 | 60 | 60 | 40 | 20 |  |
|  | 0 | 30 | 60 | 90 | 90 | 90 | 60 | 30 |  |
|  | 0 | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
|  | 0 | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
|  | 0 | 20 | 30 | 50 | 50 | 60 | 40 | 20 |  |
|  | 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |  |
|  | 10 | 10 | 10 | 0 | 0 | 0 | 0 | 0 |  |
|  |  |  |  |  |  |  |  |  |  |

## Properties of systems

- Amplitude properties
- Additivity $\quad S\left[f_{i}[n, m]+f_{j}[n, m]\right]=S\left[f_{i}[n, m]\right]+S\left[f_{j}[n, m]\right]$
- Homogeneity $\left.\quad S\left[\alpha f_{i}[n, m]\right]=\alpha S\left[f_{i}[n, m]\right]\right]$
- Superposition $\quad S\left[\alpha f_{i}[n, m]+\beta f_{j}[n, m]\right]=\alpha S\left[f_{i}[n, m]\right]+\beta S\left[f_{j}[n, m]\right]$
- Stability

$$
|f[n, m]| \leq k \Longrightarrow|g[n, m]| \leq c k
$$

- Invertibility $\quad S^{-1}\left[S\left[f_{i}[n, m]\right]\right]=f[n, m]$


## Properties of systems

- Spatial properties
- Causality

$$
\text { for } n<n_{0}, m<m_{0} \text {, if } f[n, m]=0 \Longrightarrow g[n, m]=0
$$

- Shift invariance $f\left[n-n_{0}, m-m_{0}\right] \xrightarrow{\mathcal{S}} g\left[n-n_{0}, m-m_{0}\right]$


## Linear Systems - filters

- Linear filtering
- Form a new image whose pixels are a weighted sum of original pixel values
- Use the same set of weights at each point
- $S$ is a linear system (function) iff $S$ satisfies

$$
S\left[\alpha f_{i}[n, m]+\beta f_{j}[h, m]\right]=\alpha S\left[f_{i}[n, m]\right]+\beta S\left[f_{j}[h, m]\right]
$$

## superposition property

## Linear Shift Invariant Systems

- We call systems which satisfy the superposition and shiftinvariant property Linear Shift Invariant Systems (LSI)
- Not all filters are LSI
- Is thresholding linear?

$$
g[n, m]= \begin{cases}1, & f[n, m]>100 \\ 0, & \text { otherwise }\end{cases}
$$

- Consider:

$$
\begin{aligned}
& f 1[n, m]+f 2[n, m]>T \\
& f 1[n, m]<T \\
& f 2[n, m]<T
\end{aligned}
$$

- LSI systems can be described by the convolution operation


## Today's Agenda

- Averaging vs Interpolation
- Systems - filters
- Convolution
- Box Filter
- Gaussian
- Cross correlation vs Convolution
- Examples of filters


## Call this operation "convolution"

Filter or kernel


Note: multiplying an image section by a filter is actually called "correlation" and convolution involves inverting the filter first

## Convolutions on larger images

|  | 1× | 1x | 1x | 1x | 1x | 1 | $1 \times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1 \times$ | 1x | $1 \times$ | $1 \times$ | $1 \times$ | 1× | 1x |
|  | $1 \times$ | 1x | $1 \times$ | $1 \times$ | 1x | 1× | 1x |
|  | $1 \times$ | 1x | 1x | 1x | $1 \times$ | 1x | 1x |
| $4{ }^{4}$ | $1 \times$ | 1x | $1 \times$ | $1 \times$ | 1x | 1x | 1x |
|  | $1 \times$ | 1x | 1x | 1x | 1x | 1x | $1 \times$ |
|  | 1× | 1x | 1x | 1x | 1x | 1× | 1 |

## sis



## Kernel slides across image



## Convolutions on larger images

|  | 1× | 1x | 1x | 1× | 1× | 1 |  | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1× | 1x | $1 \times$ | 1x | 1× | 1 |  | 1x |
|  | 1× | 1x | 1x | 1x | 1x | 1 |  | 1x |
| $\square$ | 1× | 1x | 1x | 1x | 1x | 1 |  | 1x |
| 42 | 1× | 1x | 1x | 1x | 1x | 1 |  | $1 \times$ |
|  | 1× | $1 \times$ | 1x | 1x | $1 \times$ | 1 |  | 1x |
|  | 1× | 1× | 1× | 1× | 1x | 1 |  | $1 \times$ |



Group

## This is called box filter



## Box filters smooth image



## Now we resize our smoothed image




MAI4CAREU

## So much better!



## Compare to interpolation



## Box filters have artifacts



Box filters have artifacts


## Box filters: vertical + horizontal streaking



Box filters: vertical + horizontal streaking


Box filters: vertical + horizontal streaking


Box filters: vertical + horizontal streaking


## We want a smoothly weighted kernel



## Today's Agenda

- Averaging vs Interpolation
- Systems - filters
- Convolution
- Box Filter
- Gaussian
- Cross correlation vs Convolution
- Examples of filters


## Gaussians



## Gaussians - how $\sigma$ affects the shape



Group

## 2D Gaussian




## Example 7x7 Gaussian

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 |  |
|  | 0.000 | 0.002 | 0.012 | 0.020 | 0.012 | 0.002 | 0.000 |  |
|  | 0.001 | 0.012 | 0.068 | 0.109 | 0.068 | 0.012 | 0.001 |  |
|  | 0.001 | 0.020 | 0.109 | 0.172 | 0.109 | 0.020 | 0.001 |  |
|  | 0.001 | 0.012 | 0.068 | 0.109 | 0.068 | 0.012 | 0.001 |  |
|  | 0.000 | 0.002 | 0.012 | 0.020 | 0.012 | 0.002 | 0.000 |  |
|  | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

## Better smoothing with Gaussians



## Better smoothing with Gaussians



7

## Better smoothing with Gaussians



## Today's Agenda

- Averaging vs Interpolation
- Systems - filters
- Convolution
- Box Filter
- Gaussian
- Cross correlation vs Convolution
- Examples of filters Group


## So what is convolution??



## Cross-Correlation vs Convolution

## Cross-Correlation

## Convolution


*


$$
q=a \times r+b \times s+c \times t+d \times u+e \times v+f \times w+g \times x+h \times y+i \times z
$$



$$
q=i \times r+h \times s+g \times t+f \times u+e \times v+d \times w+c \times x+b \times y+a \times z
$$

## Image support and edge effect

-A computer will only convolve finite support signals
-What happens at the edge?


- zero "padding"
- edge value replication
h • mirror extension
- ...


## 2D convolution example

| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

Input


Kernel

| -13 | -20 | -17 |
| :---: | :---: | :---: |
| -18 | -24 | -18 |
| 13 | 20 | 17 |

Output
[Slide by Song Ho Ahn]

## 2D convolution example



$$
\begin{aligned}
= & x[-1,-1] \cdot h[1,1]+x[0,-1] \cdot h[0,1]+x[1,-1] \cdot h[-1,1] \\
& +x[-1,0] \cdot h[1,0]+x[0,0] \cdot h[0,0]+x[1,0] \cdot h[-1,0] \\
& +x[-1,1] \cdot h[1,-1]+x[0,1] \cdot h[0,-1]+x[1,1] \cdot h[-1,-1] \\
= & 0 \cdot 1+0 \cdot 2+0 \cdot 1+0 \cdot 0+1 \cdot 0+2 \cdot 0+0 \cdot(-1)+4 \cdot(-2)+5 \cdot(-1)=-13
\end{aligned}
$$

| -13 | -20 | -17 |
| :---: | :---: | :---: |
| -18 | -24 | -18 |
| 13 | 20 | 17 |

Output
[Slide by Song Ho Ahn]

## 2D convolution example



$$
\begin{aligned}
= & x[0,-1] \cdot h[1,1]+x[1,-1] \cdot h[0,1]+x[2,-1] \cdot h[-1,1] \\
& +x[0,0] \cdot h[1,0]+x[1,0] \cdot h[0,0]+x[2,0] \cdot h[-1,0] \\
& +x[0,1] \cdot h[1,-1]+x[1,1] \cdot h[0,-1]+x[2,1] \cdot h[-1,-1] \\
= & 0 \cdot 1+0 \cdot 2+0 \cdot 1+1 \cdot 0+2 \cdot 0+3 \cdot 0+4 \cdot(-1)+5 \cdot(-2)+6 \cdot(-1)=-20
\end{aligned}
$$

| -13 | -20 | -17 |
| :---: | :---: | :---: |
| -18 | -24 | -18 |
| 13 | 20 | 17 |

Output
[Slide by Song Ho Ahn]

## 2D convolution example



$$
\begin{aligned}
& =x[1,-1] \cdot h[1,1]+x[2,-1] \cdot h[0,1]+x[3,-1] \cdot h[-1,1] \\
& +x[1,0] \cdot h[1,0]+x[2,0] \cdot h[0,0]+x[3,0] \cdot h[-1,0] \\
& +x[1,1] \cdot h[1,-1]+x[2,1] \cdot h[0,-1]+x[3,1] \cdot h[-1,-1] \\
& =0 \cdot 1+0 \cdot 2+0 \cdot 1+2 \cdot 0+3 \cdot 0+0 \cdot 0+5 \cdot(-1)+6 \cdot(-2)+0 \cdot(-1)=-17 \\
& \qquad \begin{array}{|c|c|c|}
\hline-13 & -20 & -17 \\
\hline-18 & -24 & -18 \\
\hline 13 & 20 & 17 \\
\hline
\end{array}
\end{aligned}
$$

Output
[Slide by Song Ho Ahn]

## 2D convolution example



$$
\begin{aligned}
= & x[-1,0] \cdot h[1,1]+x[0,0] \cdot h[0,1]+x[1,0] \cdot h[-1,1] \\
& +x[-1,1] \cdot h[1,0]+x[0,1] \cdot h[0,0]+x[1,1] \cdot h[-1,0] \\
& +x[-1,2] \cdot h[1,-1]+x[0,2] \cdot h[0,-1]+x[1,2] \cdot h[-1,-1] \\
= & 0 \cdot 1+1 \cdot 2+2 \cdot 1+0 \cdot 0+4 \cdot 0+5 \cdot 0+0 \cdot(-1)+7 \cdot(-2)+8 \cdot(-1)=-18
\end{aligned}
$$

| -13 | -20 | -17 |
| :---: | :---: | :---: |
| -18 | -24 | -18 |
| 13 | 20 | 17 |

Output
[Slide by Song Ho Ahn]

## 2D convolution example

| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 4 | ${ }^{0} 5$ | 6 |
| ${ }^{-1} 7$ | ${ }^{-2} 8$ | ${ }^{-1} 9$ |

$$
\begin{aligned}
= & x[0,0] \cdot h[1,1]+x[1,0] \cdot h[0,1]+x[2,0] \cdot h[-1,1] \\
& +x[0,1] \cdot h[1,0]+x[1,1] \cdot h[0,0]+x[2,1] \cdot h[-1,0] \\
& +x[0,2] \cdot h[1,-1]+x[1,2] \cdot h[0,-1]+x[2,2] \cdot h[-1,-1] \\
= & 1 \cdot 1+2 \cdot 2+3 \cdot 1+4 \cdot 0+5 \cdot 0+6 \cdot 0+7 \cdot(-1)+8 \cdot(-2)+9 \cdot(-1)=-24
\end{aligned}
$$

| -13 | -20 | -17 |
| :--- | :--- | :--- |
| -18 | -24 | -18 |
| 13 | 20 | 17 |

Output
[Slide by Song Ho Ahn]

## 2D convolution example

| 1 | 1 | 1 | 2 |
| ---: | ---: | ---: | :--- |
| 1 | 3 | 1 |  |
| 4 | 0 | 5 | 6 |
|  | 0 | 0 |  |
| 7 | -1 | 8 | -2 |
|  |  | -1 |  |

$$
\begin{aligned}
= & x[1,0] \cdot h[1,1]+x[2,0] \cdot h[0,1]+x[3,0] \cdot h[-1,1] \\
& +x[1,1] \cdot h[1,0]+x[2,1] \cdot h[0,0]+x[3,1] \cdot h[-1,0] \\
& +x[1,2] \cdot h[1,-1]+x[2,2] \cdot h[0,-1]+x[3,2] \cdot h[-1,-1] \\
= & 2 \cdot 1+3 \cdot 2+0 \cdot 1+5 \cdot 0+6 \cdot 0+0 \cdot 0+8 \cdot(-1)+9 \cdot(-2)+0 \cdot(-1)=-18
\end{aligned}
$$

| -13 | -20 | -17 |
| :---: | :---: | :---: |
| -18 | -24 | -18 |
| 13 | 20 | 17 |

Output
[Slide by Song Ho Ahn]

## Calculate it!



## Calculate it!



## Today's Agenda

- Averaging vs Interpolation
- Systems - filters
- Convolution
- Box Filter
- Gaussian
- Cross correlation vs Convolution
- Examples of filters


## Guess that kernel!



## Highpass Kernel: finds edges

## applied to grayscale



## Guess that kernel!



## Identity Kernel: Does nothing!



## Guess that kernel!



## Sharpen Kernel: sharpens!

applied to all three channels


Note: sharpen = highpass + identity! Why ?

## Sharpen Kernel: sharpens!

What does blurring take away?

Highpass



Let's add it back:

Identity + Highpass

$\square$

[Slide by D. Lowe]


## Guess that kernel!



## Emboss Kernel: styling

applied to all three channels


## Guess those kernels!



| -1 | -2 | -1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  | $\cdots$ |  |  |  |
| 1 | 2 | 1 |  |  |  |  |  |
|  | $\ldots$ |  |  |  |  |  |  |
|  | $\ldots$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  | $\ldots$ |  |  |  |  |



## Sobel Kernels: edges and...



| -1 | -2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $\cdots$ |  |  |  |
|  | 2 | 1 |  | - |  |  |
|  |  |  |  |  |  |  |
|  | $\cdots$ |  |  |  |  | ... |
|  |  | V |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  | $\cdots$ |  |  |  |


| -1 | 0 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -2 | 0 | 2 | $\cdots$ |  |  |  |
| -1 | 0 |  |  | - |  |  |
|  |  |  |  |  |  |  |
|  | $\cdots$ |  |  |  |  | ... |
|  |  | N |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  | ... |  |  |  |

applied to grayscale and thresholded


## Sobel Kernels: edges and gradient!



| -1 | -2 | -1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  | $\cdots$. |  |  |  |
| 1 | 2 | 1 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | $\cdots$ |  |  |  |  |  | $\cdots$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  | $\cdots$ |  |  |  |  |



## Sobel Kernels: edges and gradient!



This visualization is showing the magnitude and direction of the gradient

## And so much more!!

- Next time
- Edges
- Features


## Thank you.

University of Cyprus - MSc Artificial Intelligence

## MAI644 - COMPUTER VISION <br> Lecture 6: Edges

Melinos Averkiou<br>CYENS Centre of Excellence<br>University of Cyprus - Department of Computer Science<br>m.averkiou@cyens.org.cy



## Last time

- Averaging vs Interpolation
- Systems - filters
- Convolution
- Box Filter
- Gaussian
- Cross correlation vs Convolution
- Examples of filters


## Today's Agenda

- What can we do with convolutions
- What is an edge - image derivatives
- Sobel filters
- Laplacian filters
- Difference of Gaussian filters
- Canny edge detection


## Today's Agenda

- What can we do with convolutions
- What is an edge - image derivatives
- Sobel filters
- Laplacian filters
- Difference of Gaussian filters
- Canny edge detection


## What can we do with convolutions

Mathematically: nice linear properties

- Commutative
- $A^{*} B=B^{*} A$
- Associative
- $\quad A^{*}\left(B^{*} C\right)=\left(A^{*} B\right)^{*} C$
- Distributes over addition
- $\quad A^{*}(B+C)=A * B+A^{*} C$
- Plays well with scalars
- $\quad x(A * B)=(x A)^{* B}=A *(x B)$


## What can we do with convolutions

This means some convolutions decompose:

- 2d gaussian is just composition of 1d gaussians
- Faster to run 2 1d convolutions


## What can we do with convolutions

- Blurring
- Sharpening
- Edges
- Features
- Derivatives
- Super-resolution
- Classification
- Detection
- Image captioning


## What can we do with convolutions

- Blurring
- Sharpening
- Edges
- Features
- Derivatives
- Super-resolution
- Classification
- Detection
- Image captioning

So what can we do with these convolutions anyway?

- Blurring
- Sharpening
- Edges
- Features
- Derivatives
- Super-resolution
- Classification
- Detection
- Image captioning


## Today's Agenda

- What can we do with convolutions
- What is an edge - image derivatives
- Sobel filters
- Laplacian filters
- Difference of Gaussian filters
- Canny edge detection


## What's an edge?

- Image is a function
- Edges are rapid changes in this function




## What's an edge?

- Image is a function
- Edges are rapid changes in this function



## Finding edges

- Could take derivative
- Edges = high response




## Image derivatives

- Recall:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

- We don't have an "actual" function, must estimate
- Possibility: set h=1
- What will that look like?



## $f^{\prime}(x)$



## Image derivatives

- Recall:
- $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
- We don't have an "actual" function, must estimate
- Possibility: set h=1
- What will that look like?



## Image derivatives

- Recall:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

- We don't have an "actual" function, must estimate
- Possibility: set h=2
- What will that look like?



## $f^{\prime}(x)$

## Image derivatives

- Recall:
- $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
- We don't have an "actual" function, must estimate
- Possibility: set h=2
- What will that look like?



## Today's Agenda

- What can we do with convolutions
- What is an edge - image derivatives
- Sobel filters
- Laplacian filters
- Difference of Gaussian filters
- Canny edge detection


## Images are noisy!




## But we already know how to smooth




## Smooth first, then derivative

 Group

## Smooth first, then derivative

## $1 / 2 \times\left(\begin{array}{|l|l|}\hline-1 & 0\end{array} 1 . * \begin{array}{|c|c|c|}\hline 1 & 2 & 1 \\ \hline 2 & 4 & 2 \\ \hline 1 & 2 & 1 \\ \hline\end{array}\right) * *$

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## Smooth first, then derivative

## $1 / 2 \times\left(\begin{array}{|l|l|l|l|l|l|}\hline-1 & 0 & 1 \\ \hline\end{array} * \begin{array}{|l|l|l|}\hline 2 & 4 & 2 \\ \hline 1 & 2 & 1 \\ \hline\end{array}\right)$ <br> 

Smooth first, then derivative


Smooth first, then derivative

$$
1 / 2 \times\left(\begin{array}{|l|l|l|l|l|l|}
\hline-1 & 0 & 1
\end{array} * \begin{array}{|c|c|c|}
\hline 1 & 2 & 1 \\
\hline 2 & 4 & 2 \\
\hline 1 & 2 & 1 \\
\hline
\end{array}\right)
$$



Smooth first, then derivative

$$
1 / 2 \times\left(\begin{array}{|l|l|l}
\hline-1 & 0 & 1 \\
\hline
\end{array} * \begin{array}{|c|c|c|}
\hline 1 & 2 & 1 \\
\hline 2 & 4 & 2 \\
\hline 1 & 2 & 1 \\
\hline
\end{array}\right)
$$



Smooth first, then derivative

Smooth first, then derivative

## $1 / 2 \times\left(\begin{array}{|l|l|l|l|l|l|}\hline-1 & 0 & 1 \\ \hline\end{array} * \begin{array}{|c|c|}\hline 2 & 4 \\ \hline\end{array}\right)$

| -1 | 0 | 1 |
| :---: | :---: | :---: |
| 2 | 4 |  |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

Smooth first, then derivative

## 



Smooth first, then derivative

## $1 / 2 \times\left(\begin{array}{|l|l|l|l|l|l|}\hline-1 & 0 & 1 \\ \hline\end{array} * \begin{array}{|c|c|}\hline 2 & 4 \\ \hline\end{array}\right)$



Smooth first, then derivative

## $1 / 2 \times\left(\begin{array}{|l|l|l|l|l|l|}\hline-1 & 0 & 1\end{array} *\left(\begin{array}{|l|l|l|}\hline 1 & 2 & 1 \\ \hline 2 & 4 & 2 \\ \hline 1 & 2 & 1 \\ \hline\end{array}\right)\right.$



## Sobel filter! Smooth \& derivative



## Image derivatives

- Recall:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- Want smoothing too!


| 1 | 0 | -1 |
| :--- | :--- | :--- |
| 2 | 0 | -2 |
| 1 | 0 | -1 |



## Finding edges

- Could take derivative
- Find high responses
- Sobel filters!
- What about y direction?

$f^{\prime}(x)$


## Finding edges

- Could take derivative
- Find high responses
- Sobel filters!
- Let's stop a moment and get some basics

$f^{\prime}(x)$


## Simplest image gradient

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=f(x+1, y)-f(x, y) \\
& \text { Likewise for df/dy }
\end{aligned}
$$

The gradient direction is $\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$
How does this relate to the direction of the edge? -Perpendicular

The edge strength is given by the gradient magnitude

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

## Sobel filters

$$
g_{x}=\begin{array}{|l|l|l|}
\hline 1 & 0 & -1 \\
\hline 2 & 0 & -2 \\
\hline 1 & 0 & -1 \\
\hline
\end{array} \quad g_{y}=\begin{array}{|c|c|c|}
\hline 1 & 2 & 1 \\
\hline 0 & 0 & 0 \\
\hline-1 & -2 & -1 \\
\hline
\end{array}
$$

Magnitude:

$$
g=\sqrt{g_{x}^{2}+g_{y}^{2}}
$$

Orientation:

$$
\Theta=\tan ^{-1}\left(\frac{g_{y}}{g_{x}}\right)
$$

We can change the sign:


## Finding edges

- Could take derivative
- Find high responses
- Sobel filters!
- But...

$f^{\prime}(x)$


## Finding edges

- Could take derivative
- Find high responses
- Sobel filters!
- But...
- Edges go both ways
- Want to find extrema



## Today's Agenda

- What can we do with convolutions
- What is an edge - image derivatives
- Sobel filters
- Laplacian filters
- Difference of Gaussian filters
- Canny edge detection


## 2nd derivative!

- Crosses zero at extrema



## Laplacian (2nd derivative)!

- Crosses zero at extrema
- Recall:

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} .
$$

- Laplacian:

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

- Again, have to estimate $f^{\prime \prime}(x)$ :



## Laplacians

- Laplacian:

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

## Laplacians

- Laplacian:

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$



## Laplacians

- Laplacian:

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$



## Laplacians

- Laplacian:

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$



## Laplacians

- Laplacian:

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$


$\left.\left(\begin{array}{|c|}\hline 1 \\ \hline-2 \\ \hline 1\end{array}\right)+\begin{array}{|l|l|}\hline 1 & -2 \\ \hline\end{array}\right)$
$\downarrow$


米


| 0 | 1 |
| :---: | :---: |
| 1 | -4 |
| 0 | 1 |

## *



## Laplacians

- Laplacian:

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

- Negative Laplacian, -4 in middle
- Positive Laplacian --->

| 0 | 1 | 0 |
| :---: | :---: | :---: |
| 1 | -4 | 1 |
| 0 | 1 | 0 |



## Laplacians also sensitive to noise

- Again, use gaussian smoothing
- Can just use one kernel since convs commute
- Laplacian of Gaussian, LoG
- Can get good approx. with 5x5-9x9 kernels



## Today's Agenda

- What can we do with convolutions
- What is an edge - image derivatives
- Sobel filters
- Laplacian filters
- Difference of Gaussian filters
- Canny edge detection


## Another edge detector

- Image is a function
- Has high frequency and low frequency components
- Think in terms of fourier transform
- Edges are high frequency changes
- Maybe we want to find edges of a specific size (i.e. specific frequency)


## Difference of Gaussian (DoG)

- Gaussian is a low pass filter
- Strongly reduce components with frequency $f>\sigma$
- ( $\left.\mathrm{g}^{*} \mathrm{I}\right)$ low frequency components
- I - ( $\mathrm{g}^{*}$ ) high frequency components
- $\mathrm{g}(\sigma 1)^{*}\left|-\mathrm{g}(\sigma 2)^{*}\right|$
- Components in between these frequencies
- $g(\sigma 1)^{*}\left|-g(\sigma 2)^{*}\right|=[g(\sigma 1)-g(\sigma 2)]^{*} \mid$


## Difference of Gaussian (DoG)

- $\mathrm{g}(\sigma 1)^{*} \mathrm{I}-\mathrm{g}(\sigma 2)^{*} \mathrm{I}=[\mathrm{g}(\sigma 1)-\mathrm{g}(\sigma 2)]^{*} \mid$



## Difference of Gaussian (DoG)

- $\mathrm{g}(\sigma 1)^{*} \mathrm{I}-\mathrm{g}(\sigma 2)^{*} \mathrm{I}=[\mathrm{g}(\sigma 1)-\mathrm{g}(\sigma 2)]^{*} \mid$
- This looks a lot like our LoG!
- (not actually the same but similar)




## DoG (1-0)



DoG (3-2)

$\operatorname{DoG}(4-3)$


## Today's Agenda

- What can we do with convolutions
- What is an edge - image derivatives
- Sobel filters
- Laplacian filters
- Difference of Gaussian filters
- Canny edge detection

Another approach: gradient magnitude

- Don't need 2nd derivatives
- Just use magnitude of gradient



## Another approach: gradient magnitude

- Don't need 2nd derivatives
- Just use magnitude of gradient
- Are we done? No!






## What we really want: line drawing



## Canny Edge Detection

Algorithm:

- Smooth image (only want "real" edges, not noise)
- Calculate gradient direction and magnitude
- Non-maximum suppression perpendicular to edge
- Threshold into strong, weak, no edge
- Connect together components


## Smooth image

- You know how to do this, gaussians!


MAI4CAREU

## Gradient magnitude and direction

- Sobel filter

| -1 | -2 | -1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | - |  |  |  |
| 1 | 2 | 1 |  | - |  |  |
|  |  |  |  |  |  |  |
|  | $\cdots$ |  |  |  |  | ... |
|  |  | , |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  | ... |  |  |  |

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline-1 & 0 & 1 & & & \\
\hline-2 & 0 & 2 & & \cdots & & \\
\hline-1 & 0 & 1 & & & & \\
\hline & \ddots & & & & & \\
\hline & \cdots & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & \cdots & & & \\
\hline
\end{array}
$$


http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

## Non-maximum suppression

- Want single pixel edges, not thick blurry lines
- Need to check nearby pixels
- See if response is highest



## Non-maximum suppression



Non-maximum suppression


## Non-maximum suppression


http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

## Threshold edges

- Still some noise
- Only want strong edges
- 2 thresholds, 3 cases
- $\quad R>T$ : strong edge
- $\quad R<T$ but $R>t$ : weak edge
- $\quad R<t$ : no edge
- Why two thresholds?



## Connect them up!

- Strong edges are edges!
- Weak edges are edges iff they connect to strong
- Look in some neighborhood (usually 8 closest)



## Canny Edge Detection

Algorithm:

- Smooth image (only want "real" edges, not noise)
- Calculate gradient direction and magnitude
- Non-maximum suppression perpendicular to edge
- Threshold into strong, weak, no edge
- Connect together components
- Tunable: Sigma, thresholds


## Canny Edge Detection


http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

## Thank you.

University of Cyprus - MSc Artificial Intelligence

## MAI644 - COMPUTER VISION <br> Lecture 7: Features - Corners

## Melinos Averkiou

CYENS Centre of Excellence
University of Cyprus - Department of Computer Science
m.averkiou@cyens.org.cy



## Last time

- What can we do with convolutions
- What is an edge - image derivatives
- Sobel filters
- Laplacian filters
- Difference of Gaussian filters
- Canny edge detection


## Today's Agenda

- Features
- Self-difference
- Harris corner detection


## Today's Agenda

- Features
- Self-difference
- Harris corner detection


## What else is there?

So what can we do with these convolutions anyway?

- Blurring
- Sharpening
- Edges
- Features
- Derivatives
- Super-resolution
- Classification
- Detection
- Image captioning


## Features!

- Highly descriptive local regions
- Ways to describe those regions
- Useful for:
- Matching
- Recognition
- Detection


Image gradients


Keypoint descriptor


## What makes a good feature?

- Want to find patches in image that are useful or have some meaning
- For objects, want a patch that is common to that object but not in general
- For panorama stitching, want patches that we can find easily in another image of same place
- Good features are unique!
- Can find the "same" feature easily
- Not mistaken for "different" features


## Application - How to create a panorama

- Say we are stitching images to create a panorama
- Want patches in one image to match to patches in another image
- Hopefully only match one spot



## How close are two patches?

- (weighted) Summed squared difference
- Images I, J
- $\Sigma_{x, y} w(x, y)(1(x, y)-J(x, y))^{2}$


## How can we find unique patches?

- Sky: bad
- Very little variation
- Could match any other sky



## How can we find unique patches?

- Sky: bad
- Very little variation
- Could match any other sky
- Edge: ok
- Variation in one direction
- Could match other patches along same edge



## How can we find unique patches?

- Sky: bad
- Very little variation
- Could match any other sky
- Edge: ok
- Variation in one direction
- Could match other patches along same edge
- Corners: good!
- Only one alignment matches



## Today's Agenda

- Features
- Self-difference
- Harris corner detection


## How can we find unique patches?

- Want a patch that is unique in the image
- Can calculate distance between patch and every other patch, a lot of computation
- Instead, we could think about auto-correlation:
- How well does image match shifted version of itself?
- Autocorrelation: $\Sigma_{d} \Sigma_{x, y} w(x, y)\left(I\left(x+d_{x}, y+d_{y}\right)-I(x, y)\right)^{2}$
- Measure of self-difference (how much am I not myself?)


## Self-difference

Sky: low everywhere


## Self-difference

Edge: low along edge


## Self-difference

Corner: mostly high


## Self-difference

Sky: low everywhere
Edge: low along edge
Corner: mostly high





## Today's Agenda

- Features
- Self-difference
- Harris corner detection


## Self-difference is still expensive

- $\Sigma_{d} \Sigma_{x, y} w(x, y)\left(1\left(x+d_{x}, y+d_{y}\right)-I(x, y)\right)^{2}$
- Lots of summing
- Need an approximation
- Use Taylor Series expansion of the image function (see Szeliski book Section 7.1.1)
- $\quad I\left(x+d_{x}, y+d_{y}\right)^{\sim}=I(x, y)+d_{x} I_{x}(x, y)+d_{y} I_{y}(x, y)$


## Approximate self-difference

- Look at nearby gradients $\mathrm{I}_{\mathrm{x}}$ and $\mathrm{I}_{\mathrm{y}}$
- If gradients are mostly zero, not a lot going on
- Low self-difference
- If gradients are mostly in one direction, edge
- Still low self-difference
- If gradients are in two(ish) directions, corner!
- High self-difference, good patch!


## Approximate self-difference

- How do we tell what's going on with gradients?
- Eigenvectors/values!
- Need structure matrix for patch, just a weighted sum of nearby gradient information

```
| \Sigmaiwil
| \Sigma w wilx
```

- Not as complex as it looks, weighted sum of gradients near pixel


## Structure matrix

- Weighted sum of gradient information

| $\mid \Sigma_{i} w_{i} l_{x}(i) l_{x}(i)$ | $\Sigma_{i} w_{i} l_{x}(i) l_{y}(i) \mid$ |
| :--- | :--- |
| $\mid \Sigma_{i} w_{i} l_{x}(i) l_{y}(i)$ | $\Sigma_{i} w_{i} l_{y}(i) l_{y}(i) \mid$ |

- Can use Gaussian weighting
- Eigenvectors/values of this matrix summarize the distribution of the gradients nearby
- $\lambda_{1}$ and $\lambda_{2}$ are eigenvalues
- $\lambda_{1}$ and $\lambda_{2}$ both small: no gradient
- $\lambda_{1} \gg \lambda_{2}$ or $\lambda_{1} \ll \lambda_{2}$ : gradient in one direction
- $\lambda_{1}$ and $\lambda_{2}$ both large: multiple gradient directions, corner


## Estimating eigenvalues

- Use determinant and trace:
- $\operatorname{det}(\mathrm{S})=\lambda_{1}{ }^{*} \lambda_{2}$
- $\quad \operatorname{trace}(S)=\lambda_{1}+\lambda_{2}$
- Response function (R score): $\operatorname{det}(S)-\kappa$ trace $(S)^{2}=\lambda_{1} \lambda_{2}-\kappa\left(\lambda_{1}+\lambda_{2}\right)^{2}$
- If this score is large, both $\lambda_{1}$ and $\lambda_{2}$ are large


## Harris Corner Detector

- Calculate derivatives $I_{x}$ and $I_{y}$
- Calculate 3 measures $\left.\left.I_{x}\right|_{x} I_{y}\right|_{y} I_{x} I_{y}$
- Calculate weighted sums
- Want a (weighted) sum of nearby pixels, guess what this is?
- Gaussian - or weights could just be ones
- Estimate response based on R score
- Non-max suppression in a neighborhood




## Ok, we found corners, now what?

- Need to match image patches to each other
- Need to figure out transform between images



## Ok, we found corners, now what?

- Need to match image patches to each other
- What is a patch? How do we look for matches? Pixels?
- Need to figure out transform between images
- How can we transform images?
- How do we solve for this transformation given matches?



## Thank you.

University of Cyprus - MSc Artificial Intelligence

## MAI644 - COMPUTER VISION <br> Lecture 8: Feature Descriptors and Image Transforms

Melinos Averkiou<br>CYENS Centre of Excellence<br>University of Cyprus - Department of Computer Science<br>m.averkiou@cyens.org.cy



## Last time

- Features
- Self-difference
- Harris corner detection


## Today's Agenda

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations


## Today's Agenda

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations


## Ok, we found corners, now what?

- Need to match image patches to each other
- Need to figure out transform between images



## Ok, we found corners, now what?

- Need to match image patches to each other
- What is a match? How do we look for matches? Pixels?
- Need to figure out transform between images



## Matching patches: descriptors!

- We want a way to represent an image patch
- Can be very simple, just pixels!
- Finding matching patch is easy, distance metric:
- $\quad \Sigma_{x, y}(I(x, y)-J(x, y))^{2}$
- What problems are there with just using pixels?



## Matching patches: descriptors!

- We want a way to represent an image patch
- Can be very simple, just pixels!
- Finding matching patch is easy, distance metric:
- $\quad \Sigma_{x, y}(I(x, y)-J(x, y))^{2}$
- Not invariant to some image transformations (e.g. rotation, scaling) !



## Matching patches: descriptors!

- We want a way to represent an image patch
- Can be very simple, just pixels!
- Finding matching patch is easy, distance metric:
- $\quad \Sigma_{x, y}(I(x, y)-J(x, y))^{2}$
- Not invariant to lighting changes !



## Matching patches: descriptors!

- We want feature descriptors invariant to lighting and image transforms !
- Descriptors can be more complex
- Gradient information
- How much context?


## Today's Agenda

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations


## Histogram of Oriented Gradients (HOG)

- By Dalal and Triggs 2005
- Better image descriptor
- Not reliant on magnitude, just direction
- Invariant to some lighting changes
- They used it to train an SVM to recognize people


## Histogram of Oriented Gradients (HOG)

Steps to calculate HOG Feature Descriptor

1. Compute gradients
2. Bin gradient directions to create histogram
3. Normalize histograms of gradients

## Histogram of Oriented Gradients (HOG)

## Steps to calculate HOG Feature Descriptor

## 1. Compute gradients

Gaussian smoothing (experimented with various $\sigma$ ), followed by a derivative filter

- $\sigma=0$, i.e., no smoothing gave best results
- 1 D filter $[-1,0,1]$ gave best results


## Histogram of Oriented Gradients (HOG)

Steps to calculate HOG Feature Descriptor
2. Bin gradient directions to create histogram

Split image into $8 \times 8$ 'cells' and compute histogram for each cell

- Unsigned gradients, i.e., $\theta=0-180$ degrees gave best results
- 9 bins gave best results



## Histogram of Oriented Gradients (HOG)

Steps to calculate HOG Feature Descriptor
3. Normalize histograms of gradients

Gather overlapping 'cells' into 'blocks', concatenate histograms and normalize

- $16 \times 16$ blocks of $4(2 \times 2)$ cells gave best results
- L2 Normalization gave best results


## Histogram of Oriented Gradients (HOG)

For each training image of $64 \times 128$ there are $7 \times 15$ blocks, so the overall descriptor is $7 \times 15 \times 36=3780$ dimensions


Training image


HOG descriptor of the image visualized for each $16 \times 16$
block


Descriptor weighted by the SVM weights

## This is as good as it gets ?

- Not so fast...
- Harris has some issues:
- Corner detection is rotation invariant
- Harris not invariant to scale
- Descriptors are also hard
- Just looking at pixels is not rotation invariant!
- HOG also not rotation invariant



Not Corner

18

## Today's Agenda

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations

Want features invariant to scaling, rotation, etc.

- Scale Invariant Feature Transform (SIFT)
- Lowe et al. 2004, many images from that paper
- Get scale-invariant response map
- Find keypoints
- Extract rotation-invariant descriptors
- Normalize based on orientation
- Normalize based on lighting


## Extract DoG features at multiple scales



## Scale space

| 0.797187 |  | 1．414214 | 2.809068 | 2.828427 |
| :---: | :---: | :---: | :---: | :---: |
| 1.414214 | 2. ．ө日日घ日 | 2.828427 | 4．9日卬日日 | 5.656854 |
| 2.828427 | 4.0 ．${ }^{\text {a }}$ | 5.656854 | 8．ตө円вв | 11.313708 |
| 5.656854 | 8.000000 | 11.313798 | 16.0180000 | 22.627417 |




## Find local-maxima in location and scale



## Throw out weak responses and edges

- Estimate gradients
- Similar to before, look at nearby responses
- Not whole image, only a few points! Faster!
- Throw out weak responses
- Find cornery things
- Same deal, structure matrix, use det and trace information
- $\quad r$ : ratio of larger to smaller eigenvalue

$$
\frac{\operatorname{Tr}(\mathbf{H})^{2}}{\operatorname{Det}(\mathbf{H})}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}=\frac{(r \beta+\beta)^{2}}{r \beta^{2}}=\frac{(r+1)^{2}}{r}, \quad \frac{\operatorname{Tr}(\mathbf{H})^{2}}{\operatorname{Det}(\mathbf{H})}<\frac{(r+1)^{2}}{r}
$$

## Find main orientation of patches

- Look at weighted histogram of nearby gradients
- Any gradient within $80 \%$ of peak gets its own descriptor
- Multiple keypoints per pixel
- Descriptors are normalized based on main orientation



## Keypoints are normalized gradient histograms

- Divide into subwindows (4×4)
- Bin gradients within subwindow, get histogram
- Normalize to unit length
- Clamp at maximum . 2
- Normalize again
- Helps with lighting changes!



## SIFT is great!

- Find good keypoints, describe them
- Finding objects, recognition, panoramas, etc.



## SIFT is great!



## Today's Agenda

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations


## Matching patches: descriptors!

- Already have our patches that are likely "unique"-ish
- Loop over good patches in one image
- Find best match in other image
- Do something with them?



## Ok, we found corners, now what?

- Need to match image patches to each other
- Need to figure out transform between images



## Ok, we found corners, now what?

- Need to match image patches to each other
- Need to figure out transform between images
- How can we transform images?
- How do we solve for this transformation given matches?



## How can we transform images?

- Need to warp one image into the other
- Many different image transforms
- Nested hierarchy of transformations


## How can we transform images?

- $x$ is a point in our image where:
- $\quad x=(x, y)$ or in matrix terms



## Say we want new coordinate system

- Map points from one image into another
- Often we can use matrix operations
- Given a point $x$, map to new point $x^{\prime}$ using $M$


## $\mathbf{x}^{\prime}=\mathbf{M} \mathbf{x}$

## Scaling is just a matrix operation

- Map points from one image into another
- Often we can use matrix operations
- Given a point $x$, map to new point $x^{\prime}$ using $M$

$$
\mathbf{x}^{\prime}=\mathbf{S} \mathbf{x} \quad \mathbf{x}^{\prime}=\left[\begin{array}{ll}
S & 0 \\
0 & S
\end{array}\right] \mathbf{x}
$$

## Translation is harder...

- $\mathrm{x}^{\prime}=\mathrm{Mx}$
- Want to move $x^{\prime}$ by $d x$ and $y^{\prime}$ by dy
- How do we pick M?
- Can only add up multiples of $x$ or $y$



## Translation: add another row

- $\overline{\mathrm{x}}$ is x but with an added 1
- Augmented vector

$$
\overline{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

## Translation: add another row

- $\overline{\mathbf{x}}$ is $\mathbf{x}$ but with an added 1
- Augmented vector
- Now translation is easy
$\bar{x}=\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$

$$
x^{\prime}=[1+1 \bar{x}
$$

## Reminder, I = Identity

Common to just use I as a generic, whatever size identity fits here.


## Translation: add another row

- $\overline{\mathbf{x}}$ is $\mathbf{x}$ but with an added 1
- Augmented vector
- Now translation is easy

$$
\overline{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\mathbf{x}^{\prime}=\left[\begin{array}{lll}
1 & 0 & d x \\
0 & 1 & d y
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
x^{\prime}=[1+1] \bar{x}
$$

## Translation: add another row

- $\overline{\mathbf{x}}$ is $\mathbf{x}$ but with an added 1
- Augmented vector
- Now translation is easy
- $x^{\prime}=1^{*} x+0 * y+d x * 1$
- $y^{\prime}=0 * x+1^{*} y+d y^{*} 1$

$$
\overline{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
I & t
\end{array}\right] \overline{\mathbf{x}}
$$

## Translation: add another row

- $\overline{\mathbf{x}}$ is $\mathbf{x}$ but with an added 1
- Augmented vector
- Now translation is easy

$$
\overline{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- $y^{\prime}=0^{*} x+1^{*} y+d y^{*} 1$

$$
\mathbf{x}^{\prime}=\left[\begin{array}{lll}
1 & 0 & d x \\
0 & 1 & d y
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
x^{\prime}=[1+\bar{x}
$$

## Euclidean: rotation + translation

- Want to translate and rotate at same time
- Still just matrix operation



## Euclidean: rotation + translation

- Want to translate and rotate at same time
- Still just matrix operation
$\mathbf{x}^{\prime}=[\mathbf{R} \boldsymbol{\dagger}] \overline{\mathbf{x}}$


## Euclidean: rotation + translation

- Want to translate and rotate at same time
- Still just matrix operation
- $R$ is rotation matrix, $t$ is translation


## $\mathbf{x}^{\prime}=[\mathbf{R} \boldsymbol{\dagger}] \overline{\mathbf{x}}$

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

## Euclidean: rotation + translation

- Want to translate and rotate at same time
- Still just matrix operation
- $\quad \mathrm{R}$ is rotation matrix, t is translation

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & d x \\
\sin \theta & \cos \theta & d y
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad \begin{aligned}
& \mathbf{x}^{\prime}=\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \overline{\mathbf{x}} \\
& \mathbf{R}=\left[\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
\end{aligned}
$$

## Similarity: scale, rotate, translate



Similarity: scale, rotate, translate
$\mathbf{x}^{\prime}=[\mathrm{sR} \boldsymbol{t}] \overline{\mathbf{x}}$


Similarity: scale, rotate, translate

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
s \mathbf{R} & \boldsymbol{t}] \overline{\mathbf{x}} .
\end{array}\right.
$$



## Affine: scale, rotate, translate, shear



## Affine: scale, rotate, translate, shear



Affine: scale, rotate, translate, shear
General case of $2 \times 3$ matrix

$$
\mathbf{x}^{\prime}=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$



## Combinations are still affine

Say you want to translate, then rotate, then translate back, then scale.
$x^{\prime}=S t R t \bar{x}=M \bar{x}$,
If $M=(S t R t)$
$M$ is still affine transformation
Wait, but these are all $2 \times 3$, how to we multiply them together?

## Added row to transforms

$$
\begin{array}{ll}
\overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
1 & 0 & d x \\
0 & 1 & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & \overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & d x \\
\sin \theta & \cos \theta & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
\overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
a & -b & d x \\
b & a & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] & \overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{array}
$$

## Projective transform

- Also known as homography
- Wait but affine was any $2 \times 3$ matrix...



## Need some new coordinates!

- Homogeneous coordinate system
- Each point in 2 d is actually a vector in 3 d
- Equivalent up to scaling factor
- Have to normalize to get back to 2d
$\tilde{\mathbf{x}}=\left[\begin{array}{c}\tilde{x} \\ \tilde{y} \\ \tilde{w}\end{array}\right]$

$$
\overline{\mathbf{x}}=\tilde{\mathbf{x}} / \tilde{\mathbf{w}}
$$

## Why does this make sense?

- Remember our pinhole camera model
- Every point in 3d projects onto our viewing plane through our aperture
- Points along a vector are indistinguishable




## Projective transform

- Also known as homography
- Wait but affine was any $2 \times 3$ matrix...
- Homography is general $3 \times 3$ matrix
- Multiplication by scalar is equivalent


## $\tilde{\mathbf{x}}^{\prime}=\tilde{\mathrm{H}} \tilde{\mathrm{x}}$

## Projective transform

- Also known as homography
- Wait but affine was any $2 \times 3$ matrix...
- Homography is general $3 \times 3$ matrix
- Multiplication by scalar: equivalent projection

$$
\tilde{\mathbf{x}}^{\prime}=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
\tilde{\mathbf{x}} \\
\tilde{y} \\
\tilde{w}
\end{array}\right] \quad \tilde{\mathbf{x}}^{\prime}=\tilde{\mathbf{H}} \tilde{\mathbf{x}}
$$

## Using homography to project point

- Multiply $x^{\sim}$ by $\mathrm{H}^{\sim}$ to get $\mathrm{x}^{\boldsymbol{\sim}}$
- Convert to x’ by dividing by w~

$$
\tilde{\mathbf{x}}^{\prime}=\tilde{\mathbf{H}} \tilde{\mathbf{x}}
$$

$$
\left[\begin{array}{c}
\tilde{x}^{\prime} \\
\tilde{y}^{\prime} \\
\tilde{w}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{w}
\end{array}\right]
$$

$$
\overline{\mathbf{x}}=\tilde{\mathbf{x}} / \tilde{w}
$$

Lots to choose from

- What do each of them do?
- Which is right for panorama stitching?



## Today's Agenda

- Basic descriptor and matching
- Image transformations
- Estimate transformations


## How hard are they to recover?

$$
\begin{gathered}
\overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
1 & 0 & d x \\
0 & 1 & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
y \\
1
\end{array}\right] \quad \overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & d x \\
\sin \theta & \cos \theta & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
y
\end{array}\right] \\
\overline{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
a & -b & d x \\
b & a & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
y
\end{array}\right] \quad \overline{\mathbf{x}}^{\prime}=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \tilde{\mathbf{x}}^{\prime}=\left[\begin{array}{cc}
h_{00} & h_{01} \\
h_{02} \\
h_{10} & h_{11} \\
h_{20} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{w}
\end{array}\right]
\end{gathered}
$$

Lots to choose from

| Transformation | Matrix | \# DoF | Preserves | Icon |
| :--- | :--- | :--- | :--- | :--- |
| translation | $[\mathbf{I} \mid \mathbf{t}]_{2 \times 3}$ | 2 | orientation | $\square$ |
| rigid (Euclidean) | $[\mathbf{R} \mid \mathbf{t}]_{2 \times 3}$ | 3 | lengths |  |
| similarity | $[\mathbf{s R} \mid \mathbf{t}]_{2 \times 3}$ | 4 | angles |  |
| affine | $[\mathbf{A}]_{2 \times 3}$ | 6 | parallelism | $\square$ |
| projective | $[\tilde{\mathbf{H}}]_{3 \times 3}$ | 8 | straight lines | $\square$ |

## Say we want affine transformation

- Have our matched points
- Want to estimate $A$ that maps from $\mathbf{x}$ to $\mathbf{x}^{\prime}$
- $A x=x^{\prime}$


Say we want affine transformation

- Have our matched points
- Want to estimate $\mathbf{A}$ that maps from $\mathbf{x}$ to $\mathbf{x}^{\prime}$
- $A x=x^{\prime}$
- How many degrees of freedom?


## Say we want affine transformation

- Have our matched points
- Want to estimate $\mathbf{A}$ that maps from $\mathbf{x}$ to $\mathbf{x}^{\prime}$
- $A x=x^{\prime}$
- How many degrees of freedom?
- 6
- How many knowns do we get with one match?

$$
x^{\prime}=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

## Say we want affine transformation

- Have our matched points
- Want to estimate $\mathbf{A}$ that maps from $\mathbf{x}$ to $\mathbf{x}^{\prime}$
- $A x=x^{\prime}$
- How many degrees of freedom?
- 6
- How many knowns do we get with one match?
- 2
- $n_{x}=a_{00} * m_{x}+a_{01} * m_{y}+a_{02}{ }^{*} 1$
- $\mathrm{n}_{\mathrm{y}}=\mathrm{a}_{10}{ }^{*} \mathrm{~m}_{\mathrm{x}}+\mathrm{a}_{11}{ }^{*} \mathrm{~m}_{\mathrm{y}}+\mathrm{a}_{12}{ }^{*} 1$

$$
x^{\prime}=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

## Say we want affine transformation

- How many knowns do we get with one match?
- $n_{x}=a_{00}{ }^{*} m_{x}+a_{01}{ }^{*} m_{y}+a_{02} * 1$
- $n_{y}=a_{10} * m_{x}+a_{11} * m_{y}+a_{12} * 1$
- Solve linear system of equations $\mathbf{M a}=\mathrm{b}$
- $M^{-1} M a=M^{-1} b=>a=M^{-1} b$
- But $\mathrm{M}^{-1}$ does not exist in general - Why?

M
a b

- Still works if overdetermined
- Why???
- Pseudoinverse - least squares solution
- $\quad M^{\top} M a=M^{\top} b$
- $\left(M^{\top} M\right)^{-1}\left(M^{\top} M\right) a=\left(M^{\top} M\right)^{-1} M^{\top} b$
- $\quad=>a=\left(M^{\top} M\right)^{-1} M^{\top} b$

| $\begin{array}{llllll} m_{x 1} & m_{1} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{x \times 1} & m_{y 1} & 1 \\ m_{x 2} & m_{y 2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{x 2} & m_{y 2} & 1 \\ m_{x 3} & m_{y 3} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{x 3} & m_{y 3} & 1 \end{array}$ | $\begin{aligned} & a_{01} \\ & a_{02} \\ & a_{10} \\ & a_{11} \\ & a_{12} \end{aligned}$ |  |
| :---: | :---: | :---: |

## Thank you.

# University of Cyprus - MSc Artificial Intelligence 

## MAI644 - COMPUTER VISION <br> Lecture 9: RANSAC, Panorama Stitching

Melinos Averkiou<br>CYENS Centre of Excellence<br>University of Cyprus - Department of Computer Science<br>m.averkiou@cyens.org.cy


CENTRE OF EXCELLENCE

## Last time

- Basic feature descriptor and matching
- Histogram of Oriented Gradients
- SIFT
- Image transformations
- Estimate transformations


## Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching


## Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching


## Linear least squares

Want to solve overdetermined linear system:

- $\mathrm{Ma}=\mathrm{b}$

Want to minimize squared error:
$||b-M a||^{2}=$

## Linear least squares

Want to solve overdetermined linear system:

- $\mathrm{Ma}=\mathrm{b}$

Want to minimize squared error:
$||b-M a||^{2}=$
$(b-M a)^{\top}(b-M a)$

## Linear least squares

Want to solve overdetermined linear system:

- $M a=b$

Want to minimize squared error:
$||b-M a||^{2}=$
$(b-M a)^{\top}(b-M a)=$
$b^{\top} b-a^{\top} M^{\top} b-b^{\top} M a+a^{\top} M^{\top} M a$

## Linear least squares

Want to solve overdetermined linear system:

- $M a=b$

Want to minimize squared error:
$||b-M a||^{2}=$
$(b-M a)^{\top}(b-M a)=$
$b^{\top} b-a^{\top} M^{\top} b-b^{\top} M a+a^{\top} M^{\top} M a=$
$b^{\top} b-2 a^{\top} M^{\top} b+a^{\top} M^{\top} M a$

## Linear least squares

Want to minimize squared error: || b-M a || $\left.\right|^{2}=$
$b^{\top} b-2 a^{\top} M^{\top} b+a^{\top} M^{\top} M a$
This is convex and minimized when gradient $=0$. So we take the derivative wrt a and set $=0$.
$-M^{\top} b+\left(M^{\top} M\right) a=0$
$\left(M^{\top} M\right) a=M^{\top} b$
$a=\left(M^{\top} M\right)^{-1} M^{\top} b$

## So what does linear least squares do?



## So what does linear least squares do?

Error based on squared residual
Very scared of being wrong, even for just one point

Very bad at handling outliers in data


Not a problem for us, our data is perfect...


[^0]
## Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching


## RANSAC: RANdom SAmple Consensus

- How can we fit model to inliers but ignore outliers?
- Try a bunch of models, see which ones are best!
- Inliers will all agree on a model
- Outliers are basically random, will not agree

RANSAC: RANdom SAmple Consensus



## RANSAC: RANdom SAmple Consensus



## RANSAC: RANdom SAmple Consensus

## Inliers: 5

## RANSAC: RANdom SAmple Consensus




## RANSAC: RANdom SAmple Consensus

- Parameters: data, model, n points to fit model, $k$ iterations, $t$ threshold, d "good" fit cutoff

```
bestmodel = None
bestfit = -INF
While i < k:
 sample = draw n random points from data
 Fit model to sample
 inliers = data within t of model
 if inliers > bestfit:
 Fit model to all inliers
 bestfit = fit
 bestmodel = model
 if inliers > d:
 return model
return bestmodel
```


## RANSAC: RANdom SAmple Consensus

- Works well even with extreme noise.



## RANSAC: RANdom SAmple Consensus

- Works well even with extreme noise.



## RANSAC: RANdom SAmple Consensus

- Parameters: data, model, n points to fit model, k iterations, $t$ threshold, d "good" fit cutoff
- Lots of tunable parameters
- Want high probability of recovering "right" model
- $t$ : often quite small, assume "good" inliers
- n : should be just enough to fit model, no extra
- k: can be very high
- d: should be >>n


## We can estimate affine..

- How many knowns do we get with one match?
- $\mathrm{n}_{\mathrm{x}}=\mathrm{a}_{00} * \mathrm{~m}_{\mathrm{x}}+\mathrm{a}_{01} * \mathrm{~m}_{\mathrm{y}}+\mathrm{a}_{02} * 1$
$-\quad n_{y}=a_{10} * m_{x}+a_{11} * m_{y}+a_{12}^{*} 1$
- Solve linear system of equations $M a=b$
- $\quad M^{-1} M a=M^{-1} b=>a=M^{-1} b$
- But $\mathrm{M}^{-1}$ does not exist in general - Why?
- Still works if overdetermined

M

| $\begin{array}{llllll} m_{x 1} & m_{y 1} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & m_{x 1} & m_{y 1} & 1 \\ m_{x 2} & m_{y 2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & m_{x 2} & m_{y 2} \\ m_{x 3} & m_{y 3} & 1 & x_{2} & 0 & 0 \\ 0 & 0 & 0 & m_{x 3} & m_{y 3} & 1 \end{array}$ | $\left[\begin{array}{l} a_{00} \\ a_{01} \\ a_{02} \\ a_{10} \\ a_{11} \\ a_{12} \end{array}\right]$ |  |
| :---: | :---: | :---: |

## We want projective (homography)

- What are our equations now?

$$
\begin{array}{ll}
- & n_{x}=\left(h_{00} * m_{x}+h_{01} * m_{y}+h_{02} * m_{w}\right) /\left(h_{20} * m_{x}+h_{22} * m_{y}+h_{22} * m_{w}\right) \\
- & n_{y}=\left(h_{10} * m_{x}+h_{11} * m_{y}+h_{12} * m_{w}\right) /\left(h_{20} * m_{x}+h_{21} * m_{y}+h_{22} * m_{w}\right)
\end{array}
$$

$$
\left[\begin{array}{c}
\tilde{x}^{\prime} \\
\tilde{y}^{\prime} \\
\tilde{w}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{w}
\end{array}\right]
$$

## We want projective (homography)

- What are our equations now?
- $n_{x}=\left(h_{00}{ }^{*} m_{x}+h_{01}{ }^{*} m_{y}+h_{02}{ }^{*} m_{w}\right) /\left(h_{20}{ }^{*} m_{x}+h_{21}{ }^{*} m_{y}+h_{22}{ }^{*} m_{w}\right)$
- $n_{y}=\left(h_{10} * m_{x}+h_{11} * m_{y}+h_{12}^{*} m_{w}\right) /\left(h_{20} * m_{x}+h_{21} * m_{y}+h_{22}^{*} m_{w}\right)$
- Assume $h_{22}$ and $m_{w}$ are 1, now 8 DOF
- $n_{x}=\left(h_{00}{ }^{*} m_{x}+h_{01}{ }^{*} m_{y}+h_{02}\right) /\left(h_{20}{ }^{*} m_{x}+h_{21}{ }^{*} m_{y}+1\right)$
- $\mathrm{n}_{\mathrm{y}}=\left(\mathrm{h}_{10} * \mathrm{~m}_{\mathrm{x}}+\mathrm{h}_{11} * \mathrm{~m}_{\mathrm{y}}+\mathrm{h}_{12}\right) /\left(\mathrm{h}_{20} * \mathrm{~m}_{\mathrm{x}}+\mathrm{h}_{21} * \mathrm{~m}_{\mathrm{y}}+1\right)$

$$
\left[\begin{array}{l}
\tilde{x}^{\prime} \\
\tilde{y}^{\prime} \\
\tilde{w}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{w}
\end{array}\right]
$$

## We want projective (homography)

- What are our equations now?
- $n_{x}=\left(h_{00}{ }^{*} m_{x}+h_{01}{ }^{*} m_{y}+h_{02}{ }^{*} m_{w}\right) /\left(h_{20} * m_{x}+h_{21}{ }^{*} m_{y}+h_{22}{ }^{*} m_{w}\right)$
- $n_{y}=\left(h_{10} * m_{x}+h_{11} * m_{y}+h_{12}^{*} m_{w}\right) /\left(h_{20} * m_{x}+h_{21} * m_{y}+h_{22}^{*} m_{w}\right)$
- Assume $h_{22}$ and $m_{w}$ are 1, now 8 DOF
- $n_{x}=\left(h_{00} * m_{x}+h_{01}{ }^{*} m_{y}+h_{02}\right) /\left(h_{20}{ }^{*} m_{x}+h_{21}{ }^{*} m_{y}+1\right)$
$-n_{y}=\left(h_{10} * m_{x}+h_{11} * m_{y}+h_{12}\right) /\left(h_{20} * m_{x}+h_{21} * m_{y}+1\right)$
- More algebra on $n_{x}$
- $n_{x} *\left(h_{20}{ }^{*} m_{x}+h_{21}{ }^{*} m_{y}+1\right)=\left(h_{00}{ }^{*} m_{x}+h_{01}{ }^{*} m_{y}+h_{02}\right)$
- $n_{x} * h_{20}^{*} m_{x}+n_{x}^{*} h_{21} * m_{y}+n_{x}=h_{00} * m_{x}+h_{01} * m_{y}+h_{02}$
- $n_{x}=h_{00}{ }^{*} m_{x}+h_{01}{ }^{*} m_{y}+h_{02}-n_{x}{ }^{*} h_{20}{ }^{*} m_{x}-n_{x}{ }^{*} h_{21}{ }^{*} m_{y}$
- Similar for $\mathrm{n}_{\mathrm{y}}$


## We want projective (homography)

- What are our equations now?
- $n_{x}=h_{00} * m_{x}+h_{01} * m_{y}+h_{02}-n_{x} * h_{20} * m_{x}-n_{x} * h_{21} * m_{y}$
$-\mathrm{n}_{\mathrm{y}}=\mathrm{h}_{10}{ }^{*} \mathrm{~m}_{\mathrm{x}}+\mathrm{h}_{11}{ }^{*} \mathrm{~m}_{\mathrm{y}}+\mathrm{h}_{12}-\mathrm{n}_{\mathrm{x}}{ }^{*} \mathrm{~h}_{20}{ }^{*} \mathrm{~m}_{\mathrm{x}}-\mathrm{n}_{\mathrm{x}}{ }^{*} \mathrm{~h}_{21}{ }^{*} \mathrm{~m}_{\mathrm{y}}$
- New matrix equations:

$$
\begin{aligned}
& \text { M }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21}
\end{array}\right]=\left[\begin{array}{l}
n_{x 1} \\
n_{y 1} \\
n_{x 2} \\
n_{y 2} \\
n_{x 3} \\
n_{y 3} \\
n_{x 4} \\
n_{y 4}
\end{array}\right]}
\end{aligned}
$$

## We want projective (homography)

- New matrix equations:
- Same procedure, Solve Ma=b
- Exact if \#rows of $\mathrm{M}=8$
- Least squares if \#rows of $M>8$


## Are there any problems with this??

- New matrix equations:
- Same procedure, Solve M a = b
- Exact if \#rows of $M=8$
- Least squares if \#rows of $M>8$


## Today's Agenda

- Linear least-squares
- RANSAC
- Panorama Stitching


## Panorama algorithm

Find corners in both images
Calculate descriptors
Match descriptors
RANSAC to find homography
Stitch together images with homography

## Stitching panoramas

- We know homography is right choice under certain assumption:
- Assume we are taking multiple images of planar object



## In practice



## In practice



## In practi



Co-financed by the European Union

## MAI4CAREU





What's happehing?


## What's happening?



## What's happening?



## What's happening?



What's happêhing?

## What's happening?



## What's happening?



What's happêhing?


## What's happening?



## Very bad for big panoramas!



## Very bad for big panoramas!



MAI4CAREU

## Very bad for big panoramas!



Fails :-(



## How do we fix it? Cylinders!

## How do we fix it?




How do we fix it?



## How do we fix it?




## How do we fix it?




How do we fix it?



## How do we fix it? Cylinders!

Calculate angle and height:
$\boldsymbol{\theta}=(\mathrm{x}-\mathrm{xc}) / \mathrm{f}$
$h=(y-y c) / f$
Find unit cylindrical cóords:
$X^{\prime}=\sin (\theta)$
$Y^{\prime}=h$
$Z^{\prime}=\cos (\theta)$
Project to image plane:
$x^{\prime}=f X^{\prime} / Z^{\prime}+x c$
$y^{\prime}=f Y^{\prime} / Z^{\prime}+y c$


## Dependant on focal length!

 Group

## $f=300$



## $f=500$



## $f=1000$



## $f=1400$



## $f=10,000$



## $f=10,000$



2

## Does it work?



## Yes! Assuming camera is level and rotating around its vertical axis



## Thank you.

University of Cyprus - MSc Artificial Intelligence

## MAl644 - COMPUTER VISION <br> Lecture 10: Visual Recognition - Segmentation

Melinos Averkiou<br>CYENS Centre of Excellence<br>University of Cyprus - Department of Computer Science<br>m.averkiou@cyens.org.cy



## Last time

- Linear least-squares
- RANSAC
- Panorama Stitching


## Today's Agenda

- Visual Recognition Tasks
- Introduction to segmentation and clustering
- Agglomerative clustering
- K-means clustering
- Mean-shift clustering
- Efficient Graph-based image segmentation

Reading: Forsyth Chapter 9
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, TPAMI 2002
[material based on Niebles-Krishna]

## Today's Agenda

- Visual Recognition Tasks
- Introduction to segmentation and clustering
- Agglomerative clustering
- K-means clustering
- Mean-shift clustering
- Efficient Graph-based image segmentation

Reading: Forsyth Chapter 9
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, TPAMI 2002

## Classification

- What is in the image?

[Redmon]


## Tagging

- What are ALL the things in the image?

[Redmon]


## Detection

- What are ALL the things in the image?
- Where are they?

[Redmon]


## Segmentation



## Today's Agenda

- Visual Recognition Tasks
- Introduction to segmentation and clustering
- Agglomerative clustering
- K-means clustering
- Mean-shift clustering
- Efficient Graph-based image segmentation

Reading: Forsyth Chapter 9
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, TPAMI 2002

## Image Segmentation

Goal: identify groups of pixels that go together


## The Goals of Segmentation

- Separate image into coherent "objects"



## The Goals of Segmentation

- Separate image into coherent "objects"
- Group together similar-looking pixels for efficiency of further processing
"superpixels"

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003


## Types of Segmentation

- Semantic segmentation: Assign labels



Tiger
Water

Grass Dirt

## Types of Segmentation

- Semantic segmentation: Assign labels


$$
\theta
$$

## Types of Segmentation

- Instance segmentation: Assign labels per object

http://www.youtube.com/watch?v=OOT3UIXZztE


## Types of Segmentation

- Foreground / background segmentation



## Types of Segmentation

- Co-segmentation: Segment common object in multiple images



## Application: as a result



GrabCut: Rother et al. 2004

## Application: for efficiency - e.g., speed up recognition


[Hoiem et al. 2005, Mori 2005]


## Application: better classification



Angelova and Zhu, 2013

Over/under segmentation


Oversegmentation


Undersegmentation


Multiple Segmentations

## One way to think about segmentation is Clustering

- Pixels are points in a (high-dimensional) feature space, e.g.
- color: 3D
- color + location: 5D
- Cluster pixels into segments



## One way to think about segmentation is Clustering

Clustering: group together similar data points and represent them as a single entity
Clustering is an unsupervised learning method

Key Challenges:

1) What makes two points/images/patches similar?
2) How do we compute an overall grouping from pairwise similarities?

## Distance vs Similarity Measures

Let $x$ and $x^{\prime}$ be two objects from the dataset.
The distance or similarity between $x$ and $x^{\prime}$ is a real number, $\operatorname{dist}\left(x, x^{\prime}\right) \operatorname{or} \operatorname{sim}\left(x, x^{\prime}\right)$

- The Euclidian distance is defined as

$$
\operatorname{dist}\left(x, x^{\prime}\right)=\sqrt{\sum\left(x_{i}-x_{i}^{\prime}\right)^{2}}
$$

- In contrast, cosine similarity measure would be

$$
\begin{aligned}
\operatorname{sim}\left(x, x^{\prime}\right) & =\cos (\theta) \\
& =\frac{x^{\top} x^{\prime}}{\|x\| \cdot\left\|x^{\prime}\right\|} \\
& =\frac{x^{\top} x^{\prime}}{\sqrt{x^{\top} x} \sqrt{{x^{\prime}}^{\top} x^{\prime}}} .
\end{aligned}
$$

## Desirable Properties of a Clustering Algorithm

1. Scalability in terms of both time and space
2. Ability to deal with different data types
3. Minimal requirements for domain knowledge to determine algorithm parameters

- Don't need to know how many objects there are or what those object categories will be.

4. Interpretability and usability are optional

- Incorporation of user-specified constraints


## General ideas

- Bottom-up clustering
- pixels belong together because they are locally coherent
- Top-down clustering
- pixels belong together because they lie on the same visual entity (object)


## Clustering algorithms

- Agglomerative clustering
- K-means
- Mean-shift clustering


## Today's Agenda

- Visual Recognition Tasks
- Introduction to segmentation and clustering
- Agglomerative clustering
- K-means clustering
- Mean-shift clustering
- Efficient Graph-based image segmentation

Reading: Forsyth Chapter 9
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, TPAMI 2002

## Agglomerative Hierarchical Clustering - Algorithm

1. Initially each item $x_{1}, \ldots, x_{n}$ is in its own cluster $C_{1}, \ldots, C_{n}$.
2. Repeat until there is only one cluster left:
3. 

Merge the nearest clusters, say $C_{i}$ and $C_{j}$.

## Agglomerative Hierarchical Clustering - Algorithm



1. Say "Every point is its own cluster"

## Agglomerative Hierarchical Clustering - Algorithm



1. Say "Every point is its own cluster"
2. Find "most similar" pair of clusters


## Agglomerative Hierarchical Clustering - Algorithm



1. Say "Every point is its own cluster"
2. Find "most similar" pair of clusters
3. Merge it into a parent cluster


## Agglomerative Hierarchical Clustering - Algorithm



1. Say "Every point is its own cluster"
2. Find "most similar" pair of clusters
3. Merge it into a parent cluster
4. Repeat

## Agglomerative Hierarchical Clustering - Algorithm



1. Say "Every point is its own cluster"
2. Find "most similar" pair of clusters
3. Merge it into a parent cluster
4. Repeat

## Agglomerative clustering example

 Group

## Agglomerative clustering

How to define cluster similarity?

- average distance between points
- maximum distance
- minimum distance
- distance between means or medoids


## How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or based on distance between merges



## Different measures of nearest clusters

## Single Link

- Distance between clusters is the minimum distance between their points


Long, skinny clusters

## Different measures of nearest clusters

Complete Link

- Distance between clusters is the maximum distance between their points


Tight clusters

## Different measures of nearest clusters

## Average Link

- Distance between clusters is the average distance between their points


Robust against noise

## Example - single link

1
1
2
2
3
4
5 $\left[\begin{array}{ccccc}0 & & & 4 & 5 \\ 2 & 0 & & & \\ 6 & 3 & 0 & & \\ 10 & 9 & 7 & 0 & \\ 9 & 8 & 5 & 4 & 0\end{array}\right]$


## Example - single link

$$
\begin{aligned}
& \left.\left.\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 \\
2 \\
3 \\
4 \\
4 & & & & \\
2 & 0 & & & \\
6 & 3 & 0 & \\
10 & 9 & 7 & 0 \\
9 & 8 & 5 & 4 & 0
\end{array}\right] \quad \begin{array}{r}
\square \\
(1,2)
\end{array}\right]\left[\begin{array}{llll}
0 & & & \\
3 \\
3 \\
3 & 0 & & \\
9 & 7 & 0 & \\
5 & 5 & 4 & 0
\end{array}\right] \\
& d_{(1,2), 3}=\min \left\{d_{1,3}, d_{2,3}\right\}=\min \{6,3\}=3 \\
& d_{(1,2), 4}=\min \left\{d_{1,4}, d_{2,4}\right\}=\min \{10,9\}=9 \\
& d_{(1,2), 5}=\min \left\{d_{1,5}, d_{2,5}\right\}=\min \{9,8\}=8
\end{aligned}
$$



## Example - single link



## Example - single link



## Outliers

The single isolated branch is suggestive of a data point that is very different to all others


## Conclusions: Agglomerative Clustering

## Good

- Simple to implement, widespread application.
- Clusters have adaptive shapes.
- Provides a hierarchy of clusters.
- Can avoid specifying number of clusters in advance.


## Bad

- May have imbalanced clusters.
- Still have to choose number of clusters or threshold to use them.
- Does not scale well. Runtime of O( $n^{3}$ ).


## Today's Agenda

- Visual Recognition Tasks
- Introduction to segmentation and clustering
- Agglomerative clustering
- K-means clustering
- Mean-shift clustering
- Efficient Graph-based image segmentation

Reading: Forsyth Chapter 9
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, TPAMI 2002

## Image Segmentation: Toy Example


input image


- These intensities define the three groups.
- We could label every pixel in the image according to which of these primary intensities it is.
- i.e., segment the image based on the image intensity feature.
- What if the image isn't quite so simple?


Input image


Input image
Slide credit: Kristen Grauman


- Now how to determine the three main intensities that define our groups?
- We need to cluster

- Goal: choose three "centers" as the representative intensities and label every pixel according to which of these centers it is nearest to.
- Best cluster centers are those that minimize Sum of Square Distance (SSD) between all points and their nearest cluster center $c_{i}$ :

$$
S S D=\square \underset{\text { cluster ix clusteri }}{\square}\left(x-c_{i}\right)^{2}
$$

Connecting Europe Facility

## Clustering for Summarization

Goal: cluster to minimize variance in data, given clusters

$$
c^{*}, \delta^{*}=\underset{c, \delta}{\arg \min } \frac{1}{N} \square_{j}^{N \quad} \square_{i}^{K} \delta_{i j}\left(c_{i}-x_{j}\right)^{2}
$$

## Clustering

- With this objective, it is a "chicken and egg" problem:
- If we knew the cluster centers, we could allocate points to groups by assigning each to its closest center.

- If we knew the group memberships, we could get the centers by computing the mean per group.



## K-means clustering

1. Initialize $(t=0)$ : cluster centers $c_{1}, \ldots, c_{K}$
2. Compute $\delta^{t}$ : assign each point to the closest center

- $\delta^{t}$ denotes the set of assignments for each $x_{j}$ to cluster $c_{i}$ at iteration $t$

$$
\delta^{t}=\underset{\delta}{\operatorname{argmin}} \frac{1}{N} \square_{j}^{N} \square_{i}^{K} \delta_{i j}^{L-1}\left(c_{i}^{t-1}-x_{j}\right)^{2}
$$

3. Compute $c^{t}$ : update cluster centers as the mean of the points

$$
c^{t}=\underset{c}{\operatorname{argmin}} \frac{1}{N} \square_{j}^{N} \square_{i}^{K} \delta_{i j}^{t}\left(c_{i}^{t-1} x_{j}\right)^{2}
$$

4. Update $t=t+1$, Repeat Step 2-3 till stopped

## K-means clustering

1. Initialize $(t=0)$ : cluster centers $c_{1}, \ldots, c_{K}$

- Commonly used: random initialization
- Or greedily choose K to minimize residual

2. Compute $\delta^{t}$ : assign each point to the closest center

- $\delta^{t}$ denotes the set of assignments for each $x_{j}$ to cluster $c_{i}$ at iteration $t$
- Typical distance measure:
- Euclidean
- Cosine

$$
\delta^{t}=\underset{\delta}{\operatorname{argmin}} \frac{1}{N} \square_{j}^{N} \square_{i}^{K} \delta_{i j}^{t-1}\left(c_{i}^{t-1} x_{j}\right)^{2}
$$

3. Compute $c^{t}$ : update cluster centers as the mean of the points

$$
c^{t}=\underset{c}{\operatorname{argmin}} \frac{1}{N} \square_{j}^{N} \square_{i}^{K} \delta_{i j}^{t}\left(c_{i}^{t-1} x_{j}\right)^{2}
$$

4. Update $t_{\bar{t}} t+1$, Repeat Step 2-3 till stopped

- $\boldsymbol{C}^{t}$ doesn't change anymore.


## K-means clustering



## Demo

https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html

## K-means clustering

- Converges to a local minimum solution
- Initialize multiple runs

- Better fit for spherical data

- Need to pick K (\# of clusters)


## Segmentation as Clustering



Original image


2 clusters


3 clusters

## Feature Space

- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on intensity similarity
- Feature space: intensity value (1D)



## Feature Space

- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on color similarity

- Feature space: color value (3D)



## Feature Space

- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on texture similarity


Slide credit: Kristen Grauman

## Smoothing Out Cluster Assignments

- Assigning a cluster label per pixel may yield outliers:


Original


- How can we ensure they are spatially smooth?



## Segmentation as Clustering

- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on intensity+position similarity

$\Rightarrow$ Way to encode both similarity and proximity.


## K-Means Clustering Results

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
- Clusters don't have to be spatially coherent


Color-based clusters


## K-Means Clustering Results

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
- Clusters don't have to be spatially coherent
- Clustering based on (r,g,b,x,y) values enforces more spatial coherence


## How to choose the number of clusters?

Try different numbers of clusters in a validation set and look at performance.

We can plot the objective function values for $k$ equals 1 to $6 \ldots$
The abrupt change at $\mathrm{k}=2$, is highly suggestive of two clusters in the data. This technique for determining the number of clusters is known as "knee finding" or "elbow finding".


$\theta$
Group

## K-Means pros and cons

- Pros
- Cons
- Finds cluster centers that minimize conditional variance (good representation of data)
- Simple and fast, Easy to implement
- Need to choose K
- Sensitive to outliers
- Prone to local minima

(B): Ideal clusters

- All clusters have the same parameters (e.g., distance measure is non-adaptive)
- Distance computation in N-dimensional space could be slow

(A): Two natural clusters

(B): $k$-means clusters


## Today's Agenda

- Visual Recognition Tasks
- Introduction to segmentation and clustering
- Agglomerative clustering
- K-means clustering
- Mean-shift clustering
- Efficient Graph-based image segmentation

Reading: Forsyth Chapter 9
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, TPAMI 2002

Group

## Mean-Shift Segmentation

- An advanced and versatile technique for clustering-based segmentation

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, TPAMI 2002


## Mean-Shift Algorithm



- Iterative Mode Search

1. Initialize random seed, and window W
2. Calculate center of gravity (the "mean") of $\mathrm{W}: \sum_{x \in W} x H(x)$
3. Repeat Step 2 until convergence

## Mean-Shift



Slide credit: Y. Ukrainitz \& B. Sarel

## Mean-Shift



Slide credit: Y. Ukrainitz \& B. Sarel


## Mean-Shift



Slide credit: Y. Ukrainitz \& B. Sarel

## Mean-Shift



Slide credit: Y. Ukrainitz \& B. Sarel


## Mean-Shift



Slide credit: Y. Ukrainitz \& B. Sarel

## Mean-Shift



Slide credit: Y. Ukrainitz \& B. Sarel

## Mean-Shift



Slide credit: Y. Ukrainitz \& B. Sarel

## Mean-Shift Clustering



## Mean-Shift Clustering



The blue data points were traversed by the windows towards the mode.

## Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode



## Mean-Shift Clustering/Segmentation

- Find features (color, gradients, texture, etc.)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode



## Mean-Shift Segmentation Results



## More Results



Slide credit: Svetlana Lazebnik


## More Results




## Mean-Shift pros and cons

- Pros
- General, application-independent tool
- Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
- Just a single parameter (window size h)
- h has a physical meaning (unlike k-means)
- Finds variable number of modes
- Robust to outliers
- Cons
- Output depends on window size
- Window size selection is not trivial
- Computationally (relatively) expensive (~2s/image)
- Does not scale well with dimensionality of feature space


## Today's Agenda

- Visual Recognition Tasks
- Introduction to segmentation and clustering
- Agglomerative clustering
- K-means clustering
- Mean-shift clustering
- Efficient Graph-based image segmentation

Reading: Forsyth Chapter 9
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, TPAMI 2002

## Efficient Graph-based Image Segmentation

Oversegmentation algorithm introduced by Felzenszwalb and Huttenlocher in the paper titled Efficient Graph-Based Image Segmentation


## Problem Formulation

- Graph G = (V, E)
- $V$ is set of nodes (i.e. pixels)

- $E$ is a set of undirected edges between pairs of pixels
- $w(v i, v j)$ is the weight of the edge between nodes vi and vj .
- $S$ is a segmentation of a graph $G$ such that $G^{\prime}=\left(V, E^{\prime}\right)$ where $E^{\prime} \subset E$.
- S divides G into $\mathrm{G}^{\prime}$ such that it contains distinct clusters C .


## Predicate for segmentation

- Predicate D determines whether there is a boundary for segmentation.


$$
\operatorname{Merge}\left(C_{1}, C_{2}\right)= \begin{cases}\text { True } & \text { if dif }\left(C_{1}, C_{2}\right)<\text { in }\left(C_{1}, C_{2}\right) \\ \text { False } & \text { otherwise }\end{cases}
$$

Where

- $\operatorname{dif}(\mathrm{C} 1, \mathrm{C} 2)$ is the difference between two clusters.
- in (C1 , C2 ) is the internal difference in the clusters C1 and C2


## Predicate for Segmentation

- Predicate D determines whether there is a boundary for segmentation.


$$
\begin{aligned}
\operatorname{Merge}\left(C_{1}, C_{2}\right) & = \begin{cases}\text { True } & \text { if dif }\left(C_{1}, C_{2}\right)<\text { in }\left(C_{1}, C_{2}\right) \\
\text { False } & \text { otherwise }\end{cases} \\
\operatorname{dif}\left(C_{1}, C_{2}\right) & =\min _{v_{i} \in C_{1}, v_{j} \in C_{2},\left(C_{1}, C_{2}\right) \in E} w\left(v_{i}, v_{j}\right)
\end{aligned}
$$

The difference between two components is the minimum weight edge that connects a node vi in cluster C1 to node vj in C2

## Predicate for Segmentation

- Predicate D determines whether there is a boundary for segmentation.


$$
\begin{aligned}
\operatorname{Merge}\left(C_{1}, C_{2}\right) & = \begin{cases}\text { True } & \text { if dif }\left(C_{1}, C_{2}\right)<\text { in }\left(C_{1}, C_{2}\right) \\
\text { False } & \text { otherwise }\end{cases} \\
\operatorname{dif}\left(C_{1}, C_{2}\right) & =\min _{v_{i} \in C_{1}, v_{j} \in C_{2},\left(C_{1}, C_{2}\right) \in E} w\left(v_{i}, v_{j}\right) \\
\operatorname{in}\left(C_{1}, C_{2}\right) & =\min _{C \in\left\{C_{1}, C_{2}\right\}}\left[\max _{v_{i}, v_{j} \in C}\left[w\left(v_{i}, v_{j}\right)+\frac{k}{|C|}\right]\right]
\end{aligned}
$$

in(C1, C2) is the maximum weight edge that connects two nodes in the same component.

## Predicate for Segmentation

- $\mathrm{k} / \mathrm{Cl}$ sets the threshold by which the components need to be different from the internal nodes in a component.
- Properties of constant k:
- If $k$ is large, it causes a preference for larger components.
- $k$ does not set a minimum size for components.



## Algorithm for Segmentation

The input is a graph $G=(V, E)$, with $n$ vertices and $m$ edges. The output is a segmentation of $V$ into components $S=\left(C_{1}, \ldots, C_{r}\right)$.

0 . Sort $E$ into $\pi=\left(o_{1}, \ldots, o_{m}\right)$, by non-decreasing edge weight.

1. Start with a segmentation $S^{0}$, where each vertex $v_{i}$ is in its own component.
2. Repeat step 3 for $q=1, \ldots, m$.
3. Construct $S^{q}$ given $S^{q-1}$ as follows. Let $v_{i}$ and $v_{j}$ denote the vertices connected by the $q$-th edge in the ordering, i.e., $o_{q}=\left(v_{i}, v_{j}\right)$. If $v_{i}$ and $v_{j}$ are in disjoint components of $S^{q-1}$ and $w\left(o_{q}\right)$ is small compared to the internal difference of both those components, then merge the two components otherwise do nothing. More formally, let $C_{i}^{q-1}$ be the component of $S^{q-1}$ containing $v_{i}$ and $C_{j}^{q-1}$ the component containing $v_{j}$. If $C_{i}^{q-1} \neq C_{j}^{q-1}$ and $w\left(o_{q}\right) \leq \operatorname{MInt}\left(C_{i}^{q-1}, C_{j}^{q-1}\right)$ then $S^{q}$ is obtained from $S^{q-1}$ by merging $C_{i}^{q-1}$ and $C_{j}^{q-1}$. Otherwise $S^{q}=S^{q-1}$.
4. Return $S=S^{m}$.

## Features and weights

How to build the graph ? Two options:

1. Grid-graph: Every pixel is connected to its 8 neighboring pixels and the weights are determined by the difference in intensities.
2. NN-graph: Project every pixel into feature space defined by

- ( $x, y, r, g, b)$.
- Weights between pixels are determined using L2 (Euclidian) distance in feature space.
- Edges are chosen for only top ten nearest neighbors in feature space to ensure run time of $O(n \log n)$ where $n$ is number of pixels.


## Results

With 8-neighbor grid graph Edge weight: intensity difference

ค Visual
Computing
Group


Figure 2. A street scene ( $320 \times 240$ color image), and the segmentation results produced by our algorithm ( $\sigma=0.8, k=300$ ).


Figure 3. A baseball scene ( $432 \times 294$ grey image), and the segmentation results produced by our algorithm ( $\sigma=0.8, k=300$ ).


Figure 4. An indoor scene (image $320 \times 240$, color), and the segmentation results produced by our algorithm ( $\sigma=0.8, k=300$ ). Group


Figure 7. Segmentation of the street and baseball player scenes from the previous section, using the nearest neighbor graph rather than the grid graph ( $\sigma=0.8, k=300$ ).


Figure 8. Segmentation using the nearest neighbor graph can capture spatially non-local regions ( $\sigma=0.8, k=300$ ).

## Results - close up



## Thank you.

 ClowiolUniversity of Cyprus - MSc Artificial Intelligence

## MAI644 - COMPUTER VISION <br> Lecture 11: Visual Recognition - Image Classification

Melinos Averkiou<br>CYENS Centre of Excellence<br>University of Cyprus - Department of Computer Science<br>m.averkiou@cyens.org.cy



## Last time

- Visual Recognition Tasks
- Introduction to segmentation and clustering
- Agglomerative clustering
- K-means clustering
- Mean-shift clustering
- Efficient Graph-based image segmentation


## Today's Agenda

- A simple Image Classification pipeline
- Classification overview
- K-nearest neighbor algorithm
- kNN: algorithm
- kNN: analysis


## Today's Agenda

- A simple Image Classification pipeline
- Classification overview
- K-nearest neighbor algorithm
- kNN: algorithm
- kNN: analysis


## Visual recognition: a classification framework

- Apply a prediction function to a feature representation of the image to get the desired output:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{D})=\text { "apple" } \\
& \mathrm{f} \text { ( } \\
& \mathrm{f} \text { ( }{ }^{2} \text { ) }=\text { "cow" }
\end{aligned}
$$

## The machine learning framework



- Training: given a training set of labeled examples $\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{N}, \mathrm{y}_{\mathrm{N}}\right)\right\}$, estimate the prediction function $f$ by minimizing the prediction error on the training set
- Testing: apply f to a never-before-seen test example x and output the predicted value $y=f(x)$

Classification

- Assign input feature vector to one of two or more classes
- Any decision rule divides input space into decision regions separated by decision boundaries



## A simple pipeline - Training

Training

Images


A simple pipeline - Training


## A simple pipeline - Training



> Training Labels


## A simple pipeline - Testing



## A simple pipeline - Testing



## A simple pipeline - Training



## Image Features

Input image


Many features to choose from

- Histogram of Color
- Histogram of Gradients
- SIFT
- Bag of words
- etc...



## A simple pipeline - Training



## Many classifiers to choose from

- K-nearest neighbor
- SVM

Which is the best one?

- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- Restricted Boltzmann Machines
- Etc.


## Classifiers: Nearest neighbor

Assign label of nearest training data point to each test data point


## A simple pipeline - Testing



## Classifiers: Nearest neighbor



## Classifiers: Nearest neighbor



## Today's Agenda

- A simple Image Classification pipeline
- Classification overview
- K-nearest neighbor algorithm
- kNN: algorithm
- kNN: analysis


## K-nearest neighbor

- Algorithm (training):

1. Store all training data points $\boldsymbol{x}_{i}$ with their corresponding category labels $y_{i}$

- Algorithm (testing):

1. We are given a new test point $\boldsymbol{x}$
2. Compute distance to all training data points
3. Select $k$ training points closest to $\boldsymbol{x}$
4. Assign $\boldsymbol{x}$ to label $y$ that is most common among the $k$ nearest neighbors.


- Distance measurement: - Euclidean
$\operatorname{Dist}\left(X^{n}, X^{m}\right)=\sqrt{\square_{i=1}^{D}\left(X_{i}^{n}-X_{i}^{m}\right)^{2}} \quad$ Where $\mathrm{X}^{\mathrm{n}}$ and $\mathrm{X}^{m}$ are the n -th and m -th data points


## 1-nearest neighbor



## 3-nearest neighbor



## 5-nearest neighbor



## Today's Agenda

- A simple Image Classification pipeline
- Classification overview
- K-nearest neighbor algorithm
- kNN: algorithm
- kNN: analysis


## K-NN: a very useful algorithm

- Simple, a good one to try first
- Very flexible decision boundaries


## K-NN: issues to keep in mind

- Choosing the value of $k$ :
- If too small, sensitive to noise points
- If too large, neighborhood may include points from other classes



## K-NN: issues to keep in mind

- Choosing the value of $k$ :
- If too small, sensitive to noise points
- If too large, neighborhood may include points from other classes



## K-NN: issues to keep in mind

- Choosing the value of $k$ :
- If too small, sensitive to noise points
- If too large, neighborhood may include points from other classes
- Solution: cross validate!



## Cross validation

- For each value of $k$ in the nearest neighbors algorithm:
- Create multiple train/test splits
- For each split:
- Measure performance
- Average performance over all splits
- Select $k$ with best average performance



## K-NN: issues to keep in mind

- Choosing the value of $k$ :
- If too small, sensitive to noise points
- If too large, neighborhood may include points from other classes
- Solution: cross validate!
- Can produce counter-intuitive results (using Euclidean measure)


## Euclidean measure

$$
\begin{array}{|c|}
\hline 111111111110 \\
\hline 011111111111 \\
\hline d=1.4142
\end{array}
$$

## K-NN: issues to keep in mind

- Choosing the value of $k$ :
- If too small, sensitive to noise points
- If too large, neighborhood may include points from other classes
- Solution: cross validate!
- Can produce counter-intuitive results (using Euclidean measure)
- Solution: normalize the vectors to unit length


## K-NN: issues to keep in mind

- Choosing the value of $k$ :
- If too small, sensitive to noise points
- If too large, neighborhood may include points from other classes
- Solution: cross validate!
- Can produce counter-intuitive results (using Euclidean measure)
- Solution: normalize the vectors to unit length
- Curse of Dimensionality


## Curse of dimensionality

- Assume 5000 points uniformly distributed in the unit (hyper)cube and we want to apply $5-\mathrm{NN}$. Suppose our query point is at the origin.
- In 1-dimension, we must go a distance of 5/5000=0.001 on average to capture 5 nearest neighbors.
- In 2 dimensions, we must go $\sqrt{0.001}$ to get a square that contains 0.001 of the volume.
- In d dimensions, we must go $(0.001)^{1 / d}$
 Group


## Curse of dimensionality

- Assume 5000 points uniformly distributed in the unit hypercube and we want to apply $5-\mathrm{NN}$. Suppose our query point is at the origin.
- In 1-dimension, we must go a distance of 5/5000=0.001 on average to capture 5 nearest neighbors.
- In 2 dimensions, we must go $\sqrt{0.001}$ to get a square that contains 0.001 of the volume.
- In d dimensions, we must go $(0.001)^{1 / d}$





## K-NN: issues to keep in mind

- Choosing the value of $k$ :
- If too small, sensitive to noise points
- If too large, neighborhood may include points from other classes
- Solution: cross validate!
- Can produce counter-intuitive results (using Euclidean measure)
- Solution: normalize the vectors to unit length
- Curse of Dimensionality
- Solution: no good one - need to get more data


## Thank you.

University of Cyprus - MSc Artificial Intelligence

## MAI644 - COMPUTER VISION <br> Lecture 12: Visual Bag of Words

Melinos Averkiou<br>CYENS Centre of Excellence<br>University of Cyprus - Department of Computer Science<br>m.averkiou@cyens.org.cy



## Last time

- A simple Image Classification pipeline
- Classification overview
- K-nearest neighbor algorithm
- kNN: algorithm
- kNN: analysis


## Today's Agenda

- Visual bag of words (BoW)
- Background
- Algorithm
- Applications
- Image search
- Spatial Pyramid Matching


## Today's Agenda

- Visual bag of words (BoW)
- Background
- Algorithm
- Applications
- Image search
- Spatial Pyramid Matching


## Object <br> Bag of 'words'



## Origin 1: Texture Recognition



## Origin 1: Texture Recognition

Texture is characterized by the repetition of basic elements or textons

( $x$
Julesz, 1981; Cula \& Dana, 2001; Leung \& Malik 2001; Mori, Belongie \& Malik, 2001; Schmid 2001; Varma \& Zisserman, 2002, 2003; Lazebnik, Schmid \& Ponce, 2003

## Origin 1: Texture Recognition

Recognition based on identity of the textons, not their spatial arrangement (although that is very important too!)

##  <br> Universal texton dictionary

Origin 1: Texture Recognition


## Origin 2: Bag-of-words models

Orderless document representation: frequencies of words from a dictionary salton \& McGill (1983)
$\nabla$

## Origin 2: Bag-of-words models

Orderless document representation: frequencies of words from a dictionary Salton \& McGill (1983)

> 2007-01-23: State of the Union Address

> George W. Bush (2001-)

```
abandon accountable affordable afghanistan africa aided ally anbar armed army baghdad bless challenges chamber chaos choices civilians coalition commanders Commitment confident confront congressman constitution corps debates deduction deficit deliver democratic deploy dikembe diplomacy disruptions earmarks eCOnOMV einstein elections eliminates expand extremists failing faithful families freedom fuel funding god haven ideology immigration impose
iraq
islam julie lebanon love madam marine math medicare moderation neighborhoods nuclear offensive palestinian payroll province pursuing qaeda radical regimes resolve retreat rieman sacrifices science sectarian senate
```

```
terrorists
```

terrorists
threats uphold victory
threats uphold victory
september shia stays strength students succeed sunni tax territories Ler fOTISLS
september shia stays strength students succeed sunni tax territories Ler fOTISLS
violence violent War washington weapons wesley

```

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/

\section*{Origin 2: Bag-of-words models}

Orderless document representation: frequencies of words from a dictionary Salton \& McGill (1983)

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/

\section*{Origin 2: Bag-of-words models}

Orderless document representation: frequencies of words from a dictionary Salton \& McGill (1983)

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/

\section*{Bags of features for object recognition}

face, flowers, building

Works pretty well for image-level classification and for recognizing object instances

\section*{Bags of features for object recognition}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{class} & bag of features & bag of features & Parts-and-shape model \\
\hline & Zhang et al. (2005) & Willamowski et al. (2004) & Fergus et al. (2003) \\
\hline airplanes & 98.8 & 97.1 & 90.2 \\
\hline cars (rear) & 98.3 & 98.6 & 90.3 \\
\hline cars (side) & 95.0 & 87.3 & 88.5 \\
\hline faces & 100 & 99.3 & 96.4 \\
\hline motorbikes & 98.5 & 98.0 & 92.5 \\
\hline spotted cats & 97.0 & - & 90.0 \\
\hline
\end{tabular}

\section*{Today's Agenda}
- Visual bag of words (BoW)
- Background
- Algorithm
- Applications
- Image search
- Spatial Pyramid Matching

\section*{Bag of features}
- First, take a bunch of images, extract features, and build up a "dictionary" or "visual vocabulary" - a list of common features
- Given a new image, extract features and build a histogram - for each feature, find the closest visual word in the dictionary

\section*{Bag of features: outline}

\section*{1. Extract features}

\section*{Bag of features: outline}
1. Extract features
2. Learn "visual vocabulary"

\section*{Bag of features: outline}

\section*{1. Extract features}
2. Learn "visual vocabulary"
3. Quantize features using visual vocabulary

\section*{Bag of features: outline}

\section*{1. Extract features}
2. Learn "visual vocabulary"
3. Quantize features using visual vocabulary
4. Represent images by frequencies of "visual words"

\section*{Bag of features: outline}
1. Extract features
2. Learn "visual vocabulary"
3. Quantize features using visual vocabulary
4. Represent images by frequencies of "visual words"

\section*{1. Feature extraction}
- Regular grid
- Vogel \& Schiele, 2003
- Fei-Fei \& Perona, 2005

\section*{1. Feature extraction}
- Regular grid
- Vogel \& Schiele, 2003
- Fei-Fei \& Perona, 2005
- Interest point detector
- Csurka et al. 2004
- Fei-Fei \& Perona, 2005
- Sivic et al. 2005

\section*{1. Feature extraction}
- Regular grid
- Vogel \& Schiele, 2003
- Fei-Fei \& Perona, 2005
- Interest point detector
- Csurka et al. 2004
- Fei-Fei \& Perona, 2005
- Sivic et al. 2005
- Other methods
- Random sampling (Vidal-Naquet \& Ullman, 2002)
- Segmentation-based patches (Barnard et al. 2003)

\section*{Bag of features: outline}
1. Extract features
2. Learn "visual vocabulary"
3. Quantize features using visual vocabulary
4. Represent images by frequencies of "visual words"

\section*{Image patch examples of visual words}

Sivic et al 2005

\section*{2. Learn the visual vocabulary}

期

\section*{2．Learn the visual vocabulary}
期期期

Slide credit：Josef Sivic Group

\section*{2. Learn the visual vocabulary \\ Visual vocabulary}

Clustering

Slide credit: Josef Sivic

\section*{Example visual vocabulary}

Fei-Fei et al. 2005

\section*{Visual vocabularies: issues}
- How to choose vocabulary size?
- Too small: visual words not representative of all patches
- Too large: quantization artifacts, overfitting
- Computational efficiency
- Solution: Vocabulary trees (Nister \& Stewenius, 2006)

\section*{Bag of features: outline}
1. Extract features
2. Learn "visual vocabulary"
3. Quantize features using visual vocabulary
4. Represent images by frequencies of "visual words"

\section*{3. From clustering to vector quantization}
- Clustering is a common method for learning a visual vocabulary or codebook
- Unsupervised learning process
- Each cluster center produced by k-means becomes a codevector
- Codebook can be learned on separate training set
- Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
- A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
- Codebook = visual vocabulary
- Codevector = visual word

\section*{Bag of features: outline}
1. Extract features
2. Learn "visual vocabulary"
3. Quantize features using visual vocabulary
4. Represent images by frequencies of "visual words"

\section*{4. Image representation}

\section*{Today's Agenda}
- Visual bag of words (BoW)
- Background
- Algorithm
- Applications
- Image search
- Spatial Pyramid Matching Group

\section*{Image classification}
- Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?

\section*{Uses of BoW representation}
- Treat as feature vector for standard classifier
- e.g k-nearest neighbors, support vector machine
- Cluster BoW vectors over image collection
- Discover visual themes

\section*{Large-scale image search}

Bag-of-words models have been useful in matching an image to a large database of object instances

How do I find this image in the database?

\section*{Large-scale image search}

Build the database:
- Extract features from the database images
- Learn a vocabulary using k-means (typical k: 100,000)
- Compute weights for each word
- Create an inverted file mapping words \(\rightarrow\) images

\section*{Weighting the words}
- Just as with text, some visual words are more discriminative than others

\section*{the, and, or vs. cow, AT\&T, Cher}
- The bigger fraction of the documents a word appears in, the less useful it is for matching
- e.g., a word that appears in all documents is not helping us Group

\section*{TF-IDF weighting}
- Instead of computing a regular histogram distance, we'll weight each word by its inverse document frequency
- Inverse Document Frequency (IDF) of word \(j=\)
\[
\log \frac{\text { number of documents }}{\text { number of documents in which } j \text { appears }}
\]

\section*{TF-IDF weighting}
- Term Frequency (TF) of word \(j\) is the number of times it appears in the 'document', i.e., the image
- To compute the value of bin \(j\) in image \(I\), compute TF-IDF:

Term frequency of \(j\) in I X Inverse Document Frequency of \(j\)

\section*{Inverted file}
- Each image has \({ }^{\sim} 1,000\) features
- We have ~100,000 visual words
\(\rightarrow\) each histogram is extremely sparse (mostly zeros)
- Inverted file
- mapping from words to 'documents', i.e., images
```

"a":
{2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}

```

\section*{Inverted file}
- Can quickly use the inverted file to compute similarity between a new image and all the images in the database
- Only consider database images whose bins overlap the query image

\section*{Large-scale image search}

\author{
top 6 results
}

- Cons:
- performance degrades as the database grows

\section*{Large-scale image search}

top 6 results

- Cons:
- performance degrades as the database grows

\section*{Large-scale image search}
- Pros:
- Works well for CD covers, movie posters
- Real-time performance possible

Real-time retrieval from a database of 40,000 CD covers
Nister \& Stewenius, Scalable Recognition with a Vocabulary Tree

\section*{Example bag-of-words matches}

\section*{Example bag-of-words matches}

\section*{Today's Agenda}
- Visual bag of words (BoW)
- Background
- Algorithm
- Applications
- Image search
- Action recognition
- Spatial Pyramid Matching

\section*{What about spatial info?}

\section*{Pyramids}
- Very useful for representing images.
- Pyramid is built by using multiple copies of image.
- Each level in the pyramid is \(1 / 4\) of the size of previous level.
- The lowest level is of the highest resolution.
- The highest level is of the lowest resolution.

\section*{Bag of words + pyramids}

Locally orderless representation at several levels of spatial resolution

\section*{Bag of words + pyramids}

Locally orderless representation at several levels of spatial resolution

\section*{Bag of words + pyramids}

\section*{Results: Scene category dataset}

Multi-class classification results (100 training images per class)
\begin{tabular}{|c||cc|cc|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{2}{c|}{\begin{tabular}{c}
Weak features \\
(vocabulary size: 16)
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c}
Strong features \\
(vocabulary size: 200)
\end{tabular}} \\
\hline Level & Single-level & Pyramid & Single-level & Pyramid \\
\hline \(0(1 \times 1)\) & \(45.3 \pm 0.5\) & & \(72.2 \pm 0.6\) & \\
\(1(2 \times 2)\) & \(53.6 \pm 0.3\) & \(56.2 \pm 0.6\) & \(77.9 \pm 0.6\) & \(79.0 \pm 0.5\) \\
\(2(4 \times 4)\) & \(61.7 \pm 0.6\) & \(64.7 \pm 0.7\) & \(79.4 \pm 0.3\) & \(\mathbf{8 1 . 1} \pm 0.3\) \\
\(3(8 \times 8)\) & \(63.3 \pm 0.8\) & \(\mathbf{6 6 . 8} \pm 0.6\) & \(77.2 \pm 0.4\) & \(80.7 \pm 0.3\) \\
\hline
\end{tabular}

\section*{Results: Caltech101 dataset}
http://www.vision.caltech.edu/Image Datasets/Caltech101/Caltech101.html

Multi-class classification results (30 training images per class)
\begin{tabular}{|c||cc|cc|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{2}{|c|}{ Weak features (16) } & \multicolumn{2}{c|}{ Strong features (200) } \\
\hline Level & Single-level & Pyramid & Single-level & Pyramid \\
\hline 0 & \(15.5 \pm 0.9\) & & \(41.2 \pm 1.2\) & \\
1 & \(31.4 \pm 1.2\) & \(32.8 \pm 1.3\) & \(55.9 \pm 0.9\) & \(57.0 \pm 0.8\) \\
2 & \(47.2 \pm 1.1\) & \(49.3 \pm 1.4\) & \(63.6 \pm 0.9\) & \(\mathbf{6 4 . 6} \pm 0.8\) \\
3 & \(52.2 \pm 0.8\) & \(\mathbf{5 4 . 0} \pm 1.1\) & \(60.3 \pm 0.9\) & \(64.6 \pm 0.7\) \\
\hline
\end{tabular}

\section*{Thank you.}

\author{
University of Cyprus - MSc Artificial Intelligence
}

\section*{MAI644 - COMPUTER VISION \\ Lecture 13: Object Detection}

\author{
Melinos Averkiou \\ CYENS Centre of Excellence \\ University of Cyprus - Department of Computer Science \\ m.averkiou@cyens.org.cy
}

CENTRE OF EXCELLENCE

\section*{Last time}
- Visual bag of words (BoW)
- Background
- Algorithm
- Applications
- Image search
- Spatial Pyramid Matching

\section*{Today's Agenda}
- Object detection
- Task definition
- Benchmarks
- Evaluation
- A simple object detector

\section*{Today's Agenda}
- Object detection
- Task definition
- Benchmarks
- Evaluation
- A simple object detector

Group

\section*{Object Detection}
- Problem: Detecting and localizing generic objects from various categories, such as cars, people, etc.
- Challenges:
- Illumination,
- viewpoint,
- deformations,
- Intra-class variability

\section*{Today's Agenda}
- Object detection
- Task definition
- Benchmarks
- Evaluation
- A simple object detector

\section*{Object Detection Benchmarks}
- PASCAL VOC Challenge

- 20 categories
- Annual classification, detection, segmentation challenges

\section*{Object Detection Benchmarks}
- PASCAL VOC Challenge
- ImageNet Large Scale Visual Recognition Challenge (ILSVR)
- 200 Categories for detection

\section*{Object Detection Benchmarks}
- PASCAL VOC Challenge
- ImageNet Large Scale Visual Recognition Challenge (ILSVR)
- Common Objects in Context (COCO)
- 80 Object categories

\section*{Today's Agenda}
- Object detection
- Task definition
- Benchmarks
- Evaluation
- A simple object detector
- Deformable parts model
- Overview
- Method
- Pipeline
- Results and analysis

\section*{How do we evaluate object detection?}

predictions
ground truth

\section*{How do we evaluate object detection?}

predictions
ground truth
True positive:
- The overlap of the prediction with the ground truth is MORE than 0.5

\section*{How do we measure overlap ?}

Intersection over Union (IoU)

Area of Overlap

Area of Union

\section*{How do we evaluate object detection?}

predictions
ground truth
True positive:
False positive:
- The overlap of the prediction with the ground truth is LESS than 0.5

\section*{How do we evaluate object detection?}

\author{
predictions \\ ground truth
}

True positive:
False positive:
False negative:
- The objects that our model doesn't find

\section*{How do we evaluate object detection?}

\section*{- predictions \\ ground truth}

\section*{True positive: False positive: False negative: \\ - The objects that our model doesn't find}

What is a True Negative?
\begin{tabular}{|c|c|c|}
\hline & Predicted 1 & Predicted 0 \\
\hline \[
\left.\begin{gathered}
7 \\
0 \\
5
\end{gathered} \right\rvert\,
\] & true positive & false negative \\
\hline (2) & false positive & true negative \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Predicted 1 & Predicted 0 \\
\hline \[
\left.\begin{aligned}
& \overrightarrow{0} \\
& 0 \\
& 5
\end{aligned} \right\rvert\,
\] & true positive & false negative \\
\hline - & false positive & true negative \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\stackrel{\rightharpoonup}{2}
\]} & dicte & Predicted 0 \\
\hline & TP & FN \\
\hline 辿 & FP & TN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Predicted 1 & Predicted 0 \\
\hline \[
\left.\begin{aligned}
& \stackrel{4}{0} \\
& \stackrel{3}{4}
\end{aligned} \right\rvert\,
\] & true positive & false negative \\
\hline - & false positive & true negative \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\stackrel{\rightharpoonup}{0}
\]} & dict & Predicted 0 \\
\hline & TP & FN \\
\hline 8 & FP & TN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{} & redicted 1 & Predicted 0 \\
\hline & hits & misses \\
\hline O
4
4
\(\square\) & \begin{tabular}{l}
false \\
alarms
\end{tabular} & correct rejections \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Predicted 1 & Predicted 0 \\
\hline \[
\stackrel{\rightharpoonup}{2}
\] & true positive & false negative \\
\hline - & false positive & true negative \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|}
\hline & \multicolumn{2}{c|}{ Predicted 1 }
\end{tabular}\(\underline{\text { Predicted } 0}\)
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\stackrel{\rightharpoonup}{0}
\]} & dict & Predicted 0 \\
\hline & TP & FN \\
\hline 8 & FP & TN \\
\hline
\end{tabular}
\[
\begin{gathered}
\text { precision }=\frac{T P}{T P+F P} \\
\text { recall }=\frac{T P}{T P+F N}
\end{gathered}
\]

\section*{How do we evaluate object detection?}

\section*{- predictions \\ ground truth}

True positive: 1
False positive: 2
False negative: 1

So what is the
- precision?
- recall?

\section*{Precision versus recall}
- Precision:
- how many of the object detections are correct?
- Recall:
- how many of the ground truth objects can the model detect?

\section*{In reality, our model makes a lot of predictions with varying scores between 0 and 1}

- predictions
ground truth
Here are all the boxes that are predicted with score > 0 .

This means that our:
- Recall is perfect!
- But our precision is BAD!

In reality, our model makes a lot of predictions with varying scores between 0 and 1

\section*{predictions ground truth}

There are no boxes that are predicted with score \(=1\).

This means that our
- Precision is undefined!
- And our recall is BAD!

\section*{How do we evaluate object detection?}

\section*{- predictions}
ground truth
Here are all the boxes that are predicted with score \(>0.5\)

We are setting a threshold of 0.5

\section*{Precision - recall curve (PR curve)}

\section*{Which model is the best?}

\section*{True Positives - Person}

\section*{False Positives - Person}

\section*{UoCTTI_LSVM-MDPM}

MIZZOU_DEF-HOG-LBP

NECUIUC_CLS-DTCT

\section*{"Near Misses" - Person}

\section*{True Positives - Bicycle}

\section*{False Positives - Bicycle}

UoCTTI_LSVM-MDPM

OXFORD_MKL

NECUIUC_CLS-DTCT

\section*{Today's Agenda}
- Object detection
- Task definition
- Benchmarks
- Evaluation
- A simple object detector

\section*{Dalal-Triggs method}
 Group

\section*{Recap - HoG features}

Find a HoG template and use as filter

Train a linear SVM classifier on HoG

Take the average image and extract HoG

\section*{Sliding window + HoG features}

- Slide through the image and check if there is an object at every location
- Compare HOG feature template to HOG features from each location in the image.
- Use dot product

\section*{No person here}

\section*{Sliding window + HoG features}

- Slide through the image and check if there is an object at every location
- Compare HOG feature template to HOG features from each location in the image.
- If a comparison produces a high score, output detection at the corresponding location

\section*{YES!! Person match found}

\section*{Sliding window + HoG features}

- But what if we were looking for buses?

\section*{No bus found}

\section*{Sliding window + HoG features}

- But what if we were looking for buses?

\section*{No bus found}

\section*{Sliding window + HoG features}

- We will never find the object if we don't choose our window size wisely!

\section*{No bus found}

\section*{Sliding window + HoG features}

We need do a multi scale sliding window search

\section*{Create a feature pyramid}

\section*{Filter \(F\)}

Score of \(F\) at position \(p\) is
\[
F \cdot \phi(p, H)
\]
\(\phi(p, H)=\) concatenation of HOG features from subwindow specified by \(p\)

\section*{Thank you.}

\author{
University of Cyprus - MSc Artificial Intelligence
}

\section*{MAI644 - COMPUTER VISION \\ Lecture 14: Camera Models}

\section*{Melinos Averkiou}

CYENS Centre of Excellence
University of Cyprus - Department of Computer Science
m.averkiou@cyens.org.cy

CENTRE OF EXCELLENCE

\section*{Last time}
- Object detection
- Task definition
- Benchmarks
- Evaluation
- A simple object detector

\section*{Today's Agenda}
- Perspective projection
- Vanishing points
- Full camera model

\section*{Today's Agenda}
- Perspective projection
- Vanishing points
- Full camera model

\section*{Perspective Projection}
- The process of capturing 2D images of the 3D world is modelled by perspective projection
- We model perspective projection using the pin-hole camera

\section*{Pinhole Camera model}
- Captures pencil of rays - all rays through a single point
- The point is called Center of Projection
- The image is formed on the Image Plane

[Slide by Steve Seitz]

\section*{Pinhole Camera - Camera Obscura}

\section*{The first camera}
- Known to Aristotle
- How does the aperture size affect the image?

\section*{Shrinking the aperture}

Why not make the aperture
as small as possible?
- Less light gets through
- Diffraction effects

Large Aperture -Low Levels of Diffraction

SmallAperture-High Levels of Diffraction

[Slide by Steve Seitz]

\section*{Adding a lens}

A lens focuses light onto the film
- Rays passing through the center are not deviated
- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image

\section*{Lenses}

A lens focuses parallel rays onto a single focal point
- Focal point is on a plane located at a distance \(f\) (focal length) beyond the plane of the lens
- \(f\) is a function of the shape and index of refraction of the lens
- Aperture of diameter \(\mathbf{D}\) restricts the range of rays
- aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)

\section*{Thin lenses}

Thin lens equation: \(\quad \frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}\)
- Any object point satisfying this equation is in focus
- Thin lens applet (needs flash player):
http://www.phy.ntnu.edu.tw/java/Lens/lens e.html (by Fu-Kwun Hwang)

\section*{Perspective Projection}
- Objects closer to the camera appear larger, those far away from the camera appear smaller
- We can place the image plane in front on the camera to avoid flipping

\section*{Perspective Projection equation}
- Using similar triangles we find that:
- Samı иг г
\[
\frac{x}{f}=\frac{X_{c}}{Z_{c}} \Longleftrightarrow x=\frac{f}{Z_{c}} X_{c}
\]

\section*{Perspective Projection equation}
- Therefore, under perspective projection every 3D point \(X\left(X_{C}, Y_{C}, Z_{C}\right)\)
projects to a 2D point \(\mathbf{x}\left(\frac{f}{z_{C}} X_{C}, \frac{f}{z_{C}} Y_{C}\right)\) on the camera's image plane

\section*{Today's Agenda}
- Perspective projection
- Vanishing points
- Full camera model

\section*{Vanishing points}
- Vanishing points are points in the image where parallel lines appear to meet.
- Each set of parallel lines in the world (that are not parallel to the image plane) will have a different vanishing point in the image.

\section*{Vanishing points}
- In the same way, parallel planes in the world meet in a line in the image, often called a horizon line.
- Any set of parallel lines lying on these planes in the 3D world will have a vanishing point on the horizon line.

\section*{Vanishing points}

Heavily used in Renaissance paintings to introduce 'depth' into the scene

Pietro Perugino, Christ Handing the Keys to St. Peter, 1481-1482. Image via Wikimedia Commons.

\section*{Vanishing point example}
- Let's find the image location of the vanishing point for a line in the world
\[
\begin{aligned}
\mathbf{X}_{c} & =\mathbf{a}+\lambda \mathbf{b}=\left(a_{x}+\lambda b_{x}, a_{y}+\lambda b_{y}, a_{z}+\lambda b_{z}\right) \\
\Rightarrow \mathbf{x} & =\frac{f}{Z_{c}}\left(X_{c}, \quad Y_{c}\right)=f\left[\frac{a_{x}+\lambda b_{x}}{a_{z}+\lambda b_{z}}, \frac{a_{y}+\lambda b_{y}}{a_{z}+\lambda b_{z}}\right]
\end{aligned}
\]
- As \(\lambda\) goes to ıntinıty we move aown tne ıne ana \(x\) converges to the vanishing point
\[
\mathbf{x}_{\mathrm{vp}}=\lim _{\lambda \rightarrow \infty} \mathbf{x}=f\left[\frac{b_{x}}{b_{z}}, \frac{b_{y}}{b_{z}}\right]
\]

\section*{Vanishing point example}
- As \(\lambda\) goes to infinity we move down the line and \(x\) converges to the vanishing point
\[
\mathbf{x}_{\mathrm{vp}}=\lim _{\lambda \rightarrow \infty} \mathbf{x}=f\left[\frac{b_{x}}{b_{z}}, \frac{b_{y}}{b_{z}}\right]
\]
- The vanishing point depends only on the line's orientation (the vector \(b\) in the line equation), and not its position.
- When \(b_{2}=0\), the line is parallel to the image plane, and the vanishing point is at infinity. Remember:
- Each set of parallel lines in the world (that are not parallel to the image plane) will have a different vanishing point in the image.

\section*{Vanishing point example}

\[
b_{z}=0
\]

\section*{Today's Agenda}
- Perspective projection
- Vanishing points
- Full camera model

\section*{Full camera model}

A full camera model describes the mapping from 3D world to 2D pixel coordinates

\section*{Full camera model}

It consists of three transformations:
1. The Euclidean (Rigid) transformation between the camera and the world, i.e., the translation and rotation of the camera with respect the world origin - takes points from 3D world coordinates to 3D camera coordinates
2. The perspective projection onto the camera plane - takes points from 3D camera coordinates to 2D image coordinates
3. CCD imaging, i.e., the geometry of the CCD array (the size and shape of the pixels) and its position with respect to the optical axis - takes points from 2D image coordinates to 2D pixel coordinates

\section*{Full camera model - Euclidean transformation}

We attach a coordinate system \(X(X, Y, Z)\) to the world and another coordinate system to the camera \(X_{C}\left(X_{C}, Y_{C}, Z_{C}\right)\)
 Group

\section*{Full camera model - Euclidean transformation}

The Euclidean transformation can be described by a rotation matrix R and a translation vector \(T\)
\[
\begin{gathered}
\mathbf{X}_{c}=\mathbf{R X}+\mathbf{T} \\
{\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right]=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]+\left[\begin{array}{c}
T_{x} \\
T_{y} \\
T_{z}
\end{array}\right]}
\end{gathered}
\]

\section*{Full camera model - Perspective projection}

Perspective projection is modelled by
\[
\left.\begin{array}{rl}
x & =\frac{f}{Z_{c}} X_{c} \\
y & =\frac{f}{Z_{c}} Y_{c}
\end{array}\right\}
\]
 Group

\section*{Full camera model - CCD Imaging}

To model CCD Imaging we define pixel coordinates \(\mathbf{w}(u, v)\) in addition to the image coordinates \(\mathbf{x}(\mathrm{x}, \mathrm{y})\)

\section*{Full camera model - CCD Imaging}
\(w(u, v)\) and \(x(x, y)\) are related as follows
\[
\left.\begin{array}{rl}
u & =u_{0}+k_{u} x \\
v & =v_{0}+k_{v} y
\end{array}\right\}
\]

\section*{Full camera model - Putting it all together}

So here is the full camera model combining all three transformations
\[
\left.\left.\begin{array}{c}
u=u_{0}+k_{u} x \\
v=v_{0}+k_{v} y
\end{array}\right\} \Rightarrow \begin{array}{r}
u=u_{0}+k_{u} \frac{f}{Z_{c}} X_{c} \\
v=v_{0}+k_{v} \frac{f}{Z_{c}} Y_{c}
\end{array}\right\}
\]

\section*{Thank you.}

\author{
University of Cyprus - MSc Artificial Intelligence
}

\section*{MAI644 - COMPUTER VISION \\ Lecture 15: Camera Calibration}

\section*{Melinos Averkiou}

CYENS Centre of Excellence
University of Cyprus - Department of Computer Science
m.averkiou@cyens.org.cy

\section*{Last time}
- Perspective projection
- Vanishing points
- Full camera model

\section*{Today's Agenda}
- Full camera model in matrix form
- Camera calibration
- Calibration - Projective camera model
- Calibration - Affine camera model

\section*{Today's Agenda}
- Full camera model in matrix form
- Camera calibration
- Calibration - Projective camera model
- Calibration - Affine camera model

\section*{Remember - Full camera model}

It consists of three transformations:
1. The Euclidean (Rigid) transformation between the camera and the world, i.e., the translation and rotation of the camera with respect the world origin - takes points from 3D world coordinates to 3D camera coordinates
2. The perspective projection onto the camera plane - takes points from 3D camera coordinates to 2D image coordinates
3. CCD imaging, i.e., the geometry of the CCD array (the size and shape of the pixels) and its position with respect to the optical axis - takes points from 2D image coordinates to 2D pixel coordinates

\section*{Remember - Full camera model - Putting it all together}

So here is the full camera model combining all three transformations
\[
\left.\left.\begin{array}{c}
u=u_{0}+k_{u} x \\
v=v_{0}+k_{v} y
\end{array}\right\} \Rightarrow \begin{array}{r}
u=u_{0}+k_{u} \frac{f}{Z_{c}} X_{c} \\
v=v_{0}+k_{v} \frac{f}{Z_{c}} Y_{c}
\end{array}\right\}
\]

\section*{Full camera model in matrix form - Euclidean}
- How can we express all three transformations in the form of matrices ?
- Homogeneous coordinates
- Let's start from the Euclidean (rigid) transformation connecting the world and camera coordinate systems.
- This is composed of a rotation (3DOF) expressing the camera pose with respect to the world coordinate frame, and a translation (3DOF) expressing the camera location with respect to the world origin.

\section*{Full camera model in matrix form - Euclidean}
- We want to express a 'world' 3D point \(X(X, Y, Z)\) as a 3D point \(X_{C}\left(X_{C}, Y_{C}, Z_{C}\right)\) in camera coordinates
- In homogeneous coordinates we have \(\tilde{X}(\lambda X, \lambda Y, \lambda Z, \lambda)\) and \(\widetilde{X_{C}}\left(\lambda X_{C}, \lambda Y_{C}, \lambda Z_{C}, \lambda\right)\) \(\lambda\) can be set to 1 as it has no effect on \(X_{C}\), the cartesian equivalent of \(\widetilde{X}_{C}\)
- The Euclidean transformation can now be expressed as:
\[
\left[\begin{array}{c}
\lambda X_{C} \\
\lambda Y_{C} \\
\lambda Z_{C} \\
\lambda
\end{array}\right]=\left[\begin{array}{cccc}
r 11 & r 12 & r 13 & T_{x} \\
r 21 & r 22 & r 23 & T_{y} \\
r 31 & r 32 & r 33 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\lambda X \\
\lambda Y \\
\lambda Z \\
\lambda
\end{array}\right]
\]
- Or equivalently:
\[
\tilde{\mathbf{X}}_{c}=\mathbf{P}_{e} \tilde{\mathbf{X}} \quad \text { where } \mathbf{P}_{e}=\left\lfloor\begin{array}{lll|l}
& \mathbf{R} & & \mathbf{T} \\
& & & \\
\hline 0 & 0 & 0 & 1
\end{array}\right\rfloor
\]

Full camera model in matrix form - Perspective
- We want to compute the projection of a 3D point \(X_{C}\left(X_{C}, Y_{C}, Z_{C}\right)\) expressed in camera coordinates onto a 2 D point \(\mathrm{x}(\mathrm{x}, \mathrm{y})\) lying on the image plane
- In homogeneous coordinates we have \(\widetilde{X_{C}}\left(\lambda X_{C}, \lambda Y_{C}, \lambda Z_{C}, \lambda\right)\) and \(\tilde{x}(s x, s y, s)\) again \(\lambda\) and \(s\) can be set to 1
- Perspective projection can now be expressed as:
\[
\left[\begin{array}{c}
s x_{1} \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\lambda X_{c} \\
\lambda Y_{c} \\
\lambda Z_{c} \\
\lambda
\end{array}\right]
\]
- Or equivalently:
\[
\tilde{\mathbf{x}}=\mathbf{P}_{p} \tilde{\mathbf{X}}_{c}
\]

\section*{Full camera model in matrix form - Perspective}
- We can confirm that the expression in the previous slide is equivalent to the perspective equation by recovering x , the cartesian equivalent of \(\tilde{x}\)
\[
\tilde{x}=\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{c}
f \lambda X_{C} \\
f \lambda Y_{C} \\
\lambda Z_{C}
\end{array}\right] \Rightarrow x=\left[\begin{array}{c}
s x / s \\
s y / s
\end{array}\right]=\left[\begin{array}{c}
f \lambda X_{C} / \lambda Z_{C} \\
f \lambda Y_{C} / \lambda Z_{C}
\end{array}\right]=\left[\begin{array}{c}
f X_{C} / Z_{C} \\
f Y_{C} / Z_{C}
\end{array}\right]
\]

\section*{Full camera model in matrix form - CCD Imaging}
- Last, wee want to express 2D point \(\mathbf{x}(\mathrm{x}, \mathrm{y})\) lying on the image plane in pixel coordinates w(u,v)
- In homogeneous coordinates we have \(\widetilde{x}(s x, s y, s)\) and \(\widetilde{w}(s u, s u, s)\) - again s can be set to 1
- This is a translation and scaling which can be expressed as:
\[
\left[\begin{array}{c}
s u \\
s v \\
s
\end{array}\right]=\left[\begin{array}{ccc}
k_{u} & 0 & u_{0} \\
0 & k_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]
\]
- Or equivalently:
\(\tilde{\mathbf{w}}=\mathbf{P}_{c} \tilde{\mathbf{x}}\)

\section*{Full camera model in matrix form - all together}

We can now express the whole process, from \(\widetilde{X}\) to \(\widetilde{W}\) as a single transformation \(P_{p s}\)
\[
\left.\begin{array}{rl}
\tilde{\mathbf{w}} & =\mathbf{P}_{p s} \tilde{\mathbf{X}} \\
\text { where } \quad \mathbf{P}_{p s} & =\mathbf{P}_{c} \mathbf{P}_{p} \mathbf{P}_{e} \\
& =\left[\begin{array}{ccc}
k_{u} & 0 & u_{0} \\
0 & k_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll|}
& & \\
& \mathbf{R} & \\
\mathbf{T} \\
0 & 0 & 0
\end{array}\right. \\
\hline
\end{array}\right]
\]

\section*{Full camera model in matrix form - all together}
- The transformation \(P_{p s}\) is not a general \(3 \times 4\) matrix, because it has a special structure composed of \(P_{e}, P_{p}\), and \(P_{c}\).
- We can simplify \(P_{p s}\) into an upper-triangular matrix K composed of \(P_{e}\) and \(P_{p}\), and a matrix representing the Euclidean transformation.
\[
\begin{aligned}
\mathbf{P}_{p s} & =\mathbf{K}[\mathbf{R} \mid \mathbf{T}] \\
& =\left[\begin{array}{cccc}
m_{u} & 0 & u_{0} & 0 \\
0 & m_{v} & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
r 11 & r 12 & r 13 & T_{x} \\
r 21 & r 22 & r 23 & T_{y} \\
r 31 & r 32 & r 33 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
m_{u}=k_{u} f \\
m_{v}=k_{v} f
\end{array}
\end{aligned}
\]

\section*{Full camera model in matrix form - all together}
- The matrix K is called the camera calibration matrix and it contains all the viewing parameters (intrinsics) coming from inside the camera.
- The Euclidean transformation matrix contains all the viewing parameters (extrinsics) that are not controlled by the camera lens or sensor.

\section*{Today's Agenda}
- Full camera model in matrix form
- Camera calibration
- Calibration - Projective camera model
- Calibration - Affine camera model

\section*{Camera calibration}
- Camera calibration is the name given to the process of discovering the parameters inside our camera model, i.e., the values inside the camera projection matrix.
- This is done by using an image of a controlled scene.
- We may want to use a scene with some sort of regular pattern.

\section*{Camera calibration}
- Camera calibration is the name given to the process of discovering the parameters inside our camera model, i.e., the values inside the camera projection matrix. This is done by using an image of a controlled scene.
- We may want to use a scene with some sort of regular pattern

\section*{Today's Agenda}
- Full camera model in matrix form
- Camera calibration
- Calibration - Projective camera model
- Calibration - Affine camera model

\section*{Camera calibration - the projective camera}

Remember that the perspective camera projection matrix \(P_{p s}\) is not a general \(3 \times 4\) matrix, as it has a special structure composed of \(P_{e}, P_{p}\), and \(P_{c}\).
\[
\begin{aligned}
\tilde{\mathbf{w}} & =\mathbf{P}_{p s} \tilde{\boldsymbol{X}} \\
\text { where } \quad \mathbf{P}_{p s} & =\mathbf{P}_{c} \mathbf{P}_{p} \mathbf{P}_{e} \\
& =\left[\begin{array}{ccc}
k_{u} & 0 & u_{0} \\
0 & k_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll|l}
& & \\
& \mathbf{R} & & \mathbf{T} \\
& & & \\
\hline 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
\]

\section*{Camera calibration - the projective camera}
- Calibrating the perspective camera model may therefore be difficult. We can instead use the projective camera model which is described by a general \(3 \times 4\) matrix.
\[
\mathbf{P}=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]
\]
- The projective camera has 11 degrees of freedom, since the overall scale of \(P\) does not matter when using homogeneous coordinates.
- It is more convenient to deal with a projective camera than a perspective one, since we don't have to worry about placing nonlinear constraints on the elements of \(P\)

\section*{Camera calibration - the projective camera}
- Using a projective camera, the whole imaging process is described by
\[
\begin{aligned}
\tilde{\mathbf{w}} & =\mathbf{P} \tilde{\mathbf{X}} \\
\Rightarrow\left[\begin{array}{c}
s u \\
s v \\
s
\end{array}\right] & =\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
\end{aligned}
\]
- We must estimate 11 parameters (the overall scale does not matter, so let's set \(p_{34}=1\)

\section*{Camera calibration - the projective camera}
- Because the scene is controlled, we know the location of the world points \(X_{i}\)
- We can also find the location of their projections \(\mathbf{w}_{\mathrm{i}}\) on the image, e.g., using corner detection.
- Each point we observe gives us two equations
\[
\begin{aligned}
& u_{i}=\frac{s u_{i}}{s}=\frac{p_{11} X_{i}+p_{12} Y_{i}+p_{13} Z_{i}+p_{14}}{p_{31} X_{i}+p_{32} Y_{i}+p_{33} Z_{i}+1} \\
& v_{i}=\frac{s v_{i}}{s}=\frac{p_{21} X_{i}+p_{22} Y_{i}+p_{23} Z_{i}+p_{24}}{p_{31} X_{i}+p_{32} Y_{i}+p_{33} Z_{i}+1}
\end{aligned}
\]

\section*{Camera calibration - the projective camera}

Rearranging them gives us two linear equations in the unknown parameters of the projection matrix
\[
\left[\begin{array}{ccccccccccc}
X_{i} & Y_{i} & Z_{i} & 1 & 0 & 0 & 0 & 0 & u_{i} X_{i} & u_{i} Y_{i} & u_{i} Z_{i} \\
0 & 0 & 0 & 0 & X_{i} & Y_{i} & Z_{i} & 1 & v_{i} X_{i} & v_{i} Y_{i} & v_{i} Z_{i}
\end{array}\right]\left[\begin{array}{l}
p_{11} \\
p_{12} \\
p_{13} \\
p_{14} \\
p_{21} \\
p_{22} \\
p_{23} \\
p_{24} \\
p_{31} \\
p_{32} \\
p_{33}
\end{array}\right]=\left[\begin{array}{l}
-u_{i} \\
-v_{i}
\end{array}\right]
\]

\section*{Camera calibration - the projective camera}
- As there are 11 unknowns, we need at least 6 points to calibrate this camera model to get enough equations (rows) in the linear system \(A x=b\).
- Each observed points adds two equations (rows) to the matrix A
- We can solve the system of equations using linear least squares (pseudoinverse of A)
\[
\begin{aligned}
\mathbf{A x} & =\mathbf{b} \\
\Rightarrow \quad \mathbf{x} & =\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
\end{aligned}
\]

\section*{Today's Agenda}
- Full camera model in matrix form
- Camera calibration
- Calibration - Projective camera model
- Calibration - Affine camera model

\section*{Parallel Projection}

When the depth difference \(\Delta \mathrm{Z}_{\mathrm{C}}\) of objects in the scene is small compared to their distance \(\mathrm{Z}_{\mathrm{C}}\) to the camera, the resulting image is not described well by perspective projection.

\section*{Parallel Projection}

For example, parallel lines on the left image remain parallel after projection. In this case, the 3D to 2D projection is better described by parallel projection.

\section*{Parallel Projection}

A camera which creates images like the one on the left is known as a weak-perspective camera.

\section*{Parallel Projection}

What changes in our imaging transformations is the perspective projection matrix. Remember \(P_{p}\) :
\[
\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]
\]

\section*{Parallel Projection}

What changes in our imaging transformations is the perspective projection matrix.
If the depth variation in the scene is small, then \(Z_{C} \approx Z_{C}^{\text {avg }}\) and the perspective projection matrix \(P_{p}\) can be changed to the parallel projection matrix \(P_{p l l}\)
\[
\begin{aligned}
{\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right] } & =\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 0 & Z_{c}^{\text {avg }}
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right] \\
\tilde{\mathbf{x}} & =\mathbf{P}_{p u l} \tilde{\mathbf{X}}_{c}
\end{aligned}
\]

\section*{Weak-Perspective Camera Model}

This leads to the weak perspective camera model:
\[
\tilde{\mathbf{W}}=\mathbf{P}_{w p} \tilde{\mathbf{X}}
\]
where
\[
\begin{aligned}
\mathbf{P}_{w p} & =\mathbf{P}_{c} \mathbf{P}_{p l l} \mathbf{P}_{e} \\
& =\left[\begin{array}{ccc}
k_{u} & 0 & u_{0} \\
0 & k_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 0 & Z_{c}^{\text {avg }}
\end{array}\right]\left[\begin{array}{lll|l}
& & & \mathbf{R} \\
& \mathbf{R} & & \mathbf{T} \\
\hline 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
\]

\section*{Weak-Perspective Camera Model}
\(P_{w p}\) is the projection matrix for a weak-perspective camera. It is a \(3 \times 4\) matrix with a special structure composed of \(P_{e}, P_{p l l}\), and \(P_{c}\).
\[
\tilde{\mathbf{W}}=\mathbf{P}_{w p} \tilde{\mathbf{X}}
\]
where
\[
\left.\begin{array}{rl}
\mathbf{P}_{w p} & =\mathbf{P}_{c} \mathbf{P}_{p l l} \mathbf{P}_{e} \\
& =\left[\begin{array}{ccc}
k_{u} & 0 & u_{0} \\
0 & k_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 0 & Z_{c}^{\text {avg }}
\end{array}\right]\left[\begin{array}{lll}
& & \\
& \mathbf{R} & \\
& \mathbf{T} \\
\hline 0 & 0 & 0
\end{array}\right. \\
&
\end{array}\right]
\]

\section*{Camera calibration - the affine camera}
- The special structure of the weak-perspective camera model makes it difficult to calibrate. This is why the affine camera model is often used instead:
\[
\mathbf{P}_{a f f}=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & p_{34}
\end{array}\right]
\]
- \(P_{a f f}\) is the projection matrix for the affine camera. It has 8 degrees of freedom (remember the overall scale does not matter so we can set \(p_{34}\) to 1).
- It can be calibrated in the same way as the projective camera. There are eight degrees of freedom, so we need a minimum of 4 points.

\section*{Thank you.}

\author{
University of Cyprus - MSc Artificial Intelligence
}

\section*{MAI644 - COMPUTER VISION \\ Lecture 16: Stereo Vision}

\author{
Melinos Averkiou \\ CYENS Centre of Excellence \\ University of Cyprus - Department of Computer Science \\ m.averkiou@cyens.org.cy
}

CENTRE OF EXCELLENCE

\section*{Last time}
- Full camera model in matrix form
- Camera calibration
- Calibration - Projective camera model
- Calibration - Affine camera model

\section*{Today's Agenda}
- Recovery of world position
- Triangulation
- Epipolar Geometry

\section*{Today's Agenda}
- Recovery of world position
- Triangulation
- Epipolar Geometry

\section*{Recovery of world position}
- Previously we saw that the imaging process can be described as a transformation in homogeneous coordinates.
- If we can invert this transformation, the world coordinates of each pixel in the image can be computed.
- Recovering world coordinates of objects based on the projection on an image is known as shape recovery or depth recovery.

\section*{Recovery of world position}
- Is this possible using a single camera ?
- The camera needs to be calibrated, i.e. we know all its parameters
- Remember the projective camera model:
\[
\begin{gathered}
\widetilde{\boldsymbol{w}}=\boldsymbol{P} \widetilde{\boldsymbol{X}} \\
\Leftrightarrow\left[\begin{array}{c}
s u \\
s v \\
s
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
\end{gathered}
\]
- Unfortunately the transformation described in \(\boldsymbol{P}\) is not invertible and the world point \(\boldsymbol{X}\) cannot be uniquely determined

\section*{Recovery of world position}
- Depth ambiguity

Courtesy slide S. Lazebnik

\section*{Recovery of world position}
- Each observed feature on the image gives 2 equations with 3 unknowns and therefore defines a line (a ray) of solutions for \(\boldsymbol{X}\)

\section*{Recovery of world position}
- Each observed feature on the image gives 2 equations with 3 unknowns and therefore defines a line (a ray) of solutions for \(\boldsymbol{X}\)
- This system of equations is under-constrained.
- This can be seen by the size of \(\boldsymbol{P}\). There are more columns than rows.
\[
\begin{gathered}
\widetilde{\boldsymbol{w}}=\boldsymbol{P} \widetilde{\boldsymbol{X}} \\
\Leftrightarrow\left[\begin{array}{c}
s u \\
s v \\
s
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
\end{gathered}
\]

\section*{Recovery of world position}
- Under-constrained problems never have a unique solution.
- To uniquely recover \(\boldsymbol{X}\), additional views must be used, so that the transformation between \(\boldsymbol{w}\) (pixel coordinates) and \(\boldsymbol{X}\) (world coordinates) is forced to become invertible.
- This is the subject of stereo vision.

\section*{Recovery of world position}
- Two eyes/cameras help.

\section*{Today's Agenda}
- Recovery of world position
- Triangulation
- Epipolar Geometry

\section*{Triangulation}
- In stereo vision at least two cameras are set up to view the \(3 D\) scene.
- Each 3D world location \(\boldsymbol{X}\) projects to pixel \(\boldsymbol{w}\) on camera \(1(\boldsymbol{O})\) and to pixel \(\boldsymbol{w}^{\prime}\) on camera \(2\left(\boldsymbol{O}^{\prime}\right)\).

\section*{Triangulation}
- If both cameras are calibrated, the \(3 D\) world location \(\boldsymbol{X}\) projected on the pair of corresponding pixel locations \(\boldsymbol{w}\) and \(\boldsymbol{w}^{\prime}\) can be estimated via a process known as triangulation.

\section*{Triangulation}
- Consider the projection of \(\boldsymbol{X}\) onto \(\boldsymbol{w}\) :
\[
\begin{gathered}
\widetilde{\boldsymbol{w}}=\boldsymbol{P} \widetilde{\boldsymbol{X}} \\
\Leftrightarrow\left[\begin{array}{c}
s u \\
s v \\
s
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
\end{gathered}
\]
- Compute the equation for \(u\) and rearrange so our unknowns \(X, Y, Z\) are on the left:
\[
\begin{aligned}
& u=\frac{s u}{s}=\frac{p_{11} X+p_{12} Y+p_{13} Z+p_{14}}{p_{31} X+p_{32} Y+p_{33} Z+p_{34}} \\
\Rightarrow & p_{11} X+p_{12} Y+p_{13} Z+p_{14}=p_{31} u X+p_{32} u Y+p_{33} u Z+p_{34} u \\
\Rightarrow & \left(p_{11}-p_{31} u\right) X+\left(p_{12}-p_{32} u\right) Y+\left(p_{13}-p_{33} u\right) Z=p_{34} u-p_{14}
\end{aligned}
\]

\section*{Triangulation}
- Compute the equation for \(u\) and rearrange so our unknowns \(X, Y, Z\) are on the left:
\[
\begin{aligned}
& u=\frac{s u}{s}=\frac{p_{11} X+p_{12} Y+p_{13} Z+p_{14}}{p_{31} X+p_{32} Y+p_{33} Z+p_{34}} \\
\Rightarrow & p_{11} X+p_{12} Y+p_{13} Z+p_{14}=p_{31} u X+p_{32} u Y+p_{33} u Z+p_{34} u \\
\Rightarrow & \left(p_{11}-p_{31} u\right) X+\left(p_{12}-p_{32} u\right) Y+\left(p_{13}-p_{33} u\right) Z=p_{34} u-p_{14}
\end{aligned}
\]
- Put this in matrix form:
\[
\begin{gathered}
{\left[\begin{array}{lll}
p_{11}-p_{31} u & p_{12}-p_{32} u & p_{13}-p_{33} u
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[p_{34} u-p_{14}\right]} \\
\Leftrightarrow \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{gathered}
\]

\section*{Triangulation}
- Put this in matrix form:
\[
\begin{gathered}
{\left[\begin{array}{lll}
p_{11}-p_{31} u & p_{12}-p_{32} u & p_{13}-p_{33} u
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{l}
p_{34} u-p_{14}
\end{array}\right]} \\
\Leftrightarrow \boldsymbol{A x}=\boldsymbol{b}
\end{gathered}
\]
- \(\boldsymbol{A}\) is a \(1 x 3\) matrix
- The resulting system is under-constrained

\section*{Triangulation}
- Put this in matrix form:
\[
\begin{gathered}
{\left[\begin{array}{lll}
p_{11}-p_{31} u & p_{12}-p_{32} u & p_{13}-p_{33} u
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{l}
p_{34} u-p_{14}
\end{array}\right]} \\
{\left[\begin{array}{lll}
p_{21}-p_{31} v & p_{22}-p_{32} v & p_{23}-p_{33} v
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[p_{34} v-p_{24}\right]} \\
\Leftrightarrow \boldsymbol{A x}=\boldsymbol{b}
\end{gathered}
\]
- By computing \(v\) in the same way as \(u\) and rearranging we can add a new row in \(\boldsymbol{A}\) and in \(\boldsymbol{b}\), making it \(2 x 3\)

\section*{Triangulation}
- Put this in matrix form:
\[
\begin{gathered}
{\left[\begin{array}{lll}
p^{\prime}{ }_{11}-p^{\prime}{ }_{31} u^{\prime} & p_{12}^{\prime}-p^{\prime}{ }_{32} u^{\prime} & p^{\prime}{ }_{13}-p^{\prime}{ }_{33} u^{\prime}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[p^{\prime}{ }_{34} u^{\prime}-p^{\prime}{ }_{14}\right]} \\
{\left[\begin{array}{lll}
p^{\prime}{ }_{21}-p^{\prime}{ }_{31} v^{\prime} & p^{\prime}{ }_{22}-p^{\prime}{ }_{32} v^{\prime} & p^{\prime}{ }_{23}-p^{\prime}{ }_{33} v^{\prime}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[p^{\prime}{ }_{34} v^{\prime}-p^{\prime}{ }_{24}\right]} \\
\Leftrightarrow \boldsymbol{A x}=\boldsymbol{b}
\end{gathered}
\]
- By also considering the projection of \(\boldsymbol{X}\) onto \(\boldsymbol{w}^{\prime}\), a new pair of rows will be added to \(\boldsymbol{A}\), thus forcing it to be \(4 x 3\), i.e. over-constrained

\section*{Triangulation}
- Here is the resulting system
\[
\left[\begin{array}{ccc}
p_{11}-p_{31} u & p_{12}-p_{32} u & p_{13}-p_{33} u \\
p_{21}-p_{31} v & p_{22}-p_{32} v & p_{23}-p_{33} v \\
{p^{\prime}}_{11}-p^{\prime}{ }_{31} u^{\prime} & p^{\prime}{ }_{12}-p^{\prime}{ }_{32} u^{\prime} & p^{\prime}{ }_{13}-p^{\prime}{ }_{33} u^{\prime} \\
{p^{\prime}}_{21}-p^{\prime}{ }_{31} v^{\prime} & p^{\prime}{ }_{22}-p^{\prime}{ }_{32} v^{\prime} & {p^{\prime}}_{23}-p^{\prime}{ }_{33} v^{\prime}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
p_{34} u-p_{14} \\
p_{34} v-p_{24} \\
p_{34}^{\prime} u^{\prime}-p^{\prime}{ }_{14} \\
p^{\prime}{ }_{34} v^{\prime}-p^{\prime}{ }_{24}
\end{array}\right]
\]
- Where \(p_{11}^{\prime}\) etc. are the parameters inside the camera projection matrix for camera \(2\left(\boldsymbol{O}^{\prime}\right)\), and \(\boldsymbol{w}^{\prime}=\left(u^{\prime}, v^{\prime}\right)\) are the pixel coordinates of \(\boldsymbol{X}\) projected on the image plane \(\boldsymbol{I}^{\prime}\) of the second camera

\section*{Triangulation}
- Using an additional camera has forced \(\boldsymbol{A}\) to become over-constrained.
\[
\left[\begin{array}{ccc}
p_{11}-p_{31} u & p_{12}-p_{32} u & p_{13}-p_{33} u \\
p_{21}-p_{31} v & p_{22}-p_{32} v & p_{23}-p_{33} v \\
{p^{\prime}}_{11}-p^{\prime}{ }_{31} u^{\prime} & p^{\prime}{ }_{12}-p^{\prime}{ }_{32} u^{\prime} & p^{\prime}{ }_{13}-p^{\prime}{ }_{33} u^{\prime} \\
{p^{\prime}}_{21}-p^{\prime}{ }_{31} v^{\prime} & p^{\prime}{ }_{22}-p^{\prime}{ }_{32} v^{\prime} & {p^{\prime}}_{23}-p^{\prime}{ }_{33} v^{\prime}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
p_{34} u-p_{14} \\
p_{34} v-p_{24} \\
p^{\prime}{ }_{34} u^{\prime}-p^{\prime}{ }_{14} \\
p^{\prime}{ }_{34} v^{\prime}-p^{\prime}{ }_{24}
\end{array}\right]
\]
- Therefore we can now find a least-squares solution:
\[
\begin{gathered}
A x=b \\
\Leftrightarrow x=\left(A^{T} A\right)^{-1} A^{T} b
\end{gathered}
\]

\section*{Today's Agenda}
- Recovery of world position
- Triangulation
- Epipolar Geometry

\section*{Beyond triangulation}

We have seen the simplest form of stereo vision: Given a pair of calibrated cameras observing a single feature at corresponding pixel locations \(\boldsymbol{w} \leftrightarrow \boldsymbol{w}^{\prime}\), the \(3 D\) position of the corresponding world location \(\boldsymbol{X}\) can be estimated via triangulation

\section*{Beyond triangulation}

How is the correspondence problem solved if there are several points \(\left\{\boldsymbol{w}_{\boldsymbol{i}}\right\}_{i=1}^{N_{1}}\) in image 1 and several points \(\left\{\boldsymbol{w}_{\boldsymbol{j}}^{\prime}\right\}_{j=1}^{N_{2}}\) in image 2 ?

\section*{Beyond triangulation}

SIFT will give us a set of proposed correspondences \(\left\{\boldsymbol{w}_{\boldsymbol{i}} \leftrightarrow \boldsymbol{w}_{\boldsymbol{j}}\right\}\) but there will be many outliers in these proposals
The question is then how can we remove outliers ?
Using the epipolar constraint

\section*{Epipolar Geometry}
- To understand the epipolar constraint, we first need to understand the geometry that relates the
- cameras
- points in 3D space
- and their corresponding observations \(\left\{\boldsymbol{w}_{\boldsymbol{i}} \leftrightarrow \boldsymbol{w}_{\boldsymbol{j}}{ }_{\boldsymbol{j}}\right\}\)

- This type of geometry is referred to as the epipolar geometry

\section*{Epipolar Geometry - fundamentals}

Lets revisit our stereo pair

\section*{Epipolar Geometry - fundamentals}

The baseline \(l_{b}\) is the line joining the two optical centers.

\section*{Epipolar Geometry - fundamentals}

The epipolar plane \(\boldsymbol{\Pi}\) is the plane defined by the \(3 D\) point \(\boldsymbol{X}\) and the optical centers of the cameras.

\section*{Epipolar Geometry - fundamentals}

An epipole is the point of intersection of the baseline with the image plane. There are two epipoles \(\boldsymbol{e}\) and \(\boldsymbol{e}^{\prime}\), one for each image.

\section*{Epipolar Geometry - fundamentals}

An epipolar line is a line of intersection of the epipolar plane with an image plane. It is the image, in one camera, of the ray from the other camera's optical centre to the point \(\boldsymbol{X}\).

\section*{Epipolar Geometry - fundamentals}

For different world points \(\boldsymbol{X}\), the epipolar plane rotates about the baseline. All epipolar lines intersect at their corresponding epipole.

\section*{Epipolar Geometry - fundamentals}

The epipolar constraint limits the search for correspondences, from the region of the whole image, to only the pixels spanned by the epipolar line.

\section*{Epipolar Geometry - fundamentals}

If a point feature \(\boldsymbol{w}\) is observed in one image, then its location \(\boldsymbol{w}^{\prime}\) in the other image must lie on its corresponding epipolar line \(l^{\prime}\)

\section*{Epipolar Geometry - fundamentals}

So a simple algorithm for determining correspondences is to match each feature \(\boldsymbol{w}_{\boldsymbol{i}}\) from camera 1 to a feature \(\boldsymbol{w}_{\boldsymbol{j}}^{\prime}\) from camera 2 which is close to the epipolar line of camera 2, provided that the SIFT descriptors for \(\boldsymbol{w}_{\boldsymbol{i}}\) and \(\boldsymbol{w}_{\boldsymbol{j}}^{\prime}\) are similar.

\section*{Epipolar Geometry - fundamentals}

Therefore, we must calculate the equation of the epipolar lines.

\section*{Essential Matrix}
- Firstly, lets assume that the \(1^{\text {st }}\) camera is located at the world origin \(\boldsymbol{O}\)
- This means that every point \(\boldsymbol{X}\) is expressed in the camera coordinates of the \(1^{\text {st }}\) camera, since its optical center coincides with the world origin \(\Rightarrow \boldsymbol{X} \rightarrow \boldsymbol{X}_{\boldsymbol{c}}\)

\section*{Essential Matrix}
- If this is the case, the \(2^{\text {nd }}\) camera is at a location \(\boldsymbol{O}^{\prime}\) in world coordinates, which can be expressed by a translation \(\boldsymbol{t}\) and rotation \(\boldsymbol{R}\), w.r.t. \(1^{\text {st }}\) camera, i.e., the world origin

\section*{Essential Matrix}
- Every 3D point \(\boldsymbol{X}\) can be expressed as \(\boldsymbol{X}_{\boldsymbol{c}}\), which is the cameracentered coordinate system of the \(1^{\text {st }}\) camera, and as \(\boldsymbol{X}_{\boldsymbol{c}}^{\prime}\), which is the camera-centered coordinate system of the \(2^{\text {nd }}\) camera.
- Since \(\boldsymbol{X}=\boldsymbol{X}_{\boldsymbol{c}}\), we can relate \(\boldsymbol{X} \leftrightarrow \boldsymbol{X}_{\boldsymbol{c}}^{\prime}\) or \(\boldsymbol{X}_{\boldsymbol{c}} \leftrightarrow \boldsymbol{X}_{\boldsymbol{c}}^{\prime}\) using a Euclidean transformation composed by the translation \(\boldsymbol{t}\) and rotation \(\boldsymbol{R}\) of the \(2^{\text {nd }}\) camera, w.r.t. the \(1^{\text {st }}\) camera

\section*{Essential Matrix}

Here is how to find an expression for the epipolar line:
\[
\begin{aligned}
& \widetilde{\boldsymbol{X}_{c}^{\prime}}=P_{e} \widetilde{X_{c}} \\
& \Leftrightarrow X_{c}^{\prime}=R X_{c}+t \\
& \Leftrightarrow t \times X_{c}^{\prime}=t \times R X_{c}+t \times t^{0} \\
& \Leftrightarrow X_{c}^{\prime} \cdot\left(t \times X_{c}^{\prime}\right)=X_{c}^{\prime} \cdot(t \times R \\
& \Leftrightarrow \mathbf{0}=X_{c}^{\prime} \cdot\left(t \times R X_{c}\right)
\end{aligned}
\]
\(\longleftarrow\) Express it in cartesian coordinates
\(\longleftarrow\) Apply cross product with \(\boldsymbol{t}\) to both sides
\(\longleftarrow\) This is in homogeneous coordinates
\[
\Leftrightarrow \boldsymbol{X}_{\boldsymbol{c}}^{\prime} \cdot\left(\boldsymbol{t} \times \boldsymbol{X}_{\boldsymbol{c}}^{\prime}\right)=\boldsymbol{X}_{\boldsymbol{c}}^{\prime} \cdot\left(\boldsymbol{t} \times \boldsymbol{R} \boldsymbol{X}_{\boldsymbol{c}}\right) \longleftarrow \text { Apply dot product with } \boldsymbol{X}_{\boldsymbol{c}}^{\prime} \text { to both sides }
\]

年

\section*{Essential Matrix}

This can be rewritten in matrix form:
\[
\begin{aligned}
& \boldsymbol{X}_{\boldsymbol{c}}^{\prime} \cdot\left(\boldsymbol{t} \times \boldsymbol{R} \boldsymbol{X}_{\boldsymbol{c}}\right)=\mathbf{0} \\
\Leftrightarrow & \boldsymbol{X}_{\boldsymbol{c}}^{\prime T} \boldsymbol{E} \boldsymbol{X}_{\boldsymbol{c}}=\mathbf{0}
\end{aligned}
\]

Where \(\boldsymbol{E}=\boldsymbol{T}_{\times} \boldsymbol{R}\) is the essential matrix, and
\[
\boldsymbol{T}_{\times}=\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t_{y} & t_{x} & 0
\end{array}\right]
\]
is a matrix representing the cross product with \(\boldsymbol{t}\) such that \(\mathbf{t} \times \boldsymbol{v}=\boldsymbol{T}_{\times} \mathbf{v}\)

\section*{Fundamental Matrix}

Recall that for \(\boldsymbol{X}_{\boldsymbol{c}} \leftrightarrow \boldsymbol{w}: \quad \widetilde{\boldsymbol{w}}=\boldsymbol{K} \boldsymbol{X}_{\boldsymbol{c}} \Leftrightarrow \boldsymbol{X}_{\boldsymbol{c}}=\boldsymbol{K}^{\boldsymbol{1}} \widetilde{\boldsymbol{w}}\)
and similarly, for \(\boldsymbol{X}_{\boldsymbol{c}}^{\prime} \leftrightarrow \boldsymbol{w}^{\prime}: \quad \widetilde{\boldsymbol{w}}^{\prime}=\boldsymbol{K}^{\prime} \boldsymbol{X}^{\prime}{ }_{\boldsymbol{c}} \Leftrightarrow \boldsymbol{X}_{\boldsymbol{c}}{ }_{\boldsymbol{c}}=\boldsymbol{K}^{\prime \mathbf{1}} \widetilde{\boldsymbol{w}}^{\prime}\)

Combining the two equations yields the equation of the two epipolar lines in pixel coordinates:
\[
\begin{aligned}
& \boldsymbol{X}_{c}^{\prime T} \mathbf{E} \mathbf{X}_{\mathbf{c}}=0 \\
\Rightarrow & \left(\boldsymbol{K}^{\prime-1} \widetilde{\boldsymbol{w}}^{\prime}\right)^{T} \boldsymbol{E}\left(\boldsymbol{K}^{-\mathbf{1}} \widetilde{\boldsymbol{w}}\right)=0 \\
\Rightarrow & \widetilde{\boldsymbol{w}}^{\prime T}\left(\mathbf{K}^{\prime-T} \mathbf{E} \mathbf{K}^{-\mathbf{1}}\right) \widetilde{\boldsymbol{w}}=0 \\
\Rightarrow & \widetilde{\boldsymbol{w}}^{\prime T} \boldsymbol{F} \widetilde{\boldsymbol{w}}=\mathbf{0}
\end{aligned}
\]
where \(\boldsymbol{F}=\boldsymbol{K}^{\prime-T} \boldsymbol{E} \boldsymbol{K}^{\mathbf{1}}\) is the fundamental matrix.

\section*{Fundamental Matrix}

This is the equation of the epipolar line in either camera:
\[
\widetilde{\boldsymbol{w}}^{\prime T} \boldsymbol{F} \widetilde{\boldsymbol{w}}=\mathbf{0}
\]

Assuming we know the fundamental matrix, for every point \(\boldsymbol{w}\) in image 1, this expression gives us the line in image 2 on which the corresponding \(\boldsymbol{w}^{\prime}\) must lie, and vice versa.
- \(l^{\prime}=\boldsymbol{F} \widetilde{\boldsymbol{w}}\) is the epipolar line in the \(2^{\text {nd }}\) image, associated with \(\boldsymbol{w}\)
\(\cdot l=\boldsymbol{F}^{T} \widetilde{\boldsymbol{w}}^{\prime}\) is the epipolar line in the \(1^{\text {st }}\) image, associated with \(\boldsymbol{w}^{\prime}\)
- \(l_{i}: a x+b y+c=0\)

\section*{Examples}

Here are a few examples of the epipolar constraint

\section*{Examples}

Epipolar constraint examples: Parallel image planes

- Baseline intersects the image planes at infinity
- Epipoles are at infinity
- Epipolar lines are parallel to the \(\boldsymbol{u}\)-axis of each image plane

\section*{Examples}

Epipolar constraint examples: Parallel image planes

\section*{Examples}

Epipolar constraint examples: Forward translation

- The epipoles have the same position in both images

\section*{Examples}

Epipolar constraint examples: Forward translation

\section*{Fundamental Matrix}

In order to apply the epipolar constraint we need to know the fundamental matrix:
\[
\begin{aligned}
\boldsymbol{F} & =\boldsymbol{K}^{\prime-T} \boldsymbol{E} \boldsymbol{K}^{-\mathbf{1}} \\
& =\boldsymbol{K}^{\prime-T} \boldsymbol{T}_{\times} \boldsymbol{R} \boldsymbol{K}^{-\mathbf{1}}
\end{aligned}
\]

All the parameters of \(\boldsymbol{F}\) come from the calibration of the two cameras.
Remember that the perspective camera model \(\boldsymbol{P}_{\boldsymbol{p s}}=\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{T}]\) contains this information.

If, however, these are not available (e.g., because we used a projective camera model to calibrate our cameras), \(\boldsymbol{F}\) must be estimated using known image correspondences.

\section*{Estimating the fundamental matrix}

To estimate the fundamental matrix, we follow a similar approach as in camera calibration
\[
\widetilde{\boldsymbol{w}}^{T} \boldsymbol{F} \widetilde{\boldsymbol{w}}=0 \Rightarrow\left[\begin{array}{lll}
u^{\prime} & v^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=0
\]

Each point correspondence \(\boldsymbol{w} \leftrightarrow \boldsymbol{w}^{\prime}\) generates a single equation for estimating the parameters inside \(\boldsymbol{F}\).

\section*{Estimating the fundamental matrix}

Here are \(N\) such correspondences:
\(\left[\begin{array}{cccccccc}u_{1} u^{\prime}{ }_{1} & v_{1} u^{\prime}{ }_{1} & u^{\prime}{ }_{1} & u_{1} v^{\prime}{ }_{1} & v_{1} v^{\prime}{ }_{1} & v^{\prime}{ }_{1} & u_{1} & v_{1} \\ u_{N} u^{\prime}{ }_{N} & v_{N} u^{\prime}{ }_{N} & u^{\prime}{ }_{N} & u_{N} v^{\prime}{ }_{N} & v_{N} v^{\prime}{ }_{N} & v^{\prime}{ }_{N} & u_{N} & v_{N}\end{array}\right]\left[\begin{array}{l}f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32}\end{array}\right]=\left[\begin{array}{c}-1 \\ \vdots \\ -1\end{array}\right]\)
The minimal number for \(N\) is 8 , because \(\boldsymbol{F}\) has 8 degrees of freedom (we can set \(f_{33}=1\))

\section*{Estimating the fundamental matrix}
- In practise, 8 clearly indicated correspondences are never available
- What is available is a set of correspondences proposed by SIFT, for a large set of features, in which there are always errors

\section*{Estimating the fundamental matrix}
- We can use RANSAC to solve this problem
1. Obtain 8 random SIFT correspondences. Use them to estimate \(\boldsymbol{F}\).
2. For every feature \(\boldsymbol{w}_{\boldsymbol{i}}\) in image 1 calculate the epipolar line in image 2. Check if the corresponding feature \(\boldsymbol{w}_{\boldsymbol{j}}{ }_{\boldsymbol{j}}\) in image 2 proposed by SIFT falls "close" to the epipolar line. Count the number \(S\) of such "inliers".
3. If \(S \geq T\) where \(T\) is a threshold, then there is consensus with the random sample taken in the first step. Calculate \(\boldsymbol{F}\) for all inliers and terminate here.
4. If \(S<T\) then no consensus is reached. Repeat from step 1.
5. If after \(N\) iterations no consensus is reached, select the model that gave the highest \(S\), calculate \(\boldsymbol{F}\) using all inliers in \(S\) and terminate

Thank you.```

[^0]: Not really ...

